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Abstract

This work presents a new methodology for synthetic
aperture radar (SAR) raw data generation modeling
system based on fast and efficient computations of
cross-ambiguity functions, acting as point target re-
sponse functions, and multidimensional cyclic corre-
lations of these functions with selected target reflectiv-
ity density functions. Computational Kronecker-core
array (CKA) algebra, a branch of finite dimensional
multilinear algebra, is being utilized as a tool for the
analysis, design, implementation and modification of
multidimensional fast Fourier transform (FFT) based
algorithms for the efficient computation of the cross-
ambiguity functions and the multidimensional cyclic
correlation operations. A MATLAB® environment
was created for the implementation of the complete
SAR raw data generation modeling system. A new
DSP board based modeling system is currently being
implemented for hardware in the loop simulations at
the SAR data receiving facility of the University of
Puerto Rico.

1 Introduction

This work deals with the fundamental issue of the fast
and efficient treatment of microwave remote sensed
data in order to extract information important to
a surveillance user. Great advances in active sen-
sor technology, communications, and signal processing
technology are demanding new computational theo-
ries, methods, and techniques to improve our rapid
awareness of our physical sensory reality. For the par-
ticular case of SAR systems, this implies fast and ef-
ficient means for image formation and rendering from
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raw data[l]. The identification of enhanced raw data
generation techniques will certainly contribute to im-
prove at SAR image formation processes. The work
presented here concentrates on the formulation of a
system environment for the algebraic modeling of SAR
raw data generation. Special attention is given to the
algebraic modeling of point surface response data us-
ing point estimates of discrete cross-ambiguity sur-
face computations. The enhancements and under-
standings of point surface response functions center on
the efficient computation of cross-ambiguity functions.
We present the cross-ambiguity function computations
under a Weyl-Heisenberg systems setting, following
the work of R. Tolimieri[2]. We also present the in-
direct calculation of multidimensional cyclic correla-
tion operations using new variants of multidimensional
FFT algorithms. The advantage of these new FFT
variants over conventional formulations is that ad-
ditive group theoretic properties of multidimensional
input-output indexing sets are used for their math-
ematical formulations, reducing their computational
complexity and improving their implementation per-
formance. Also, these FFT variants do not restrict the
lengths of the multidimensional data sets to powers of
two. There exist many formulations of fast algorithms
for computing the multidimensional discrete Fourier
transform (DFT). Computational Kronecker-core ar-
ray (CKA) algebra, a branch of finite dimensional mul-
tilinear algebra, is used as a language to identify simi-
larities and differences among various FFT algorithm
variants as well as for the creation of new variants.
Each multidimensional DFT computation is expressed
in matrix form. The multidimensional DFT matrix,
in turn, is decomposed into a set of factors, called
functional primitives, which are individually identified
with underlying software computational constructs. It
is in this identification process where the language of
CKA algebra becomes instrumental. For a given hard-



ware computational structure and multidimensional
DFT matrix, there are many FFT algorithm variants
which can map to this target machine. The language
of CKA algebra aids in this mapping effort by iden-
tifying the more computational efficient FFT variants
and thus reducing the computational effort.

2 Kronecker Signal Algebra

We introduce in this section some mathematical con-
cepts which are useful in describing the work. First,
the concept of tensor or Kronecker product of two ma-
trices and then some basic ideas of Kronecker array
signal (KAS) algebra, a branch of finite dimensional
multilinear algebra. Let A and B be any two matri-
ces. The Kronecker product of A and B is given by
A® B = lage - Bleyez/r, Z/R = {0,1,---,R — 1}.
Here, we have assumed A to be a square matrix of
order R. If B is also a square matrix of order, say, S,
then the order of A® Bis R-S = N. Let A and C
be R x R matrices, and B and D be S x S matrices.
Next, form the Kronecker products A ® B and C' ® D.
Through direct matrix multiplication we can show
that (A® B)(C® D) = AC ® BD. If we denote Ig, Is
as identity matrices of order R and S, respectively, we
have (A®B) = (A®Is)(Ir® B). From this expression
we can see that the action of computing with the ma-
trix (A® B) can be performed in two stages: An action
for the computation of (I ® B), followed by an ac-
tion for the computation of (A ® Is). Let the N-point
discrete Fourier transform (DFT) of a one-dimensional
discrete, complex, array signal z[n], of length N, be de-
fined by (2)[k] = 3_,c 2/~ z[n|wk?; k€ Z/N, where
wy = eI and j = +/—1. Written in matrix form,
we have () = Fy -z, Fy = [w}“\,”]kmez/N. We call Fiy
a matrix representation of the DFT operator. In the
same manner, the two-dimensional discrete Fourier
transform of an Ny x N> discrete complex array signal
x[n1,ns] is defined by

(EU\) [kla k2] = Z Z w[nl,n2]wjkv11n1 w]lcv22n2;
n1€Z/N1 n2€Z/No>
where k; € Z/Ky, ks € Z/Ko.

Also, wn, = e_jfz\’% and wy, = e_jf%. Let Fn, xn,
denote a matrix representation of the two-dimensional
discrete Fourier transform operator acting on an Ny x
N, complex signal array z[ny,ns]. Through direct ma-
trix multiplication we can show that

(FN1 ®FN2)
(INI ®FN2)(FN1 ®IN2)

FN1®N2
FN1®N2 =

FN1®N2 = (FN1 ®IN2)(IN1 ®FN2)

If Uy, Uy, Vi, and V, are linear spaces over the
complex field C, and 7; : U; = V;, i = 1,2, are linear
operators acting over these spaces; then, (71 ® Ta) :
Uy ® Us — Vi ® Vs, termed the Kronecker product of
the transformations 7; and 73, is the linear transfor-
mation satisfying the following condition:

(Th @ T2) {ur @ uz} = Ti {ur} ® Tz {uz}

forallu; € U;, i = 1,2. T ®T5 is a Kronecker product
of matrices A® B; where, A and B are the matrix rep-
resentations of the operators 71 and 73, respectively,
conditioned on bases selection criteria[3]. We call the
elements of the linear spaces by the names of vector
array signals, array signals, or, simply, signals. The
linear spaces are turned into linear algebras by intro-
ducing a vector array signal binary multiplication op-
eration invoked by the circular or cyclic convolution.
Thus, we are interested in the linear spaces of the form
V = Mg, s(C), as well as linear T, such that

T: MR75((C) — MR7S((C),

In general, we can say that if we have V' = Mg s(C);
then, the linear space Mg s(C) can then be repre-
sented as the Kronecker product

in which the Kronecker mapping is the dyad mapping
z®y = xy’. The signal algebras manifest themselves
when we invoke multidimensional array cyclic convo-
lutions as array binary multiplication operations.

Let Zy = Z/N = {0,1,2,---,N —1}. A one-
dimensional array signal z, of length N, is said to be
periodic, modulo R if R is a divisor of V; that is, N =
R-S and z[a+bR] = z[a],a € Zr,b € Zs. A one-
dimensional array signal z, of length N, is decimated
modulo R if R is a divisor of N; that is, N = R-S
and z[a] =0,z[a+b-R]|=xz[a] =0,a € Zg;b € Zg.
These observations are very important when consider-
ing the additive group theoretic properties (coset de-
compositions) of the input/output indexing sets of the
matrix representation of unitary operators 7 in linear
algebras V. The matrix representation of the oper-
ators can be decomposed into a set of factors which
we term Kronecker functional primitives and are, ba-
sically, sparse matrices. This decomposition process
usually leads to efficient algorithms for the action of
operators. Of particular importance to us is the ubiqg-
uitous discrete Fourier transform operator.



2.1 Operators on L(Z/N)

The set of all one-dimensional array signals f : Z/N —
C forms a linear space which we denote by L(Z/N).
The set L(Z/N) is isomorphic to the N-dimensional
complex linear space CN . The set of N, N-point array
signals {5{k} :k=0,1,...,n— 1} , where &gy [j] =
1,k = j forms a basis for the space L(Z/N) which
we call the standard basis. We introduce the shift
operator Sy over the space L(Z/N). This opera-
tor is the central component in the characterization
of shift-invariant, finite impulse response (FIR) op-
erators commonly used for filtering operations. Let
the operator Sy over the space L(Z/N) be defined
in the following manner. Sy : L(Z/N) — L(Z/N),
where 6{k} — SN(S{k} = 6{k+1}- Using (f, 6{19}) =
flk] = fr as an orthogonal projection operation, we
write f = ZOSk<N<f7 S¢ky)0gky- Allowing Fy to op-
erate on f gives Fx(f) = f = FN(Z].EZ/N fj(i{j}).
After linearity, ZjeZ/N f[iFNdgy = Z]EZ/N fix;- To
characterize cyclic, finite impulse response (FIR) op-
erators, we start by identifying the vector array signal
obtained by letting the FIR operator T} act on the
unit sample array signal §. Since any N-th order vec-
tor array signal f can be written as a linear combi-
nation of shifted versions of 4, knowing the response
T4 (0) will help in determining T, (f). We call the unit
sample response or impulse response of the system T},
the result obtained by applying T} to the unit sample
sequence ¢, which sometimes is called the impulse sig-
nal. Thus, we have Ty (0) = > o, PIM]ST 0501 or
> o<mens PM]dgmy = h. The unit sample response of
an FIR operator T}, is the array signal h. For any given
vector signal f € L(Z/M), we can always write f =
Y kezmr FIKISK0 or Y pczns FIK]Oghy. Evaluating f
at j € Z/M results in flj] =3, c 7/ fIK](xy[s] or
> kez/u f[K]6[j — k]. The indexing set A = Z/N =
Zny ={0,1,...,N — 1} forms an abelian group with
modulo N addition as the internal binary operation.
Its dual is A = {Nxq : k € Z/N}, with xqp :
Z|N — C, with [m] — N x 3 [m] = et2mik-(m)/N
j = ¥/—1. When no ambiguities arise, we drop the su-
perscript N from the expression Ny The value
Nyqy[1] is usually written as wy = e™2™/N j =
V—1. The functions g} are usually termed expo-
nential sequences, characteristic sequences, or, sim-
ply, characters. Given an N-point impulse response
signal, h € L(Z/N), and an input vector array sig-
nal, = xqx}, the output y, after acting with T}, be-
comes y = 3. 7/ hjISAX[4y or Th {X;}. Another
important operator is the cycﬁic reflection operator,

denoted by the symbol Ry. Its action on the lin-
ear space L(Z/N) is described by Ry : L(Z/N) —
L(Z/N), with (f) — Ry f = f). Here,(Rn f)[k] =
f)K] or fa_k, Modulo N, and k € Z/N.

3 Previous Work

New enhanced SAR imaging techniques are needed for
improving our fundamental understanding of physical
processes pertaining to the environment through re-
mote surveillance. Of particular importance are stud-
ies conducted about the earth surface property char-
acteristics for the better understanding of concepts
such as monitoring of wetlands, soil moisture con-
tent, backscattering from crops, nearshore ocean sur-
face currents, and subsurface imaging in hyperarid re-
gions. To identify these enhanced SAR imaging tech-
niques, a better understanding of efficient SAR raw
data generation operations is needed. We follow a
basic model for understanding the principles of raw
data generation due to R. Blahut [4]. It presents SAR
raw data as a correlation operation between the point
spread function, or, as we call it, point surface response
function, of a SAR system and the reflectivity den-
sity function depicting a physical object environment.
The model also defines the cross-ambiguity function
between the SAR system’s transmitted and received
signals as the point surface response. The work of
R. Tolimieri [2] presents mathematical formulations
of algorithms for the computation of the finite, dis-
crete, cross-ambiguity function in the context of dis-
crete Weyl-Heisenberg systems. The attributes of a
point spread function in a SAR system determine, to
a great extent, the better-quality of the image forma-
tion process. The books of G. Franceschetti and R.
Lanari, [5], and M. Soumekh [6] present many algo-
rithms for SAR image formation operations. Special
emphasis is given in these books to the role that the
DFT plays in image formation operations. An efficient
parallel SAR processor using multidimensional FFT’s
is presented by G. Franceschetti, et al., in [7]. The tu-
torial work of Johnson, et. al., presents a methodology
for analyzing, designing, modifying, and implementing
FFT algorithms on various computing structures us-
ing Kronecker products algebra [8]. For the general
formulation of multidimensional FFT algorithms us-
ing Kronecker products, we followed the work of R.
Tolimieri, et. al., as presented in [9]. In [10], we pre-
sented a set of FFT algorithms to aid in the image for-
mation operation detail, and in [11] a Java-based envi-
ronment was presented for the automatic C-language
source code generation of FFT algorithms.



4 Point Surface Response

Kronecker array signal (KAS) algebra has been in-
strumental in the analysis, design and implementa-
tion of different classes of algorithms for signal pro-
cessing computing methods[12]. In this work we con-
centrated on the design of variants of algorithms for
the computation of the finite, discrete, radar cross-
ambiguity function, and their software and hardware
realizations. The algorithms implementation method-
ology is an improvement over existing formulations.
Enhancements on the methodology concentrate on
group theoretic techniques applied to input/output
data indexing sets in a KAS algebra and linear op-
erator setting, on modified re-sampling techniques,
and on the efficient computation of two-dimensional
fast Fourier transforms. The algorithms have been
tested in MATLAB and are currently being ported
to DSP computing units[13]. Section 2.1, above, pre-
sented some of the linear operators used to compute
the finite, discrete, radar cross-ambiguity function as
a composition of these operators. As it was point out
in Section 2, above, multidimensional FFT algorithms
can be expressed as Kronecker products of lower di-
mensional FFT’s. We used this approach through-
out this work. We proceed to define the basic formu-
lation for the finite, discrete, radar cross-ambiguity
used throughout this work. Let f,g be functions on
L (Z/N), the linear, complex space of all N-point, one-
dimensional, vector array signals. The finite, discrete,
radar cross-ambiguity function A (f, g) [a,b] is defined
on the cartesian product indexing set Z/N x Z/N as
A(f,9)[m. k= X fln]-g*[n+m]e 3%+ We use
nezZ/n

gm,k[n] = gln+mle?FEn g0 write A(f, gm,k) [P q] =
e IR kng (f,9)[m + p, k + q]. This expression intro-
duces the study of various additive group theoretic
techniques on the input output indexing sets of the
computation as well as time-frequency analyses[14].

5 SAR Raw Data Modeling

The contribution presented here on this on go-
ing work centers on the development of a theoreti-
cal/experimental framework for the efficient modeling
of SAR raw data through the efficient computation of
the point surface response function and multidimen-
sional cyclic convolution operations. This framework
has its foundation on the principles of Kronecker array
signal (KAS) algebra to allow a development of a com-
putational signal processing environment where com-
puting methods for radar signal processing are mathe-

matically formulated as sets of algorithms. In this re-
gard, a computational signal processing environment
(CSPE) can be thought of as the aggregate of the fol-
lowing components: A set of input signals, a set of
output signals, a set of operators, a set of composi-
tion rules for these operators, a set of actions rules for
the operators to act on input data in order to produce
output data, and a user interface. The algorithms are
then coded in an identified computing language for a
given computing structure. The KAS algebra serves
as a language tool to aid in the mapping of the signal
processing computing methods to the digital comput-
ing machines. We are seeking modalities of comput-
ing representations that will serve as interfaces be-
tween different computing algebras, and between the
KAS algebra and a target digital computing machine
language. These modalities of computing representa-
tions will assist in automating the process of mapping
digital signal processing (DSP) computing methods
and models to advanced computing architectures and
scalable, reconfigurable computing units, allowing for
more low cost, efficient, on board, and real time SAR
processing operations in the future. At the present
time we establish a linked table of correspondences of
relations between Kronecker functional primitives and
digital machine computing constructs through com-
puter language coding processes. To this end, new
variants of FFT algorithms were constructed tailored
to fast computation of the finite cross-ambiguity func-
tion. This algorithms are currently being implemented
on DSP computing units. It is important to point out
that implementing FFT algorithms on advanced com-
puting architectures for optimal results is not a trivial
matter. Several reasons can be provided to support
this claim. One reason is that, for a specific digi-
tal machine or computing hardware structure (CHS),
many mathematical variants of a given FFT algorithm
(these variants can be viewed as forming a set, this
set defined here as an FFT mathematical framework
(FMF)), must be coded in the mapping process in or-
der to reach an optimal implementation. An FFT im-
plementation is a realization of a mapping of a math-
ematical formulation an FFT algorithm through the
stages of the generation of the source, object, and
execution codes, or their equivalent representations.
Also, for a particular algorithm variant, the perfor-
mance changes from machine to machine, and it is de-
sirable to identify on which machine it performs best.
A third important reason is that some observed inher-
ent software and hardware attributes cannot always be
expressed as parameters in mathematical formulations
or observed through performance evaluation metrics.



6 Summary and Conclusions

The computing approach presented here is based on
the successful use of cross- ambiguity functions, placed
in a Weyl-Heisenberg computational framework, as
point surface response functions for nonlinearly modu-
lated, time-frequency collocated, transmitted signals.
These functions were correlated with prescribed target
reflectivity density functions to produce desired ob-
ject domain results. Kronecker-core array signal alge-
bra, a branch of finite dimensional multilinear algebra,
was utilized as a mathematical tool-language for for-
mulations of multidimensional fast Fourier transform
(FFT) algorithms, prevalent in all cross-ambiguity
functions as well as multidimensional correlation com-
putations. An interactive Java-based stand-alone util-
ity was designed and developed to assist in this work
through automatic software source code generation of
FFT algorithms from Kronecker algebra formulations.

This alternative modality of using Kronecker alge-
bra for mapping multidimensional FFT’s to advanced
hardware computing structures is showing promis-
ing results for allowing to establish identifications be-
tween parallel-distributed computing constructs and
the mathematical expressions named by us functional
primitives. Algorithms were formulated in this work
as factored compositions of functional primitives.

This method will, hopefully, contribute to make in-
ferences in estimating computing performance results
of certain classes of large-scale multidimensional sig-
nal processing algorithms from their mathematical for-
mulations in Kronecker products form, effecting, this
way, a potential impact at the essential hardware im-
plementation scales needed when dealing with funda-
mental understandings of planetary surface energetics
and dynamics.
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