
A Statistical Approach for the Analysis of the

Relation Between Low-Level Performance

Information, the Code, and the Environment ∗

Nayda G. Santiago† Diane T. Rover‡ Domingo Rodriguez§

Abstract

This paper presents a methodology for aiding a scientific program-

mer to evaluate the performance of parallel programs on advanced ar-

chitectures. It applies well-defined design of experiments methods to the

identification of relations among different levels in the process of map-

ping computational operations to high-performance computing systems.

Statistical analysis is used for studying different factors that affect the

mapping process of scientific computing algorithms to advanced archi-

tectures. In particular, a case study on the numerical solution of finite

element methods for the analysis of conformal antennas for electromag-

netic radiation applications was used to test the proposed methodology.

The use of statistics for identification of relationships among factors has

formalized the solution of the problem and this novel approach allows

unbiased conclusions about results. Subset selection based on principal

components was used to determine the subset of metrics required to ex-

plain the behavior of the system.

Keywords : computer performance evaluation, high performance com-

puting, performance metrics, parallel processing, statistical analysis, mul-

tidimensional subset selection, finite element methods

1 Introduction

Performance data analysis is integral to the process of tuning parallel appli-
cations to advanced architectures. The traditional approach for performance
tuning is through the process of data collection, analysis, and code optimiza-
tion. In this approach the application programmer needs to understand instru-
mentation, learn the appropriate tools, and interpret data and its relation to
the code, in order to optimize the code or system configuration, accordingly.
This is illustrated in Figure 1. This method is complex and prone to wrong
interpretations [10]. Also, transformations applied to source code are hard to

∗This work was supported by the following grants: NSF EIA-9700732, NSF ACI-9624149,
and NSF EIA-9977071.

†Michigan State University, ECE Department, 2120 Engineering Building, East Lansing,
MI 48824, USA, (santia11@msu.edu).

‡Iowa State University, Department of ECE, 3227 Coover Hall, Ames, IA 50011, USA,
(drover@iastate.edu).

§University of Puerto Rico at Mayagüez, ECE Department, P. O. Box 9042, Mayagüez,
PR 00681-9042, USA, (domingo@ece.uprm.edu).

1



map to performance data [8]. We propose an alternative method that minimizes
ambiguity when determining which factors to consider during a tuning process
of a parallel application.

High−level Instrumentation
Tools

Programming
Paradigm

Programming
Style System

Configurarion

Computer
Systemcode

Performance
Data

Analysis and
Evaluation

Tools

Knowledge
on

Tools

Programmer

Understand Relations
Between Performance

Data and Code

In−depth
Knowledge on

Computer System

Libraries Algorithm

Languages

Evaluation

Experience

Use
Modify

Figure 1: Analysis flow for tuning an application.

Some tools, such as Paradyn [7], take an automatic approach to determine
whether there is a performance bottleneck and where to locate it. Most other
tools take a different approach in what is called in statistics, exploratory data
analysis (EDA). In this type of analysis, the calculation of simple statistics and
graphical summaries provide the user an understanding of what information the
data is conveying. No a priori knowledge about the data is used.

Complementary to EDA there is a method called confirmatory data analysis
(CDA) where formal statistics is used to confirm or reject a hypothesis about
the population under study. These methods have been used for a long time
in areas such as biostatistics, economics, pattern recognition, and operational
research. Coffin and Saltzman applied these traditional techniques to evaluate
and compare optimization algorithms used in operational research [2]. This
analysis allowed them to draw statistically sound conclusions about the algo-
rithms, and in occasions, different from researcher’s own conclusions. Sun et al.
applied design of experiments and ANOVA to evaluate memory hierarchies and
understand their performance [12]. Recently, Ahn and Vetter [15] used multi-
variate statistical techniques on hardware performance metrics to characterize
the system. They specifically evaluated the use of principal component analysis
(PCA), clustering, and factor analysis to extract performance information.

Certain combinations of factors such as programming style, language, com-
piler options, and algorithms will produce better performance results than oth-
ers. In this work, we are presenting a methodology for obtaining information
about how these factors affect performance for a specific application. This
methodology is based on a combination of confirmatory data analysis statistics
and exploratory data analysis and obtains sound conclusions about the effects

2



of factors on the performance obtained.
We combined the use of design of experiments, analysis of variance (ANOVA),

correlation, and subset feature selection, applied to performance data, to explain
the behavior of the system and provide insight to the user on the relationship
between high-level abstractions to low-level performance information. Figure 2
depicts this methodology which is described in detail in this paper. We expect
most of the details of the methodology to be hidden from the programmer as
support for automation is developed and incorporated.

High−level

Modify

code

Alternative
Algorithms

Problem Solving Environment

Experimentation

Programmer

Statistical

Instrumentation

Knowledge−Based

Tools

Analysis

Data

System

System

Information

Computer Performance

Suggestion

Figure 2: Proposed application tuning methodology.

Section 2 provides an overview of the methodology. In section 3, the evalua-
tion method is demonstrated in a case study of an electromagnetics application
for conformal antenna design. Sections 4 and 5 show the results and conclusions
obtained.

2 Overview of Methodology

This work proposes a different methodology for the analysis of performance data
using a combination of CDA, EDA, experimentation, and multidimensional data
analysis. EDA is characterized by utilizing no preliminary knowledge about
the possible relations of variables under study and the use of statistics and
graphical summaries to understand the information data is conveying. In CDA,
formal statistical methods are used to confirm or reject a hypothesis about
the population under study. Experimentation is used to collect unbiased data
to confirm or reject the hypotheses. Multivariate analysis is used to extract
meaningful relations among large sets of data.

There are four steps in the methodology. First, a preliminary problem anal-
ysis is done. Here we can visualize in general what is affecting performance and
gather preliminary information. The second step is to specify the experiment
design to collect enough unbiased information to be analyzed for establishing
relationships. The third step is to collect the data. Finally, the last step is data
analysis.

3



2.1 Preliminary Problem Analysis

A performance problem-solving process starts with the analysis of the problem
specification. Information needs to be collected about the programmer’s goal
and both the performance problem and the application itself.

Once the application and performance goals are clear, the next step is to
profile the code to identify possible functions to optimize. Analysis continues
with the identification of possible factors affecting performance. These include
environment factors, algorithms to solve those functions to optimize, and hard-
ware specific factors. Next, a subset of factors is selected for the experiment,
considering controllability, feasibility, practicability, and constraints.

2.2 Specification for the Experiment

The second step in the methodology is experiment specification. The theory
of design of experiments (DOE) allow us to take an objective approach in the
experimentation process [9]. Experimental relationships allow the identification
of causality among variables [16]. A well known model of the experimentation
process is shown in Figure 3.

System

...

...

OutputsInputs

execution timecode

input data

... ...

output data

algorithms problem size
Controllable factors

workload OS processes
Uncontrollable factors

Figure 3: Model of an experiment.

Studying all possible factors and levels of these factors is an intractable prob-
lem. A level refers here to the different possible values of one factor considered
in an experiment. In order to obtain the total number of experimental runs,
it is necessary to calculate all possible assignment of factors when varying all
at a time. Once a decision on the factors and levels is taken, the next step
is to select the random order in which the experimental runs will be executed.
Randomization is required to avoid the influence of uncontrollable factors in the
outcome. We must also have at least two replicates of the experiment [9].

The effect of each factor is obtained through experimentation by the use
of a factorial design. In this type of design, all combinations of all levels of
all factors are tested, usually in a complete random order [5]. For practical
considerations, in certain cases a completely random set of runs might not be
easily implemented. A completely randomized run would imply that from run to
run any factor may change. For most computer applications, this is impractical.
For example, in our study, changing the problem size from experimental run to

4



experimental run results in excessive experimentation time and limits our ability
to automatically control experimentation. So a split-split-plot design was used.
A split-plot design is a general case of a factorial design in which randomization
is restricted. In this design, one factor is selected for a treatment. A treatment
is a set of levels of controllable factors administered to an experimental run.
The order in which the treatments will be applied to this factor is selected at
random. Once this is fixed, a second factor is selected and, given the order
for experimental runs selected for the first factor, randomization is done on
the second factor. This could be repeated successively. When a third factor
follows the same restrictions, this is called a split-split plot design [9]. A partial
randomization of experiments causes a higher experimentation error so split-
split plot is suggested only when a completely randomized design is not possible
for practical reasons.

2.3 Data Collection

The data collection step is the only one determined particularly by the com-
puter system, language, and tools used. This is due to the large variation of
metrics available for different computer systems and at different levels. One
group working towards standardization of performance metrics is the APART
(Automatic Performance Analysis: Resources and Tools) group [4, 10]. Their
work moves towards the formalization of the language and methods to present
performance information and to identify the requirements for automatic perfor-
mance analysis tools. APART workpackage 2 presents a set of metrics defined
using ASL for determining some performance properties for shared memory,
message passing, and high performance Fortran [4].

During this step, we identify which metrics are measurable for the paradigms
and systems being used. Specifically, we identify the instrumentation tools that
are available and the metrics that are measurable at the operating system, ap-
plication, and hardware levels. Then from these, for a given paradigm, we select
the APART-recommended set of metrics. Important metrics suggested by the
application programmer should also be selected. Once a set of performance
metrics is selected, instrumentation is activated to collect the data. Code is
compiled and linked as needed, and performance data are collected during exe-
cution.

2.4 Data Analysis

After data collection, analysis begins, and the performance metric dataset is first
formatted to support the statistical techniques. For one experiment, a matrix
format is used. Each element of the matrix is either an average or absolute
metric value. An average value, Mavg, is computed as the sum of all metric
sample values divided by the number of samples, where the samples of the
metric values are taken during execution time only. For example, page faults
per second might be measured as an average. An absolute value, Mabs, is a
metric whose value is obtained as a total at the end of execution time only.
Total execution time is an example of an absolute metric. One experiment
consists of R experimental runs in a predefined random order. This random
order determines the precision obtained in the results. Let P denote the number
of performance metrics measured during an experimental run. Let r denote

5



the experimental run where 0 ≤ r ≤ R − 1 and p is the metric identification
number where 0 ≤ p ≤ P − 1. This results in the following data format for one
experiment:

X =




Mk (0, 0) Mk (0, 1) · · · Mk (0, P − 1)
Mk (1, 0) Mk (1, 1) · · · Mk (1, P − 1)

...
...

. . .
...

Mk (R − 1, 0) Mk (R − 1, 1) · · · Mk (R − 1, P − 1)




where Mk(r, p) denotes average or absolute metric value for experimental run
r and metric p, and k is either avg or abs. Each column of this performance
data matrix contains the measurement of one performance metric over a set of
experimental runs and each row contains information about one experimental
run. Several statistical techniques may be applied to this matrix.

2.4.1 Correlation Matrix

The correlation coefficient is a measure of the linear association between two
variables. The correlation matrix is a two-dimensional array of correlations
where all correlation coefficients are organized systematically. A sample au-
tocorrelation matrix is computed using the formula S = 1

R−1
DX̃T X̃D where

X̃ = X − 1xT and 1 is a 1 × p unit vector and x is a row vector containing
the means of the columns of X. R is the number of experiments [11]. D de-
notes a diagonal matrix containing the inverse of the standard deviation of each
metric. The value of each element (i, j) in the correlation matrix contains the
correlation coefficient between metric i and metric j.

2.4.2 ANOVA

Analysis of variance (ANOVA) is a statistical procedure for the analysis of
the response of an experiment. It is used to estimate the contribution of each
factor to the variations in the outcome. We are using ANOVA to determine
whether there is influence of any of the factors on the result obtained for each
performance metric. In ANOVA, the goal is to determine if there is an effect
of different treatments on a population. In hypothesis testing, the hypothesis
assumed to be true is called the null hypothesis and the contradictory hypothesis
is called alternate hypothesis. The null hypothesis tested by ANOVA is that no
factor will influence the solution and that there is no interaction between any
factors. The probability of error by selecting an alternate hypothesis when the
null hypothesis is true is called type I error and is denoted by α (also called
alpha value). Once the alpha level for the test is selected, a set of test statistics
are computed and a conclusion on whether the null hypothesis is probable or
not is reached. In our case, ANOVA at α level 0.05 will be used to establish
relationships among factors and performance metrics.

2.4.3 Multidimensional Data Analysis

The multidimensional nature of the output performance metrics and the large
amount of data prompts us to identify mechanisms for data reduction and subset
selection. Feature selection in pattern recognition is done either in the measure-
ment space or in the transformed space [17]. In the first one, typically known as

6



feature selection, the goal is to select the best subset of possible measurements.
In the second one, called feature extraction, the objective is to combine mea-
surements to obtain a set of features of lower dimension than the original set.
Even though feature extraction has been used in the past for characterization
of performance metrics on high performance computer systems [15], we suggest
the use of feature selection since the physical meaning of the measurement is
not lost in the process.

Automatic feature selection for unsupervised learning is appropriate for per-
formance metrics datasets. Supervised learning is not available due to the lack
of analytical models describing the behavior of metrics of a particular system.
However, two important issues of unsupervised automatic feature selection are
the order identification or dimensionality of the data set [18] and the subset
generation method [19]. Vélez and Jiménez show in their work that an ac-
ceptable dimensionality in subset selection could be the same as the number of
components to be retained when using principal component analysis (PCA) for
feature extraction [13]. We used this work as starting point in our study.

Now, a main question to answer is how many principal components should
be retained to account for most of the variation in the data? To answer this
question, there are three commonly used methods in multivariate analysis:

Scree test [6]. The eigenvalues of the correlation matrix of the data set are
sorted in descendent order and plotted. The point where the curve flat-
tens is selected as the cutoff point, and this is the number of principal
components to select.

Cumulative Percentage of Total Variation [3]. The eigenvalues of covari-
ance matrix of the data are computed. Each eigenvalue contributes to a
percentage of the total variance. Those eigenvalues whose eigenvectors
explain most of the variance are selected. A threshold of typically 95% of
the total variance is used.

Kaiser-Guttman [6]. The eigenvalues of the correlation matrix of the data
computed and those eigenvalues greater than one are selected.

Once the dimensionality or number of clusters in the data is identified, a sub-
set search method is selected. One of the difficulties in this work is identifying a
suitable cost function for the metric selection process. We started our research
using a basic approach developed in [13]. Here the criterion of independence
between columns is used as a measure for subset selection. Those features that
are most independent and explain the highest correlation are selected based on
principal component analysis and singular value decomposition (SVD). At the
present time we are concentrating on identifying appropriate subset selection
techniques using entropy methods [20] and deterministic single-solution subop-
timal feature selection algorithms as described in [19].

3 Case study - Conformal Antenna Design

Even though the proposed methodology is applicable to a large number of ap-
plications and architectures, individual results are valid for a specific problem

7



domain and system. We have selected a case study of an application in the
area of finite elements methods for conformal antenna analysis. This code im-
plements an iterative solver whose kernel is a matrix-vector multiply of dense
matrices and is representative of the types of workload in this area. We used
experimental design techniques to determine how low-level performance infor-
mation is affected by the code, problem size, and compiler options. This section
introduces and demonstrates the methodology in the context of the conformal
antenna design case study.

3.1 Preliminary Problem Analysis

The performance objective is to improve the execution time of the antenna
analysis code. The code uses a bi-conjugate gradient iterative solver to find
the solution. The goal is to parallelize the code and to reduce the execution
time while keeping the memory requirements as low as possible due to the large
matrices involved in the computation.

The original serial code was profiled and, not surprisingly, 84% of the time
was spent in a dense matrix-vector multiplication routine and other routines
were accounting for 3% or less of the total execution time each. Therefore,
efforts concentrated in optimizing this dense matrix-vector multiplication rou-
tine. Several different dense matrix-vector multiplication routines were tested
and problem sizes were changed by modifying the physical specifications of the
antenna.

The experiments were done on a quad-processor Sun Enterprise 450 Server
running Solaris 5.7. This server is a shared-memory, symmetric multiprocessor
system (SMP). Each processor is an UltraSparcTM II running at 400MHz with
2MB of local, high-speed external cache memory. We used OpenMP directives
for code parallelization with the Forte Fortran HPC 6 Fortran compiler and
Guidef77 3.9 parallelizing compiler.

3.2 Specification for the Experiment

The inputs to our system are the application code and data. The outputs are
the matrices containing the different metrics to measure performance. Control-
lable factors in the experiment are problem size, algorithm, compiler options,
and sampling rate of the metrics. Among uncontrollable factors we consider
environment variables and workload.

We investigated a comprehensive set of performance factors and determined
that an observable, controllable and measurable set includes problem size, dense
matrix-vector multiplication algorithm selection, and compiler options. The set
of factors and levels in this experiment is shown in Table 1. Since the used
compiler generates a different executable with each permutation of flags, the
effect of permutations was also considered.

Figure 4 shows a graphical description of a block of our split-split-plot design.
A block refers to a replicate or repetition of the basic experiment. In this figure,
a block in the design is divided into whole plots where the the problem size (1, 2,
and 3) was selected at random. The subplot factor is the matrix multiplication
algorithm (A and B). Then sub-subplots will contain the compiler options (a -
m) that were tested randomly.

8



Table 1: Factors and levels in experiments.

Factors Number of Levels

Problem Size 3
Compiler Options 13
Algorithms 2
Number of repetitions 3
Total number of experimental runs 234

Three replicates of the basic experiment were done. The number of iterations
for obtaining the solution of the iterative solver has been fixed to remove the
impact of reduced matrix conditioning.

3.3 Data Collection

The antenna code runs in two modes: model generation mode and solver mode.
The first mode generates the matrices used in the computation while the second
mode finds a solution for the antenna analysis. For the experiment, the code is
first set to model generation mode and the matrices for a given problem size are
generated. For this problem size, the order in which the matrix-vector multipli-
cation algorithms are tested is randomly selected. For each algorithm-size pair,
thirteen compiler options are tested in random order. The code then runs in
solver mode. A crontab file starts all experimental runs so that instrumentation
and application code run simultaneously.

3.4 Data Analysis

Once the measurements were obtained, they were placed in the matrix form
discussed in section 2.4 and its correlation matrix was computed. The most
correlated metrics with execution time were identified.

Analysis of variance (ANOVA) at α level 0.05 was done for each set of metrics
obtained. Then the methods discussed in section 2.4.3 were used to determine
how large the set of important metrics should be. Since each method may give
a different set size, the largest size value was used to avoid not having enough
metrics. The SVD method described in [13] was used to obtain the final set of
metrics.

2 1 3

b,l,a,...,h d,c,g,...,b a,i,d,...,c

j,h,e,...,c k,b,g,...,a m,a,e,...,h

B

A B

A

B

A

Figure 4: Example of one block in our split-split plot design.

9



4 Results

The results from two different experiments done to test the proposed method-
ology are shown in this section.

4.1 Experiment with parallel implementation

In this experiment, our application was parallelized using OpenMP constructs.
Two different algorithms for matrix-vector multiplication were used with thir-
teen different compiler options and three different problem sizes. Problem sizes
were varied by changing the physical specifications of the antennas under study.

Those metrics most correlated with execution time, using a threshold of
correlation higher than 0.9, are shown in table 2, where the correlation was
negative in all cases. Negative correlation is interpreted as follows: execution
time increases when the metric value decreases.

Table 2: Metrics with largest correlation with execution time.

Rank Label Description

1 lwrit/s Accesses of system buffer cache to write
2 lread/s Accesses of system buffer cache to read
3 c0t0d0/wps Write per second per disk
4 c0t0d0/util Percentage of disk utilization per disk
5 disk/s0 Disk operations per second
6 page/mf Minor faults in units per second
7 vflt/s Address translation page faults per second

Analysis of variance (ANOVA) at significance level α = 0.05 was done on
these metrics to establish the effect of factors. Table 3 shows ANOVA results
for those metrics obtained in table 2.

Table 3: ANOVA on the metrics presented in table 2.

Factor Metrics affected by the factors

Size (S) disk/s0, page/mf, vflt/s
Algorithm (A) lwrit/s, lread/s, c0t0d0/wps, c0t0d0/util, disk/s0, page/mf, vflt/s
Compiler Option (C) lwrit/s, lread/s, c0t0d0/wps, c0t0d0/util, disk/s0, page/mf, vflt/s

We proceeded to perform a multidimensional analysis on the data. First
we want to obtain the number of metrics required for preserving most of the
information on the data. When we used the three different criteria for finding
the number of metrics required for keeping most of the variance, we found that
only three metrics were selected. Analyzing the data in detail, we noticed that
principal component analysis was very biased towards the data with the largest
values. This is a well known characteristic of PCA [3] and can be solved by
normalizing the data. We normalized the data using the Euclidean norm and
then proceeded with the analysis.

Figure 5 shows an example of a plot of the eigenvalues of the correlation
matrix to use scree test and the Kaiser-Guttman criteria. Notice the change in

10



the slope of the curve at five eigenvalues and then at eight eigenvalues. Scree
test might have two or three inflection points in the curve and this is one of the
cases. Notice also that only nine eigenvalues are greater than one. Table 4 show
how many metrics should be kept to preserve the variability of the performance
metrics outcome, according to the three methods explained in section 2.4.3.

0

2

4

6

8

10

12

0 5 10 15 20 25

E
ig

en
va

lu
e

Eigenvalue number

"EigvExp2" using 1:2

Figure 5: Eigenvalues of correlation matrix.

Table 4: Number of features to select.

Test Experiment with parallel im-
plementation

Experiment with serial imple-
mentation

Scree test. 8 6
Cumulative percentage (95%). 9 7
Greater than 1. 9 6
Max. of the three methods. 9 7

Table 5 shows those metrics selected by the method for this experiment.
These metrics describe activity which experts usually look for when tuning a
program: paging activity, cpu utilization, memory faults, and virtual memory
statistics.

Table 6 shows ANOVA results for those metrics.
We can notice that cpu context switches is affected by all three factors.

4.2 Experiment with serial implementation

In this experiment, our application was using the same basic algorithms as in
the previous experiment, but running serially. Other factors remain the same.

The metrics highest correlated with execution time using a threshold of
correlation higher than 0.9 are shown in Table 7.

11



Table 5: Metrics with highest information content.

Item Name Description
1 memory/free Usage of virtual and real memory. Free size of the free list (Kbytes).
2 pflt/s Page faults from protection errors per second (illegal access to page).
3 page/re Paging activity in units per second. Page reclaims.
4 c0t1d0/wps Writes per second per disk.
5 %wio Portion of time running idle with some process waiting for block I/O.
6 page/sr Paging activity in units per second. Pages scanned by click algorithm.
7 page/pi Paging activity in units per second. Kilobytes paged in.
8 page/po Paging activity in units per second. Kilobytes paged out.
9 faults/cs Trap/Interrupt rates per second. CPU context switches.

Table 6: ANOVA on the metrics shown in table 5.

Factor Metrics affected by the factors
Size (S) faults/cs
Algorithm (A) faults/cs
Compiler Option (C) memory/free, page/po, faults/cs

Table 8 shows ANOVA for these five metrics.
Using the method presented in [13] and the results from Table 4, those met-

rics shown in Table 9 were obtained as the most relevant ones. These metrics
describe buffer and paging activity, virtual memory statistics, and cpu utiliza-
tion. It is important to notice that the method selected execution time as an
important metric in this case.

Table 10 shows ANOVA results for these metrics.

4.3 Discussion

Results have led to several interesting findings. Those metrics with highest
correlation with execution time will allow us to look for possible places where to
improve the code. These are not necessarily the same metrics which will retain
the largest amount of information about the status of the system. We have to
take into account that information is inversely proportional to probability of
occurrence and those metrics which are highly correlated carry less information
than non-correlated metrics.

Those metrics highly correlated with execution time are very similar for

Table 7: Metrics with largest correlation with execution time.

Rank Label Description

1 c0t0d0/wps Writes per second per disk
2 disk/s0 Disk operations per second
3 lwrit/s Accesses of system buffer cache to write
4 c0t0d0/util Percentage of disk utilization per disk
5 lread/s Accesses of system buffer cache to read

12



Table 8: ANOVA on the metrics presented in table 7.

Factor Metrics affected by the factors
Size (S) None
Algorithm (A) lwrit/s, c0t0d0/util, lread/s
Compiler Option (C) lwrit/s, c0t0d0/util, lread/s

Table 9: Metrics with highest information content.

Item Name Description
1 atch/s Page faults per second that are satisfied by reclaiming a

page currently in memory (attaches per second).
2 pflt/s Page faults from protection errors per second (illegal access

to page).
3 bread/s Reads per second of data to system buffers from disk.
4 memory/free Usage of virtual and real memory. Free size of the free list

(Kbytes).
5 pgin/s Page-in requests per second.
6 cpu/wt Report the percentage of time the system has spent waiting

for I/O.
7 execution time Total execution time.

both experiments, specially those related to buffer activity, I/O, disk operation.
This might be caused by the nature of our application which is very demanding
in terms of I/O and memory access. Buffer activity, I/O, and paging activity
are the activities most correlated with execution time. But this buffer cache
activity is related to disk access directly since the buffer cache under Solaris 5.7
is used to cache inode, indirect block, and cylinder group related disk I/O only
[1]. Analysis of means of this variable shows that algorithm B for matrix-vector
multiplication causes a much lower buffer activity for read and for write than
algorithm A. Algorithm A refers to a matrix-vector multiplication algorithm
where we tried to minimize thread interaction in OpenMP by making the loops
as independent as possible. Algorithm B modifies algorithm A by splitting
loops into smaller ones by removing the if condition showing in algorithm A.
This splits the matrix by opposite diagonal elements. Compiler options one
and three have much smaller buffer activity than other compiler options. An
analysis of means on execution time showed that compiler options one and three
also resulted in the longest execution times.

When we analyzed the same application with the serial code, we found that
paging activity, buffer activity, and cpu utilization contain the most relevant
information on the status of the system.

Table 10: ANOVA on the metrics selected by SVD.

Factor Metrics affected by the factors
Size (S) execution time
Algorithm (A) cpu/wt, execution time
Compiler Option (C) atch/s, memory/free, cpu/wt, execution time.

13



5 Conclusions

A methodology based on an unified view of performance analysis, statistics,
and multidimensional data analysis has been presented. We have used a pow-
erful statistical tool to identify correlations between low-level performance in-
formation and high-level code abstractions. We are interested in calling other
researcher’s attention in applying these techniques to their applications and
platforms. The information collected about algorithms or compiler options will
aid the application programmer in making decisions about their code. This
approach will complement traditional exploratory data analysis.

Future work will include the use of additional techniques for feature selec-
tion and the design of a knowledge based system for providing feedback to the
programmer. Sequential forward search using an entropy cost function has been
programmed and results so far are promising.

Acknowledgments

This work was supported by the following grants: NSF EIA-9700732, NSF ACI-
9624149, and NSF EIA-9977071. Special thanks to Leo Kempel and the Electro-
magnetics Laboratory at Michigan State University for providing the application
code and to Vijay S. Kesavan for his assistance.

References

[1] A. Cockcroft and R. Pettit. Sun Performance and Tuning: Java and the
Internet. Sun Microsystems Press, 2nd edition, 1998.

[2] M. Coffin and M. J. Saltzman. Statistical analysis of computational tests
of algorithms and heuristics. INFORMS J. Comput., 12(1):24 – 44, Winter
2000.

[3] W. R. Dillon and M. Goldstein. Multivariate Analysis: Methods and Ap-
plications. John Wiley, 1984.

[4] T. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, and J. L. Täff. Knowl-
edge specification for automatic performance analysis APART. Technical
Report FZJ-ZAM-IB-2001-08, Cent. Inst. for Appl. Math., Res. Centre
Jülich, Aug. 2001.

[5] R. Jain. The Art of Computer Systems Performance Analysis: Techniques
for experimental design, measurement, simulation, and modeling. John
Wiley & Sons, Inc., 1991.

[6] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, Inc., 1986.

[7] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B.
Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The paradyn
parallel performance measurement tool. Computer, 28(11):37 – 46, Nov.
1995.

14



[8] B. Mohr, A. D. Malony, S. Shende, and F. Wolf. Design and prototype of a
performance tool interface for OpenMP. In Proc. 2nd LACSI Symposium,
Oct. 2001.

[9] D. C. Montgomery. Design and Analysis of Experiments. John Wiley &
Sons, Inc., 1997.

[10] G. D. Riley and J. R. Gurd. Requirement for automatic performance anal-
ysis APART. Technical Report FZJ-ZAM-IB-9919, Cent. Inst. for Appl.
Math., Res. Centre Jülich, Nov. 1999.

[11] A. Ruiz and P. E. L. de Teruel. Nonlinear kernel-based statistical pattern
analysis. IEEE Trans. Neural Networks, 12(1):16 – 32, Jan. 2001.

[12] X.-H. Sun, D. He, K. W. Cameron, and Y. Luo. Adaptive multivariate re-
gression for advanced memory system evaluation: Application and experi-
ence. Performance and Evaluation: An International Journal, 45(1):1 – 18,
2001.

[13] M. Vélez-Reyes and L. O. Jiménez. Subset selection analysis for the reduc-
tion of hyperspectral imagery. In Proc. IGARRS ’98, pages 1577 – 1581
Vol. 3, 1998.

[14] Jeffrey S. Vetter and Frank Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster architectures. In
Proc. IPDPS 2002, Apr. 2002.

[15] Dong H. Ahn and Jeffrey S. Vetter. Scalable analysis techniques for micro-
processor performance counter metrics. In Proceedings of Supercomputing
’02, Nov. 2002.

[16] Sam Kash Kachigan. Statistical Analysis: An Interdisciplinary Introduction
to Univariate & Multivariate Methods. Radius Press, Inc., 1986.

[17] Pierre A. Devijver and Josef Kittler, editors. Pattern Recognition: A Sta-
tistical Approach. Prentice Hall International, 1982.

[18] Jennifer G. Dy and Carla E. Brodley. Feature subset selection and order
identification for unsupervised learning. In Proceedings of the 17th Intena-
tional Conference on Machine Learning, Jun-Jul. 2000.

[19] Anil Jain and Douglas Zongker. Feature selection: Evaluation, application,
and small sample performance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19(2):153 – 158, Feb. 1997.

[20] M. Dash, H. Liu, and J. Yao. Dimensionality reduction of unsupervised
data. In Proceedings of the 9th Intenational Conference on Tools with Ar-
tificial Intelligence, pages 532 – 539, Nov. 1997.

15


