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An Adaptive Framework for Managing
Heterogeneous Many-Core Clusters

Muhammad Mustafa Rafique

ABSTRACT

The computing needs and the input and result datasets of modern scientific and enterprise

applications are growing exponentially. To support such applications, High-Performance

Computing (HPC) systems need to employ thousands of cores and innovative data man-

agement. At the same time, an emerging trend in designing HPC systems is to leverage

specialized asymmetric multicores, such as IBM Cell and AMD Fusion APUs, and commod-

ity computational accelerators, such as programmable GPUs, which exhibit excellent price

to performance ratio as well as the much needed high energy efficiency. While such accel-

erators have been studied in detail as stand-alone computational engines, integrating the

accelerators into large-scale distributed systems with heterogeneous computing resources

for data-intensive computing presents unique challenges and trade-offs. Traditional pro-

gramming and resource management techniques cannot be directly applied to many-core

accelerators in heterogeneous distributed settings, given the complex and custom instruction

sets architectures, memory hierarchies and I/O characteristics of different accelerators. In

this dissertation, we explore the design space of using commodity accelerators, specifically

IBM Cell and programmable GPUs, in distributed settings for data-intensive computing and

propose an adaptive framework for programming and managing heterogeneous clusters.

The proposed framework provides a MapReduce-based extended programming model for

heterogeneous clusters, which distributes tasks between asymmetric compute nodes by con-

sidering workload characteristics and capabilities of individual compute nodes. The frame-

work provides efficient data prefetching techniques that leverage general-purpose cores to

stage the input data in the private memories of the specialized cores. We also explore the

use of an advanced layered-architecture based software engineering approach and provide

mixin-layers based reusable software components to enable easy and quick deployment of

heterogeneous clusters. The framework also provides multiple resource management and

scheduling policies under different constraints, e.g., energy-aware and QoS-aware, to support

executing concurrent applications on multi-tenant heterogeneous clusters. When applied



iii

to representative applications and benchmarks, our framework yields significantly improved

performance in terms of programming efficiency and optimal resource management as com-

pared to conventional, hand-tuned, approaches to program and manage accelerator-based

heterogeneous clusters.
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Chapter 1

Introduction

Large-scale computing systems comprising thousands of cores routinely serve as workhorses

for enabling scientific discoveries and enterprise activities. With the increase in the size of an

average computing cluster and the requirements to orchestrate and manage large input and

output datasets, the use of computational accelerators, coprocessors, accelerated processing

units (APUs) and asymmetric multicore processors (AMPs) with a mix of general-purpose

processors (GPP) and specialized cores have become a leading paradigm for cost-effective

high-end computing setups. Processor vendors will soon deliver Teraflop-capable, single-chip

multi-processors, by integrating many simple cores with SIMD (Single-Instruction Multiple-

Data) or SIMT (Single-Instruction Multiple-Threads) datapaths. Cell processors [1,2], AMD

Fusion APUs [3], programmable graphics processing units (GPUs) from NVIDIA [4, 5],

Larrabee [6] and the Single-chip Cloud Computer [7] are representatives of this class of

processors with significant market interest and demonstrated potential [8–14]. Teraflop-

capable processors accelerate computation by design, while staying within a reasonable

cost budget. Therefore, they are considered as one of the most promising computational

workhorses [5,15–22] for High Performance Computing (HPC). Using heterogeneous systems

that combine fine-grain parallelism with coarse-grain parallelism using ten or thousands of

processors has helped improved the performance of HPC applications [23–25]. As a result,

these heterogeneous architectures are becoming more popular for consumer applications in-

cluding computer gaming, multimedia applications, desktop computing, HPC, robotics and

embedded applications.

Using heterogeneous many-core accelerators and coprocessors in a large-scale distributed

setting is different from using traditional multicore processors that are composed of homo-

geneous cores having same instruction set architecture (ISA). Although these heterogeneous

many-core processors offer better computational performance and power efficiency as com-

1
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pared to the traditional multicores, their use in a large-scale cluster introduces additional

design and run-time challenges. This dissertation proposes an adaptive framework for manag-

ing heterogeneous many-core clusters, and presents novel solutions to the programming and

resource-management challenges that are associated with the use of heterogeneous many-core

processors in large-scale computing clusters.

In this chapter, we provide the necessary background for understanding the research done

in this dissertation. In particular, Section 1.1 provides an overview of the challenges and

issues related to the use of heterogeneous many-core systems that we attempt to address on

multicores. Section 1.2 highlights the objective of this research. Section 1.3 summarizes the

research contributions that we make in this dissertation. Section 1.4 provides an outline of

the remainder of this dissertation.

1.1 Challenges in Using Heterogeneous Many-Core

The new paradigm shift from homogeneous multicores to heterogeneous many-core proces-

sors in a node as well as in a large-scale cluster introduces many challenges, with respect

to programmability, I/O orchestration, and resource management. Many-core architectures

provide concurrency, however, in order to take advantage of the available hardware resources,

new programming paradigms, intelligent data-distribution techniques, and efficient resource

management schemes need to be developed to exploit the capabilities of heterogeneous cores

to their full extent [26,27]. In the following we provide an overview of the challenges involved

in using heterogeneous systems that we attempt to address in this dissertation.

1.1.1 Programming Heterogenous Many-Core Systems

Programming asymmetric systems, even at a single-chip level, is not very well understood,

and is the topic of much research [28–32]. In contrast, programming models for symmetric

clusters, e.g., MPI [33] and SHMEM [34], are mature, user-friendly, and free the application

programmers from low-level system management details. Programming accelerators-based

heterogeneous systems requires working with multiple ISA and multiple compilation tar-

gets. Lack of easy-to-use and efficient programming models and tools to model the system

heterogeneity is one of the key challenges in programming heterogeneous clusters. Further-

more, absence of sophisticated debuggers and profiling support to better understand the

application behavior also imposes a barrier for using heterogeneous resources in mainstream
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application development.

While hiding architectural asymmetry and system scale from parallel programming model

are desirable properties [35], they are challenging to implement in a heterogeneous system,

where exploiting the customization and computational density of each computational unit is

a first-order consideration. Mapping a high-level parallel programming model to accelerators

while hiding the details of accelerator hardware is extremely challenging and even undesir-

able if raising the level of abstraction comes at a performance cost. Current approaches for

programming accelerator-based heterogeneous clusters are either ad hoc or specific to an

installation [21,36], thus posing several challenges when applying to general setups. Further

challenges arise because of heterogeneity, which manifest both in the programming model and

in resource management. Implementing an accessible programming model on systems with

many cores, many processors, multiple ISAs and multiple compilation targets requires drastic

modifications of the entire software stack. Suitable programming models that adapt to the

varying capabilities of the accelerator-type components have not been developed yet. This

deficit forces application writers who want to use accelerators on clusters to micro-manage

installation-specific resources. Using architecture-specific solutions is highly undesirable,

as it compromises productivity, portability, and sustainability of the involved systems and

applications.

The effects of alternative workload distributions between general-purpose processors and ac-

celerators are also not well-understood. Accelerators typically have much higher compute

density and raw performance than conventional processors, therefore coupling accelerators

with conventional processors may introduce imbalance between the two. Accelerators also

typically have limited capabilities for managing external system resources, such as communi-

cation and I/O devices, thus requiring support from general-purpose processors and special

consideration while designing the I/O management software. To ensure overall high effi-

ciency, I/O management on accelerator-based systems needs to carefully orchestrate data

transfers and work distribution between heterogeneous components.

1.1.2 Data Prefetching in Heterogeneous Many-Core Systems

Modern many-core accelerators follow a design philosophy that favors many simple cores

with wide datapaths. This leads to more power-efficient designs while sustaining exponential

improvement of performance. Unfortunately, this approach strips processors from capabili-

ties of executing control-intensive code efficiently, such as branch predictors, multiple-issue,
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dynamic instruction scheduling, and speculation. Therefore, accelerators can not support

efficiently control-intensive code, such as most operating system services. Furthermore, al-

though accelerators have high compute density, they also have limited storage space directly

accessible to them on-chip or via a dedicated link. Therefore, any programming model that

integrates accelerators needs to implement efficient data transfers to and from the on-chip

memory of the accelerators. Scaling the resource heterogeneity beyond a single node requires

synthesis of parallel execution and data communication techniques. These techniques should

balance the computational speed of accelerators, with the limited off-chip and off-node data

transfer bandwidth. Achieving this goal while retaining properties that help boost program-

mer productivity, such as being agnostic of the number and architecture of processors, is a

major challenge.

Asymmetric multicores and coprocessors have been primarily used for compute-intensive

workloads. However, modern applications often comprise of I/O-intensive phases that pro-

cess large data in streams, e.g., compression/decompression, encryption/decryption, video

processing, and workflow-based scientific computing. The compute kernels of such ap-

plications can benefit from asymmetric clusters, but the inherent mismatch between the

heterogeneous components poses a major obstacle to sustaining the high I/O rates necessary

for reaping these benefits. This poses critical research challenges for symmetric as well as

asymmetric clusters that should be addressed to fully realize the capabilities of available

resources [37–39]. The limited attached storage of an accelerator-based resource may pre-

vent it from hosting the suite of essential I/O optimizations, e.g., caching, prefetching, etc.,

which are standard in general-purpose nodes, and force them to rely on GPPs to prefetch

data and perform I/O on their behalf. Furthermore, unnecessary I/O serialization may

occur at the cluster manager as it tries to feed multiple accelerators. Given that any decent-

sized asymmetric cluster will employ multiple nodes, performance-degrading contention may

occur for storage and network resources. Previously developed data distribution and task

management libraries for asymmetric accelerator-based architectures [40], delegate param-

eterization of data transfers and workload scheduling to the programmer. While this is a

workable approach, it poses additional design challenges to the programmer and increases

the application development time. Effective use of heterogeneous accelerators and copro-

cessors in a distributed setting requires creating efficient and transparent I/O management,

prefetching, and data staging techniques that hide the underlying resource asymmetry and

heterogeneity from the programmer while providing the desired performance.
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1.1.3 Managing Heterogeneous Many-Core Systems

While the potential of many-core systems to catalyze HPC systems and data centers is

clear, attempting to integrate heterogeneous many-core processors seamlessly in large-scale

computing installations raises several challenges in managing these resources. There is an

inherent imbalance between general-purpose cores, accelerators and coprocessors in asym-

metric settings. The trend towards integrating relatively simple cores with extremely efficient

vector and stream processing units leads to designs that are inherently compute-efficient but

control-inefficient. General-purpose cores are efficient in executing control-intensive code,

therefore they tend to be employed primarily as controllers of parallel execution and com-

munication with accelerators. Accelerators on the other hand, are efficient in executing

data-parallel computational tasks. To address this problem, large-scale system installations

use ad hoc approaches to pair accelerators with more control-efficient processors, such as x86

multicore CPUs [21], whereas processor architecture moves in the direction of integrating

control-efficient and compute-efficient cores on the same chip [6].

Another fundamental resource management challenge arise in a multi-tenant heterogenous

setup, such as cloud computing environment, where heterogeneous resources are shared be-

tween multiple concurrently executing applications. Coprocessors and accelerators generally

do not support executing multiple applications concurrently, thus require especial scheduling

considerations while supporting multi-tenancy. In an effort to increase concurrency between

multiple kernels, the latest NVIDIA GPUs now support executing multiple kernels concur-

rently, however, these concurrent kernels must be launched from the same process. This

support is insufficient to support executing multiple applications concurrently. Furthermore,

each computing resource offers a unique performance advantages for different applications,

and using heterogeneous coprocessors and accelerators in a single cluster supporting multi-

tenancy introduces additional challenges of optimal application to coprocessor mapping to

improve the overall system performance.

One of the key benefits that attract the use of heterogeneous many-core processors in

data centers and enterprise setups is the power-efficiency offered by these resources. Using

high performance energy-efficient coprocessors coupled with low performance energy-efficient

general-purpose processors is a viable approach that can be adapted to minimize the en-

ergy consumption of a computing cluster. However, lack of effective power-aware resource

management and scheduling techniques that can be applied to heterogeneous multi-tenant
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clusters in general reduces the power-efficiency benefits of these resources. Developing ef-

ficient energy-aware resource management and scheduling techniques is a challenging task

since it requires information about the energy profile of all the heterogeneous computing

resources and the characteristics of the concurrent applications that are executed on the

cluster. Inefficient scheduling and management of these power-efficient resources results in

more energy consumption and void the purpose of their use.

1.2 Research Objectives

This dissertation focuses on developing productive programming models and adaptive re-

source management framework for heterogeneous many-core clusters for compute and data

intensive computing. While designing the framework, we propose innovative solutions and

adapt node and cluster level middlewares to emerging heterogeneous systems. The main

objectives of this research are to:

1. design and develop efficient programming models and abstractions that can hide the

underlying architectural asymmetry of the heterogeneous clusters from the application

programmer and improve programming efficiency;

2. design and develop efficient data distribution, I/O management, and prefetching tech-

niques that can be used to eliminate the memory limitations of accelerator-based

systems;

3. design and develop novel scheduling mechanisms that can be used to improve the

energy-efficiency of heterogeneous clusters, and enable them to support concurrent

applications in a multi-tenant environment.

The scope of the research presented in this dissertation extends across system software and

hardware architectures in three specific areas: programming models, memory subsystems,

and resource scheduling. We use commodity off-the-shelf accelerators, specifically IBM Cell

Broadband Engine [1] and NVIDIA GPUs [4] as computational accelerators and coproces-

sors in various heterogeneous configurations in this dissertation. From application front, we

target various scientific and enterprise applications with the specific focus on application

efficiency and high performance computing.
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1.3 Research Contributions

This dissertation proposes an adaptive framework for programming and managing hetero-

geneous many-core clusters. While designing the proposed framework, we create innovative

solutions to address the challenges of programmability and resource management in hetero-

geneous clusters. In the following, we highlight specific research contributions that we make

in this dissertation.

1. We propose an extended MapReduce-based programming model [41–43] to program

Cell and GPU-based heterogeneous clusters. Our approach utilizes all available re-

sources irrespective of the resource heterogeneity, and hide the inherent resource

asymmetry from the application programmer. We evaluate our approach using Cell

and GPU-based accelerators and show that the proposed programming model can be

used efficiently for a variety of conventional and hierarchical cluster configurations and

scales well with the number of compute nodes.

2. We investigate the use of advanced component-based software engineering approach [44]

to program accelerator-based heterogeneous systems. In particular, we develop mixin-

layers based reusable software components for accelerator-based heterogeneous clusters,

and effectively encapsulate both reusable and custom feature implementations within

separate components. In our design, custom implementations–both heterogeneous and

platform specific–can be introduced as new components, which can then be plugged-

into our component architecture of a given accelerator-based cluster configuration. We

evaluate our approach using Cell and GPU-based heterogeneous cluster and show that

the layered architecture helped significantly reduce the amount of code that had to

be changed to support heterogeneous nodes, and the majority of components could

actually be reused as is.

3. We investigate several I/O prefetching techniques [45] for Cell processor, and pro-

pose an asynchronous prefetching approach that prefetches the required data using the

general-purpose core and then offloads it to the specialized cores using decentralized

DMA operations, rather than letting the specialized cores to do the I/O directly. We

evaluate the proposed scheme and show that it significantly breaks up the I/O bottle-

neck and results in better performance for data-intensive workloads compared to the

case where all I/O is handled at the specialized core. This work enables the use of
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asymmetric multicores, such as Cell/BE, for executing I/O intensive workloads in a

heterogeneous cluster with minimal execution stalls and improve system performance.

4. We propose various I/O management techniques [41, 46] for heterogeneous clusters

and integrate them in our extended MapReduce programming model. Specifically, to

close the computation-I/O gap between heterogeneous resources, we explore a dynamic

streaming approach to transfer large data between cluster resources based on the mem-

ory capacities of communicating components. We also investigate a capability-aware

workload distribution technique that maps the concurrent workloads on the compute

resources based on the workload requirements and the computation and I/O capabil-

ities of compute resources. We evaluate the proposed approaches and show that they

significantly improve system performance.

5. We propose a novel power-aware resource management and scheduling scheme [47] for

heterogeneous clusters that can be incorporated into the proposed framework to maxi-

mize the work done per watt and reduce the total the cost of ownership for computing

clusters. The proposed scheduling scheme identifies the optimal cluster configuration,

i.e., homogeneous or heterogeneous, based on the power profiles of the deployed servers

and the characteristics of the workloads, and maximizes work done per watt by dy-

namically assigning low power states to servers based on the current request rate. We

evaluate the proposed scheduling scheme and show significant improvements in the

energy efficiency of a heterogeneous cluster.

6. We propose a QoS-aware scheduling scheme [48] that can be incorporated into the

proposed framework to enable efficient dynamic sharing of a heterogeneous clusters

across multiple concurrently-executing applications, each with arbitrary load spikes

under strict performance requirements. The proposed scheme monitors the load on

each application, collects past performance data, and dynamically builds simple perfor-

mance models using available processing resources. Based on the performance model,

it computes priority for pending user requests and reorders them across different ap-

plications to achieve the desired performance requirements. We evaluate the proposed

approach in a multi-tenant environment and show that it significantly improves the

QoS requirements of concurrent applications.
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1.4 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we provide an overview

of the related work and the background technologies that lay the foundation of the research

conducted in this dissertation. In Chapter 3, we describe how MapReduce can be extended

to program heterogeneous clusters comprising accelerator-based compute nodes, and present

an extended MapReduce-based programming model to program Cell and GPU-based hetero-

geneous clusters. Furthermore, we also explore layered-architecture based advanced software

engineering approach to program heterogeneous clusters, and describe how mixin-layers

based reusable software components can be used to enable the quick deployment of het-

erogeneous clusters. In Chapter 4, we present how prefetching techniques can be used to

enable the use of asymmetric multicores for data-intensive computing, and develop prefetch-

ing techniques to eliminate the I/O bottlenecks from the Cell-based asymmetric multicores.

In Chapter 5, we present the design of a capability-aware workload distribution technique

that enables executing concurrent applications on the heterogeneous resources by considering

the I/O characteristics of individual applications and the I/O capabilities of the available

compute nodes. In Chapter 6, we explore how energy-aware workload scheduling can be used

to maximize the energy benefits of heterogeneous resources. In Chapter 7, we explore how

QoS-aware resource scheduling can be used to meet the performance requirements of concur-

rent applications, and present a QoS-aware resource scheduling mechanism for multi-tenant

heterogeneous clusters. Finally, Chapter 8 concludes this dissertation.



Chapter 2

Background and Related Work

In this chapter, we present an overview of the technologies that enable the research conducted

in this dissertation. We also discuss the closely related work on programming models, data

staging and prefetching techniques, and resource management schemes.

2.1 Enabling Technologies

In the following subsections, we provide an introduction of the heterogeneous accelerators,

specifically IBM Cell processor and CUDA-enabled GPUs, that we have used in this disser-

tation. We also provide an overview of the MapReduce programming model that we have

adapted to program heterogeneous clusters.

2.1.1 Many-Core Computational Accelerators

Multicore processors with tightly coupled accelerators are becoming common, with the po-

tential to sustain supercomputer-class node performance for dense computations, under a

reasonable power budget. Large-scale data centers typically employ commodity off-the-shelf

components to yield a cost-efficient setup. While commodity hardware has been common

place in HPC setups for almost two decades, large-scale data centers of commercial interest,

e.g., Google [49], Amazon’s EC2 [36], etc., follow the same approach to building efficient

systems at scale.

Availability of commodity accelerators such as the Cell [1, 2, 50] in the Cell-based Sony

PlayStation 3 (PS3) [51,52], and NVIDIA GPU-based graphics engines [53,54] renders these

computational engines prime candidates for deployment in large-scale HPC systems. The

rapid growth in high-speed networks and the use of low cost commodity off-the-shelf hard-

ware, makes such distributed asymmetric clusters natural substitutes for expensive high-end

10
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Figure 2.1 Cell Broadband Engine system architecture.

supercomputers. The use of off-the-shelf components in large-scale clusters has been demon-

strated both in academia, e.g., Condor [55], and industry, e.g., Tianhe [56], Google [49],

Roadrunner [21] and Amazon [36].

2.1.1.1 IBM Cell Broadband Engine

The Cell [1,2,50], shown in shown in Figure 2.1, is a heterogeneous chip multi-processor with

one general-purpose 64-bit two-way PowerPC SMT core (the Power Processing Element –

PPE), and eight vector-processing (128-bit SIMD-RISC) cores (the Synergistic Processing

Elements – SPEs), which are specialized for acceleration of data-parallel computations. The

on-chip interconnection network of the Cell is a circular ring, termed the Element Intercon-

nect Bus (EIB), which connects all nine cores with memory and an external I/O channel to

access other devices, such as the disk and network controller.

The PPE functions as a front-end processor for task scheduling and data distribution between

SPEs, as well as for running the operating system. It also provides support to SPEs for exe-

cuting system calls and services. The SPEs are designed to accelerate data-parallel (vector)

computations. The SPEs are specialized processors with software-managed private memo-

ries and the programmer is responsible for specifying the data movement between the main
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Figure 2.2 CUDA-enabled NVIDIA GPU architecture.

memory and each SPE’s local storage using the Cell’s coherent DMA mechanism, and can

overlap data transfer latency with computation using multiple asynchronous DMAs. This

facility allows the programmer to explicitly manage the data flow between Cell components,

e.g., for improving I/O performance [45].

2.1.1.2 General-purpose Computing on Graphics Processing Units (GPGPU)

General-purpose computing on graphics processing units (GPGPU) is a common technique

used to exploit the parallelism by using the graphics processing unit (GPU) to perform gen-

eral purpose computing which is traditionally handled by the CPU. Current top-of-the-line

GPUs are equipped with dozens of fragment processors and have much higher bandwidth

than the traditional CPUs. The processing power of the GPUs have been exploited for mul-

tiple scientific [57–63], database [64–68], geometric [69–74] and imaging applications [75–79],

and have shown significant performance benefit as compared to traditional CPU and mul-

ticore programming. Furthermore, the increase in parallelism within a processor also leads

to other desired advantages such a reduced power-consumption [80, 81] and better memory

latencies [82–84].

We use CUDA-enabled [4] GPUs in this dissertation. These GPUs are SIMT architectures

and provide stream processing capabilities allowing the programmer to execute the paral-

lel portion of the code on GPU devices. Figure 2.2 shows the high-level architecture of

a CUDA-enabled NVIDIA GPU. A typical GPU has hundreds of microprocessors group

together in a processing blocks having shared and dedicated memory hierarchies. A hard-

ware implemented scheduler efficiently executes a large number of threads at each processing
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blocks. CUDA [4] programming framework is generally used to program NVIDIA GPUs.

CUDA provides a set of language extensions to the C/C++ programming language to distin-

guish between GPU executable multithreaded functions and host executable single threaded

functions. With improved programming support [85], GPUs are now being introduced in

mainstream clusters [36, 86, 87].

2.1.2 MapReduce Programming Model

MapReduce is a parallel programming model for large-scale data processing on parallel and

distributed computing systems [31, 88–90]. It provides minimal abstractions, hides archi-

tectural details, and supports transparent fault tolerance. The model is a domain-specific,

high-productivity alternative to traditional parallel programming languages and libraries for

data-intensive computing environments, ranging from enterprise computing [36,91] to peta-

scale scientific computing [31, 90, 92]. Several research activities have engaged in porting

MapReduce to multicore architectures [31,89,90], whereas recently, leading vendors such as

Intel began supporting MapReduce natively in experimental software products [13, 28].

Figure 2.3 shows an example of different MapReduce operations on the Word Count appli-

cation. The first phase includes the map operations that produces intermediate data in the

form of (key, value) pairs. The intermediate data is then grouped together before executing

repeated reduce operations to produce the final resultset. The following illustration provides

pseudocode for the simple map and reduce operations of the Word Count application shown

in Figure 2.3.

void map( S t r ing document ) {
// document : document con ten t s
for each word w in document :

EmitIntermediate (w, ‘1 ’ ) ;
}

void reduce ( S t r ing word , I t e r a t o r par t i a lCounts ) {
// word : a word
// par t i a lCounts : a l i s t o f aggregated p a r t i a l counts
i n t sum = 0 ;
f o r each pc in par t i a lCounts :

sum += ParseInt ( pc ) ;
Emit (word , AsStr ing (sum ) ) ;

}
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Figure 2.3 Example of MapReduce operations on Word Count application.

MapReduce typically assume homogeneous virtual processors that alternate between map-

ping, partitioning, sorting, and merging data. While this approach is friendly to the

programmer, it adds complexity to the runtime system, if the latter is to manage het-

erogeneous resources with markedly variable efficiency in executing control-intensive and

compute-intensive code. Recent work [93] addresses performance heterogeneity, but is limited

only to issues arising from using virtual machines to support compute nodes [36]. Inherent

architecture heterogeneity remains a major problem when the cluster components include
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specialized accelerators, as in such setups the mapping function should consider individual

component capabilities and limitations while scheduling jobs on these resources. Another

complication arises because of the assumption that data is distributed between processors

before a MapReduce computation begins execution [91]. On distributed systems with accel-

erators, accelerators use private address spaces that need to be managed explicitly by the

runtime system. These private spaces create effectively an additional data distribution and

caching layer –due to their typically limited size— which is invisible to programmers but

needs to be implemented with the utmost efficiency by the runtime system.

The public implementations of MapReduce for Cell [31] and GPU [89], provides the pro-

grammer with a set of APIs for writing MapReduce applications for these architectures.

The runtime for Cell implementation divides the execution flow into five stages (Map, Parti-

tion, Quick-sort, Merge-sort, and Reduce) and schedules these stages on accelerators cores.

This work has shown that compared to standard multicore setups, the Cell can provide

performance improvement for computationally intensive workloads with moderate data sets.

Similarly, the MapReduce implementation for GPU hides the programming complexity of a

GPU behind easy-to-use MapReduce interfaces, and enable the users to write MapReduce

applications for GPUs with having to learn about the graphics APIs and GPU architecture.

2.2 Related Work

As previously described in Chapter 1.2, the framework presented in this dissertation focuses

on three key areas for efficiently exploiting heterogeneous clusters: easy-to-use programming

model, efficient data distribution and prefetching techniques, and adaptive resource man-

agement and scheduling techniques, for heterogeneous asymmetric clusters. This section

summarizes the prior work that is closely related to these three areas.

2.2.1 Programming Models for Heterogeneous Systems

In this section, we provide an overview of prior work that is closely related to programming

asymmetric and heterogeneous systems. We also focus on the programming models and

techniques that are used to program accelerator-based systems.
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2.2.1.1 Message Passing Interface (MPI)

MPI [33,94,95] is a popular programming model to write parallel applications for distributed

systems. The MPI-based programming model adopted in Roadrunner [21] is attuned to its

specific hardware. So far, the programmers have relied on manual porting and few auto-

matic tools [21] to run applications on the setup. Running a processor-agnostic programming

model, such as MPI, across all cores of any type, implies that accelerators will need to execute

the full software stack of communication libraries and task execution control, thus sacrificing

precious local storage and execution units that would better be used for dense data-parallel

computations. On the plus side, applications that have been “ported” to Roadrunner have

shown significant increase in performance [21] compared to that on current state-of-the-art

multicore symmetric clusters. This stresses the need for a user-friendly model that will allow

applications to easily benefit from such hardware resources.

2.2.1.2 BrookGPU

BrookGPU [96] implements the compiler and runtime environment using stream program-

ming extensions to the C programming language for general purpose computations on a

GPU. Each compute kernel in BrookGPU is implemented as a function that is applied to ev-

ery element in a stream. Data dependencies between compute kernels are identified through

explicit declaration of input and output parameters of the stream. StreamIt [97] is a similar

programming language and compilation infrastructure that uses the similar streaming ap-

proach and applies uniform operations to each kernel elements in multiple input streams to

produce a single output stream. Both BrookGPU and StreamIt provide runtimes that map

the compute kernels onto processing elements.

2.2.1.3 CUDA

The common practice for programming accelerators, especially GPUs, is to use CUDA [4].

CUDA provides a set of language extensions to the C/C++ programming language to distin-

guish between GPU executable multithreaded functions and host executable single threaded

functions. CUDA also provides a set of APIs to facilitate programmer in allocating GPU

memory, copy data between GPU and host memories, and to launch the execution of mul-

tithreaded kernel on GPU devices. To facilitate programming, CUDA exposes three special

language abstractions: a hierarchy of thread groups, shared memories, and barrier synchro-

nization. The use of these abstractions is conducive to the programmer dividing her program
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into coarse-grain sub-problems that can be executed independently in parallel. As an addi-

tional advantage, individual sub-problems are amenable to be further divided into finer-grain

slices, which can also be solved cooperatively in parallel. This arrangement leverages one

of the key benefits of threads: enabling them to cooperate with each other while solving

individual sub-problems. Finally, the assignment of slices to the physical processors is done

by the underlying runtime, enabling flexible parallel designs in which the exact number of

physical processors needs not to be known until the runtime.

2.2.1.4 OpenCL

OpenCL [98] provides a development framework for programming heterogeneous platforms

comprising of general-purpose processors and GPUs. It provides a C programming language

style programming constructs to write compute kernels that can be executed on the at-

tached devices. These compute kernels can also operate on the data structures other than

the contiguous streams, and assume Single-Program Multiple Data (SPMD) execution mod-

els within the compute kernels. Initially the Both CUDA and OpenCL update local variables

in the private memory of the accelerator, enabling the programmer to ignore any side-effect

of kernel execution on the main memory. OpenCL was originally supported by a limited ven-

dors, but with its increased popularity almost all major vendors have now started providing

its support in their latest accelerator products.

2.2.1.5 Phoenix

Phoenix [90] is a shared-memory implementation of MapReduce for transparently running

data-intensive processing tasks on symmetric systems. It provides a thread-based runtime

that automatically manages thread creation, dynamic task scheduling, data partitioning,

and fault tolerance across symmetric processors. It hides the details of parallel execution

from the programmer and requires a functional representation of the algorithm. Phoenix

has shown scalable performance for both multicores and conventional symmetric multipro-

cessors [90]. Although Phoenix can run on a Cell processor, it only utilizes the generic core

and does not use the accelerators.

2.2.1.6 Sequoia

Sequoia [32] is a programming language that models heterogeneous systems as trees of mem-

ory modules such that the leaves of the tree represent processors. The programmer divides
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the program execution as hierarchies of tasks, and maps these hierarchies to the memory

subsystems of target machines. Sequoia provides the APIs to facilitate the programmer to

describe vertical communication in the tree. It provides a complete programming system in-

cluding the compiler and runtime framework for the Cell-based processor. Although, Sequoia

provides platform-specific programming model for program Cell-based accelerators, it does

not provide a generic programming framework to program accelerator-based asymmetric

heterogeneous systems.

2.2.1.7 Merge

Merge [28] is a general purpose programming framework for heterogeneous multicore systems

similar to that of Sequoia, and uses MapReduce based tree style programming model. Data

movements between the tree nodes are orchestrated automatically without the programmer’s

intervention. It addresses the system heterogeneity by allowing the programmer to specify

multiple implementations of each compute kernel for each heterogeneous core in the system.

The Merge runtime uses simple sampling scheme to identify the optimal core to execute a

particular kernel. Merge provides a solution to program heterogeneous architectures on a

single system, however, it does not address the heterogeneity of accelerator-based systems

in large-scale distributed settings.

2.2.1.8 Qilin and Harmony

Qilin [99] and Harmony [100] provide execution models for heterogeneous multiprocessors

using high-level language constructs and explicit input and output parameters. Programmer

can specify the compute kernels in Qilin in Intel Threading Building Blocks (TBB) [101] for

CPU executable kernels or NVIDIA CUDA [102] for GPU executable kernels. Both Qilin

and Harmony use adaptive mapping to automatically map the compute kernels to the avail-

able accelerators at the runtime. These approaches also use analytical performance models

to determine the optimal execution time of each compute kernel on available accelerators.

2.2.1.9 Mapping CUDA to Heterogeneous CPUs

The growing acceptance of CUDA has attracted a growing body of researcher to work on map-

ping the CUDA to other non-GPU based architectures. These works include MCUDA [103],

OpenMP to GPU [104], MPI to CUDA [105], and Hadoop using CUDA [89]. All of these

approaches except MCUDA map the domain specific languages to GPU, whereas MCUDA
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provides a mapping from CUDA to general purpose CPUs. This concept of mapping the

CUDA to other architectures has also been exploited in the generation of synthesizable

Register Transfer Level (RTL) for FPGAs [106]. Several scalable solutions for program-

ming multicores and many-core architectures for explicitly parallel, BSP [107] programming

models have been proposed including Rigel [108], IRAM [109], RAW [110], and Trips [111].

However, CUDA and OpenCL remains the only industry-accepted and widely used program-

ming models to program the heterogeneous accelerators.

2.2.1.10 Limitations of Prior Work

Although, the existing research efforts presented in the section is widely used in their respec-

tive settings, none of these efforts addresses the problem of deploying and programming the

accelerator-based systems in heterogeneous distributed settings. The prior work presented in

this section are either too specific to an installation, or consider some specific assumptions.

For example, the control flow representation of the program, input/output data and kernel

specification assumptions and requirements in Qilin and Harmony may not hold valid in

the accelerator-based asymmetric clusters. The most widely used and scalable programming

model, MapReduce, assumes homogeneous computational resources, and hence distributes

the workload statically among the available compute nodes. This assumption may not hold

valid in accelerator-based setups where different accelerator resource has distinct computa-

tional capabilities and memory subsystems. Furthermore, MPI based programming models

require low-level knowledge of the underlying architecture requiring expert understanding

of the deployed accelerators, and hence are not scalable to variety of accelerator-resources.

The tools and technologies presented above, such as BrookGPU, CUDA, OpenCL, and Se-

quoia, consider some specific accelerators and cannot be generalized on the widely available

commodity accelerators such as Cell, GPUs, FPGAs etc.

2.2.2 Data Distribution and Prefetching Techniques

The I/O performance of traditional HPC systems is typically improved through pre-staging

of necessary data on computing resources, and node-level OS optimizations. A number

of works [112–122] have shown the benefits of staging in reducing data-transfer times and

improving HPC system serviceability. At the node level, a mature body of knowledge, com-

prising simple to advanced pattern-based approaches, exists for data caching [123–141] and

prefetching [135,142–156] to improve I/O performance and bridge the gap between the CPU
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and disk access speeds. However, these approaches primarily focus on the I/O performance

for traditional systems that do not have limited I/O capabilities, and cannot be simply

applied to heterogeneous clusters where limited on-chip memory is available at each acceler-

ator. Moreover, adapting and extending these I/O-improving techniques for heterogeneous

clusters will provide opportunities for designing resource orchestration policies that best suit

the needs of the target applications. Several related work address the problem of optimally

workload distribution and load balancing on asymmetric clusters [157–168].

2.2.2.1 Global Distributed Cache

A recent effort [169] explores an approach of using additional dedicated nodes as global

caching nodes to improve the I/O performance in a distributed setting. This approach im-

plements an MPI-IO [170] layer where I/O related tasks on the output data are delegated to

the dedicated nodes. This approach assumes MPI programming paradigm, which may not

always be used to program accelerator-based heterogeneous systems. Furthermore, since this

work is specially designed for applications that produce large output data, its performance

impact is reduced to a limited set of HPC applications.

2.2.2.2 Compiler Optimization

A compiler optimization-based approach [171] to manage the GPGPU memory hierarchies

and parallelism takes the GPU kernel function as input, analyzes the code, and identifies

its memory access pattern. It then generates the updated kernel with the required memory

operations and with the kernel invocation parameters. It exploits the memory coalescing and

vectorization, if supported by the GPGPU architecture, to optimize the kernel performance.

This work targets the applications where static transformation can be performed to optimize

the memory references.

2.2.2.3 DataStager

DataStager [172] provides data staging services for large-scale applications for homogeneous

clusters. It uses dedicated I/O nodes to move the data from the compute nodes to the stor-

age devices. This approach results in reduced I/O overhead on the application and reduces

its processing time. Although this approach is interesting, it does not address the data

prefetching challenges of limited on-chip memory at specialized accelerators and coproces-

sors. Furthermore, DataStager specifically targets output data of the applications, and does
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not provide any services to stage input data, which in the case of HPC systems can easily

exceed to the order of terabytes.

2.2.2.4 G-Streamline

G-Streamline [173] proposes several heuristic based algorithms and techniques to remove

the dynamic irregularities in the memory references and control flows from the input GPU

kernels. It resolves these irregularities on the fly by analyzing the interactions between the

control and memory operations and their relations with the global program data. Although

G-Streamline presents a promising solution that does not require offline profiling, it is only

limited to the specific memory hierarchies of GPUs, and applies only to the predictable

dynamic data irregularities.

2.2.2.5 hiCUDA

hiCUDA [174] provides a low-level programming method to translate C-style programs into

CUDA. It provides directive-based interfaces to specify the memory and computation op-

erations on the parallel data, and uses source-to-source compilation to generate CUDA

compatible code from hiCUDA code. The directives provided by hiCUDA are unstruc-

tured, and require the application programmer to specify all the data transfer operations.

This approach is limited to the GPU architectures, and does not eliminate the need for the

application programmer to thoroughly understand the GPU memory hierarchies.

2.2.2.6 COMPASS

COMPASS [175] provides a shader-assisted prefetching mechanism that uses idle GPU to

prefetch the data for single-threaded CPU applications. It emulates the hardware-based

prefetcher and improves the performance of single-threaded application which cannot ex-

ecute a dedicated prefetching thread. It uses a baseline GPU-architecture and introduce

several extensions to it for designing the desired prefetcher in a simulated environment. The

applicability of COMPASS is limited by the fact that it is a simulated hardware and it is

not provided by any vendor.

2.2.2.7 Overlapping I/O and Computation

Overlapping I/O with computation is a common optimization technique, and has shown sig-

nificant improvements in the overall system performance [176, 177]. Different computation
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and I/O overlapping techniques for MPI-based applications have been studied and proposed

in [178]. These efforts present different I/O optimization techniques by overlapping com-

putation with I/O, however, these approaches are applicable to a limited accelerators and

coprocessors that support asynchronous I/O.

2.2.2.8 Limitations of Prior Work

The prior research in the field of data distribution and prefetching techniques provide

solutions that primarily applicable to homogeneous setups with conventional multicore pro-

cessors. They cannot be applied directly to heterogeneous setups comprising accelerators

and coprocessors. Furthermore, these efforts provide solutions that are applicable to specific

installations and application characteristics. Accelerators and coprocessors generally have

limited on-chip memory, and cannot implement an I/O optimization stack. Furthermore,

they require a general-purpose processor or host machine to initiate the I/O operations. Some

of the efforts presented in this section target distributed systems, but require external data

staging nodes to perform the prefetching and data handling operations. Such assumptions

and requirements cannot stand valid in an accelerator-based heterogeneous system, where

accelerators cannot access the network interconnects directly and can only communicate with

the host processors.

2.2.3 Resource Management and Scheduling in Heterogeneous

Clusters

Heterogeneous resource scheduling has been studied for distributed and grid systems, mostly

addressing issues that arise from performance asymmetry instead of architectural heterogene-

ity. Most of these efforts addressing heterogeneity at the node-level [179–182] and distributed

system-level [183–186] represent scientific kernels as graphs with nodes representing interde-

pendent tasks of the entire job. Mesos [187] is a substrate for sharing cluster resources across

multiple frameworks, such as Hadoop [91] and MPI [33], and uses two-level scheduling where

it first offers resources to a framework, and the framework selects some of the offered re-

sources and uses its own scheduling policy. This approach enables the resource sharing at the

granularity of frameworks, but does not incorporate application performance requirements

such as deadlines and response times in the presence of load spikes. AJAS [188] provides

an adaptive job allocation strategy for heterogeneous clusters, but does not consider varying

application load and response time to make decisions.



2.2 Related Work 23

2.2.3.1 Static Workload Scheduling

A static workload distribution and load-balancing scheme for PC-based heterogeneous clus-

ters has been proposed in [161] that takes into account the computational power of each

processor at each node. The nodes having more computational power are assigned bigger

tasks than then one with lesser computational resources. This work addresses the hetero-

geneity of having processors clocked at different rates with different Intel-based ISAs. The

approach proposed in this work assumes prior knowledge of the processing power of each

node is already available, and uses this knowledge for static assignment of tasks to the cluster

nodes. The prior knowledge of the processing power of each node is determined by execut-

ing computational and memory intensive benchmarks at each node and then comparing the

results to determine the relative computational performance of each node.

2.2.3.2 Dynamic Workload Scheduling

A multi-agent framework for workload scheduling and load balancing is proposed in [168]

that first splits the processes into separate jobs and then assign these small jobs into the

available cluster nodes in a balanced fashion by using the mobile agents. The processing load

on a particular node is determined by the length of the job queue that reflects the total num-

ber of unprocessed processes on that node. This work makes use of the mobile agent [189]

technology and addresses the issue of heterogeneity in the mobile nodes by simulating the

mobile nodes using PMADE (Platform for Mobile Agent Distribution and Execution) [190]

on cluster of Windows NT based PCs.

PeraSoft [158] presents a distributed data allocation and sorting algorithm with automatic

load-balancing on commercial off-the-shelf Sun workstations running the Linux operating

systems. It uses Beowulf parallel-processing architecture from NASA that links commodity

off-the-shelf processors to build high-performance cluster. PeraSoft exploits local knowledge

in workload distribution such that global processes are completed using the local knowledge

and recovery resources. It combines the workload distribution and load balancing while the

data is being sorted for processing. Since PeraSoft is designed using Beowulf cluster that

does not efficiently support I/O intensive applications, PeraSoft is also limited to be used in

compute intensive applications.

A dynamic scheduling scheme for utilizing the spare capabilities of heterogeneous clusters

of computers has been presented in [167]. This work is very particular to a scenario where
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periodic parallel real-time jobs are already been scheduled on a heterogeneous cluster, and

new aperiodic parallel real-time jobs are requested to be executed on the clusters. The clus-

ter scheduler schedules new jobs on the cluster nodes by modeling the spare capabilities of

individual nodes. If a real-time job cannot be scheduled such that its completion deadline

is met by using the spare capabilities of the nodes while running the periodic real-time jobs,

its admission is rejected and is reported back to the user. It uses simple modeling technique

to compute the spare capabilities of each node by determining how many resources (proces-

sors, memory etc.) are free at any particular time. Each node of the clusters hosts a local

scheduler, which operates on Early Deadline First (EDF) policy to schedule periodic as well

as aperiodic tasks. Hosting a scheduler at each node in the accelerator-based systems may

not work at all, or would impose extra overhead at each node. Furthermore, this approach

also requires that the scheduler to know the time required to execute each job on each of the

cluster node.

A workload distribution technique for non-dedicated heterogeneous cluster (running generic

as well as dedicated tasks) is proposed in [162]. This work also assumes that the heteroge-

neous cluster is already loaded by dedicated tasks, and new generic tasks are assigned to

the cluster. The solution presented in this work uses a queuing model for three different

queuing disciplines, namely, dedicated application without priorities, prioritized dedicated

applications without preemption, and prioritized dedicated applications with preemption,

and schedules the workload between the cluster nodes based on these queuing disciplines

such that the overall average response time of the generic applications is minimal.

A task assignment algorithm for heterogeneous computing systems that exploits best-first

search technique (A∗ algorithm) commonly used in the disciplines of artificial intelligence

is presented in [159]. Although, the solution proposed in this work provides an optimal

task assignment scheme, it is not suitable to be used in the large-scale scheduling problems

because of its high response time and space complexity. The approach used in this work

assumes that the assigned tasks can be subdivided and can be represented as an arbitrary

task graph with arbitrary costs on the nodes and edges of the graph. The corresponding

task graph is then mapped to the cluster nodes using well-defined assignment algorithms to

solve the scheduling problem.



2.2 Related Work 25

2.2.3.3 Fair Scheduling in Homogeneous Clusters

Fair scheduling policies for homogeneous clusters involve allocating each job a fair share of the

resources. For instance, if a job takes time t to execute all by itself, then in the presence of n

jobs, it should take time nt. Many proposals offer modifications to fair scheduling. Deadline

Fair Scheduling [191] provides processes with proportionate-fair CPU time in multiprocessor

servers. Delay Scheduling [192] provides a cluster-level fair scheduling scheme that exploits

data locality for MapReduce [88] and Dryad [193], but their context does not cover processor

heterogeneity or varying application load. A time-sharing based fair scheduling mechanism

is presented in [194], which is developed for DryadLINQ [195] cluster. Quincy [196] provides

a fair scheduling scheme that preserves and leverages data locality for homogeneous clusters

under MapReduce, Hadoop, and Dryad where static application data is stored on the com-

puting nodes. All of these efforts target homogeneous clusters in specific settings, and do

not consider varying application load and response times to make scheduling decisions. In

a sense, our contribution presented later in this dissertation could be seen as a modification

of fair scheduling taking into account load spikes and resource heterogeneity.

2.2.3.4 Limitations of Prior Work

The workload distribution and task scheduling techniques presented in this section are either

specific to application characteristics, or does not take into account the computational ca-

pabilities and memory capacities of each compute node while distributing the workload and

scheduling the computational tasks. Furthermore, these techniques are generally designed

for general-purpose PC-based clusters, and are either intended for homogeneous clusters or

address the cluster heterogeneity only at the operating system and clock-speed level. Some

of the approaches presented in this section require assumptions and scenarios, such as having

prior knowledge of the application completion time at each node, a specific task arrival pat-

tern at the cluster manager, or non data-intensive tasks assignments to the cluster. None of

these assumptions can hold valid in scientific and enterprise settings where accelerator-based

heterogeneous compute nodes are deployed as workhorses in distributed settings to satisfy

the computing needs of the clusters.
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2.3 Chapter Summary

In this chapter, we have discussed the details of enabling technologies and the related work

on programming models, data distribution, and resource management techniques for het-

erogeneous clusters. Our framework presented in this dissertation aims to provide adaptive

and scalable programming models and efficient resource management techniques for hetero-

geneous clusters, with the main objective of utilizing the heterogeneous cluster resources in

a transparent and efficient manner.



Chapter 3

Scalable Programming Framework for
Heterogeneous Clusters

Asymmetric parallel architectures are rapidly being established in emerging systems as the

sine qua non for achieving high performance without compromising reliability. The model

has been realized in asymmetric multi-core processors, where a fixed transistor budget is

heavily invested on many simple, tightly coupled, accelerator-type cores. These cores pro-

vide custom features that enable acceleration of computational kernels operating on vector

data. Accelerator cores are controlled by relatively few conventional processor cores, which

also run system services and manage off-chip communication. Researchers have collected

mounting evidence on the superiority of asymmetric multi-core processors in terms of per-

formance, scalability, and power-efficiency [8, 10, 12]. The advent of the Cell processor and

GPUs as HPC and data processing engines [15–21, 45], further attests to the potential of

asymmetric architectures.

While parallel programming models for symmetric clusters have been studied at length, the

synthesis of parallel programming models for asymmetric parallel architectures is an open

problem. In particular, hiding the architectural asymmetry from the programming model,

and exploiting the vast computational density of accelerators while they communicate with

inherently slower system components remain major challenges. One good candidate from

homogeneous parallel programming model that can be adapted for asymmetric HPC clus-

ters is MapReduce [88]. MapReduce is a simple model for machine-independent parallel

programming at large scales. It provides minimal abstractions, hides architectural details

including heterogeneity, and supports transparent fault tolerance. While current implemen-

tations of MapReduce accommodate standalone accelerators, e.g., Cell [31], and take into

consideration heterogeneity of compute nodes due to virtualization in the task scheduler [93],

27
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they do not cope with the asymmetry between the computational density of accelerators and

data processing and forwarding capabilities of manager nodes. This asymmetry can lead to

severe performance penalties by exposing communication or I/O bottlenecks.

In this chapter, we propose two approaches that can be used to efficiently program

accelerator-based heterogeneous clusters. First we present CellMR, a MapReduce-based

extended programming framework for asymmetric HPC clusters with large-memory general

purpose head nodes and accelerator-type compute nodes. CellMR hides asymmetry and

enables high-performance, cost-effective, and scalable data processing. We target HPC clus-

ters with heterogeneous processor architectures, similar to LANL’s RoadRunner [21], built

however with low-cost compute nodes that capitalize on the compute density of graphics and

gaming processors. While CellMR can be extended to arbitrary hybrid parallel architectures,

we first evaluate our efforts on a cluster that uses the Cell, arguably one of the dominant

asymmetric multi-core processors, as an accelerator, and then we extend CellMR to different

resource configurations including hierarchical setups. CellMR uses data streaming approach

to effectively support MapReduce computations, and strives to overlap completely I/O and

communication latencies. CellMR supersedes data transfer and task management libraries

for asymmetric accelerator-based architectures, such as IBM’s ALF [40], which delegate pa-

rameterization and optimization of scheduling data transfers to the application developers.

CellMR transparently adapts the parameters of data streaming and task scheduling to the

application at runtime, thereby relieving developers of some significant programming effort.

CellMR also removes I/O bottlenecks via use of techniques such as asynchronous accesses

and double-buffering at multiple levels of the system. Second, we explore an approach to

lowering the barrier to entry for users and organizations that need to take advantage of the

computing power and energy efficiency offered by accelerator-based clusters. Our approach

leverages the advances in component-based software engineering, in which complex software

systems are constructed from reusable and adaptable components. In particular, we ex-

plore how layered software architectures can alleviate many of the difficulties of building and

maintaining component-based systems on accelerator-based clusters.

3.1 Asymmetric System Architecture

Figure 3.1 illustrates a high-level view of heterogeneous system with symmetric (Fig-

ure 3.1(a)) as well as asymmetric (Figure 3.1(b)) compute nodes. The manager and all the

compute nodes are connected via a high-speed network, e.g., Gigabit Ethernet. Application
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Figure 3.1 High-level system architecture of symmetric and asymmetric clusters.

data is hosted on a distributed file system, such as the Network File System (NFS) [197] or

Lustre [198]. In our implementation, we used NFS for baseline comparative investigation of

our alternate approaches. The server manages a number of back-end accelerator-based nodes

and is responsible for scheduling jobs, distributing data, allocating work between compute

nodes, and providing other support services as the front-end of the cluster. The actual data

processing load is carried by the Cell-based accelerators.

A typical MapReduce setup consists of a dedicated front-end machine that handles job

scheduling and resource management for a number of back-end resources. Similarly as in

typical symmetric clusters, the front-end node is a general purpose multi-core server with a

large amount of DRAM, which acts as a cluster manager. The difference is that, in CellMR,

the back-end compute nodes are asymmetric cell-based accelerators, PS3s, instead of generic

computers. The manager distributes and schedules the workload to the compute nodes. The

generic core on the compute nodes then uses MapReduce to map its assigned workload to

the accelerator cores. In essence, the programming model of CellMR resembles a two-level

MapReduce: the front-end maps workloads to the cell-based back-ends, and the back-end

generic core maps the workload to its accelerators.



3.1 Asymmetric System Architecture 30

3.1.1 Targeted Accelerators

Addressing the inherent imbalances of accelerator-based asymmetric clusters while hiding

the associated complexity from users is key to achieving high performance and high produc-

tivity. Although designing for all possible resource configurations and types of accelerators is

very complicated, we characterize the accelerator-based resources that we plan to use in this

dissertation based on the general-purpose computing and system management capabilities

of the accelerators. More specifically, we consider three classes of accelerators:

Self-managed well-provisioned accelerators These accelerators have high compute

density, along with on-chip capabilities to efficiently run control code and self-manage I/O

and communication. For example, an accelerator coupled with several general-purpose pro-

cessor cores on the same chip falls into this category. The on-chip computational power of

the general-purpose cores and the amount of memory attached to the accelerators is assumed

to be sufficient for self-management, in the sense that the control code running for schedul-

ing tasks and performing communication on the general-purpose cores does not become the

major performance bottleneck. Asymmetric multi-cores, such as IBM Cell [1] processors fall

under this category.

Resource-constrained well-provisioned accelerators These accelerators have high

compute density but insufficient on-chip general-purpose computing capability for running

control code and/or insufficient on-board memory for self-managing I/O and communication.

I/O and communication are managed by an external, dedicated, node with general-purpose

cores, which acts as a driver for the accelerators. Programmable FPGAs or GPGPUs, such

as CUDA-enabled NVIDIA and OpenCL-enabled AMD/ATI GPUs fall under this category.

A conventional host processor is required in these settings to run the operating system

and provide general-purpose I/O and communication capabilities to the accelerators, which

communicate with the host over the I/O bus.

Resource-constrained shared-driver accelerators These accelerators are similar to

the previous case, however drivers are shared among several accelerators, to yield a poten-

tially more cost-efficient design. These accelerators are similar to the previous case, however

drivers are shared among several accelerators, to yield a potentially more cost-efficient de-

sign. Advanced multi-chip programmable GPUs, such as NVIDIA GeForce GTX 295 [199],

or installations with multiple programmable accelerators or FPGAs on a single driver node
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Figure 3.2 Resource configurations for enabling asymmetric clusters.

fall under this category. Note that the driver for these accelerators can itself support hetero-

geneous accelerators within a single compute node. This driver organization in effect creates

an additional level of asymmetry in the system.

3.1.2 Resource Configurations

We consider four resource configurations for the target asymmetric clusters as shown in Fig-

ure 3.2. The configurations are driven by the type of the back-end components used, as

well as by economical constraints and performance goals. In all cases, the manager and all

back-end nodes are connected via a high-speed commodity network, e.g., Gigabit Ethernet.

Application data is hosted on a distributed file system (NFS [197] in our implementation).

The first configuration (Figure 3.2(a)) we consider is that of self-managed well-provisioned

accelerators (Conf I), connected directly to the manager. A blade with Cell processors [200]

including multi-Gigabyte DRAM and high-speed network connectivity would fall into this

category. Small-scale academic settings may also adopt such a configuration, using, e.g.,

PS3 nodes and scaling down the workload per PS3 so as to not exceed the limited DRAM

capacity and not stress the limited general-purpose processing capabilities of the PS3. The

compute nodes execute directly all MapReduce tasks and the manager merges partial results

from the computes nodes.

The next configuration (Figure 3.2(b)) uses resource-constrained well-provisioned accelera-

tors (Conf II). Each driver provides large memory space, communication and I/O capabilities

to an individual resource-constrained accelerator, e.g. a PS3. The manager distributes in-
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put data to the driver nodes in large chunks. The driver nodes proceed by streaming these

chunks to the attached accelerators. Accelerators execute the MapReduce tasks, however,

partial results produced by accelerators are merged at the corresponding driver nodes and

the manager executes the global merge operation on the results received from the driver

nodes.

The use of a single driver per resource-constrained accelerator is not always justifiable as one

accelerator may not be able to fully utilize the driver’s resources. In contrast, a single man-

ager may not be sufficient to match the data demands of many accelerators simultaneously.

We address this by using a hierarchical setup (Conf III), so that each driver node manages

multiple accelerator nodes (Figure 3.2(c)).

The use of a single driver per resource-constrained accelerator is not always justifiable as one

accelerator may not be able to fully utilize the driver’s resources. In contrast, a single man-

ager may not be sufficient to match the data demands of many accelerators simultaneously.

We address this by using a hierarchical setup (Conf III), so that each driver node manages

multiple accelerator nodes (Figure 3.2(c)).

Finally, an asymmetric system may employ a mix of the above configurations based on partic-

ular requirements. We capture this mix in our last configuration (Conf IV) (Figure 3.2(d)).

In this case, the manager is agnostic of the class of the attached compute nodes and simply

divides the input workload between available compute nodes. The execution of MapReduce

tasks and merging of partial results are managed automatically at each component, while

the final result is produced by the manager, which performs the global merge of the results

received from the attached drivers.

3.2 MapReduce-based Extended Programming Frame-

work

We use MapReduce as the cluster programming model. The applications developed using

MapReduce process data in parallel using two simple primitives: A map primitive that maps

an input of (key, value) pairs to an output of intermediate (key, value) pairs; and a reduce

primitive, that merges the values associated with each key. The runtime system partitions

the output of the map stage between nodes and sorts the input to each node before ap-

plying the reduction. MapReduce implementations provide a runtime library for expressing
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data-intensive parallel computation using the map and reduce primitives. This programming

model has a high-enough level of abstraction to hide many of the complexities of parallel

programming, such as partitioning, mapping, load balancing and tolerating faults, while

providing adequate capabilities that can be exploited for managing heterogeneous resources

in the runtime system.

The manager divides the MapReduce tasks (map, reduce, and sort etc.) in small work-

loads, and assign these workloads to the attached accelerator-based nodes. Irrespective of

the type of back-end nodes, the manager transparently distributes and schedules the work-

load to them. If the back-end is a self-managed accelerator, its general-purpose core uses

MapReduce to map the assigned workload to the accelerator cores (SPEs). In contrast, if

the back-end is driver-based, the driver components further distribute the assigned workload

to the attached accelerator node(s). Note that the manager differs from a driver. Drivers

execute control tasks for communication and I/O on behalf of accelerators, whereas the man-

ager controls work and data distribution for the entire cluster. This model can be thought of

as a hierarchical MapReduce: each level maps the workload to the next level of nodes, until

it reaches the compute node, i.e., the Cell processor, where the generic on-chip core maps

the workload to the accelerators.

3.2.1 Extending MapReduce for Heterogeneous Resources

In a typical MapReduce setting, Map and Reduce tasks are scheduled separately on poten-

tially distinct sets of cluster nodes. In our enhanced MapReduce runtime, a data segment

is assigned to a compute node and the entire sequence of MapReduce operations on that

data segment is executed on that compute node. This way, our implementation does not

require classifying cluster resources as mappers or reducers ; the data segment stays on the

assigned node and both the operations are performed on it at that node, thus providing

improved locality. One of the disadvantages of having separate mappers and reducers is that

the reducers cannot start the reduce process before the completion of all mappers. In our

MapReduce runtime, the manager does not wait for all nodes to complete their processing

before a global merge operation is executed. Instead, the manager starts to merge the results

as soon as results are received from more than one compute nodes.
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3.2.2 Programming Asymmetric Clusters

From an application programmer’s point of view, irrespectively of the resource configuration

employed, MapReduce is used on asymmetric resources as follows. The application is divided

into three parts.

1. The code to initialize the runtime environment. This corresponds to the time spent in

a MapReduce application but outside of the actual MapReduce data processing stages

and includes initialization, data distribution and finalization. This part is unique to

our design and does not have a corresponding operation in prior MapReduce imple-

mentations.

2. The code that runs on the accelerator cores and does the actual data processing for

the application. This is similar to a standard MapReduce application setup running

on a small portion of the input data that has been assigned to the compute node. It

includes both a map phase to distribute the workload between the accelerator cores,

and a reduce phase to merge the data produced from accelerators.

3. The code that runs on the manager to merge partial results from each compute node

into a complete result. This code is invoked every time a result is received from a

compute node and executes a global merge phase that is identical in operation to the

reduce phase on each compute node.

All map, reduce, and merge functions are application-specific and should be provided by the

programmer. Once identified, the binaries for the above components are generated for all the

available targets (different accelerators and conventional multicore processors) in the system.

The availability of these binaries enables our system to transparently schedule tasks at any

time, on any type of accelerator and hide heterogeneity and asymmetry. Furthermore, it

frees the programmer from system level details such as managing the memory subsystems of

the accelerators, orchestrating data transfers between the manager and the compute nodes,

and implementing optimized communication mechanisms between cluster nodes, and enables

the programmer to focus on the application-specific part of code.
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Figure 3.3 Interactions between CellMR components.

3.2.3 Data Management Operations

In this section, we describe the runtime interactions between the various software components

at the manager and each of the compute nodes, as depicted in Figure 3.3.

3.2.3.1 Manager Operations

The manager handles job scheduling, data hosting, and data distribution among drivers or

compute nodes. We use well-established standard techniques for the first two tasks and focus

on compute-node management and data distribution in this discussion. Once an application

begins execution (Step 1 in Figure 3.3), the manager loads a portion of the associated input

data from the file system (NFS in our current implementation) into its memory (Step 2).

This is done to ensure that sufficient data is readily available for compute nodes, and to

avoid any I/O bottleneck that can hinder performance. For well-provisioned compute-nodes

with drivers, this step is replaced by direct prefetching on the drivers.

Next, client tasks are started on the available compute nodes (Step 3). These tasks essen-

tially self-schedule their work by requesting input data from the manager, processing it, and

returning the results back to the manager in a continuous loop (Step 4). For well-provisioned

nodes, the result data is directly written to the file system, and the manager is informed
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of task completion only. Once the manager receives the results, it merges them (Step 6) to

produce the final result set for the application. When all the in-memory loaded data has

been processed by the clients, the manager loads another portion of the input data into mem-

ory (Step 2), and the whole process continues until the entire input has been consumed. This

model is similar to using a large number of small map operations in standard MapReduce.

3.2.3.2 Compute Node Operations

Application tasks are invoked on the compute nodes (Step 3), and begin to execute a re-

quest, process, and reply (Steps 4a to 4d) loop. We refer to the amount of application data

processed in a single iteration on a compute node as a work unit. With the exception of

an application-specific Offload function1 to perform computations on the incoming data, our

framework on the compute nodes provides all other functionality, including communication

with the manager (or driver) and preparing data buffers for input and output. Each compute

node has three main threads that operate on multiple buffers for working on and transferring

data to/from the manager or disk. One thread (Reader) is responsible for requesting and re-

ceiving new data from the manager (Step 4a). The data is placed in a receiving buffer. When

data has been received, the receiving buffer is handed over to an Offload thread (Step 4b),

and the Reader thread then requests more data until all available receiving buffers have been

utilized. The Offload thread invokes the Offload function (Step 5) on the accelerator cores

with a pointer to the receiving buffer, the data type of the work unit (specified by the User

Application on the manager node), and size of the work unit. Since the input buffer passed to

the Offload function is also its output buffer, all these parameters are read-write parameters.

This is to give the Offload function abilities to resize the buffer, change the data type, and

change the data size depending on the application. When the Offload function completes,

the recent output buffer is handed over to a Writer thread (Step 4c), which returns the

results back to the manager and releases the buffer for reuse by the Reader thread (Step 4d).

Note that the compute node supports variable size work units, and can dynamically adjust

the size of buffers at runtime.

The driver in our resource configurations interacts with the accelerator node similarly as the

manager interacts with the compute nodes. The difference between the manager and the

driver node is that the manager may have to interact and stream data to multiple compute

1The function that processes each work unit on the accelerator-type cores of the compute node. The
result from the Offload function is merged by the GPP PowerPC core on the Cell to produce the output
data that is returned to the manager.
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nodes, while the driver only manages a single accelerator node. The driver further splits

the input data received from the manager and passes it to the compute node in optimal size

chunks as discussed in the following section.

3.2.4 Evaluation

We evaluate CellMR using eight Sony PS3 compute nodes connected via 1 Gbps Ethernet

to a manager node. The manager has two quad-core Intel Xeon 3 GHz processors, 16 GB

main memory, 650 GB hard disk, and runs Linux Fedora Core 8. The manager also runs an

NFS server. Of the 8 SPEs of the Cell, only 6 SPEs are visible to the programmer [45, 201]

on the PS3.

3.2.4.1 Applications

We use the following well-known MapReduce applications to study the effect of the var-

ious design alternatives for the symmetric as well as asymmetric heterogeneous cluster.

These applications originate from scientific computing environments, including epidemiol-

ogy, environmental science, image segmentation, and statistical analysis [202–204]. For our

evaluation, we used four common MapReduce applications. These applications are classi-

fied based on the MapReduce phase where they spend most of the execution time. A brief

description of the applications that we have ported to our framework is provided below.

• Linear Regression: This application takes as input a large set of 2 dimensional points,

and determines a linear best fit for the given points. This is a map-dominated appli-

cation.

• Word Count: This application counts the frequency of each unique word in a given

input file. The output is a list of unique words found in the input along with their

corresponding occurrence counts. This is a partition-dominated application.

• Histogram: This application takes as input a bitmap image, and produces the frequency

count of each RGB color composition in the image. This is a partition-dominated

application.

• K-Means: This application takes a set of points in an N-dimensional space and groups

them into a predefined number of clusters with approximately equal number of points

in each cluster. This is a partition-dominated application.
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Input (MB) Linear Regression Word Count Histogram K-Means

4 0.34 1.95 1.06 1.66
64 2.88 501.76 45.66 167.93
128 12.56 - 318.66 -
192 21.81 - 394.78 -
256 34.89 - - -

Table 3.1 Execution time (sec.) on stand-alone PS3.

Table 3.1 shows the average execution time for running the four benchmarks on a stand-alone

accelerator without using our framework. Note that Linear Regression is the only benchmark

that successfully completes for all input sizes. All other benchmarks incur swapping and run

out of swap space with smaller input sizes. Also note the rapid growth in the completion

time due to excessive swapping as the input size is increased.

3.2.4.2 Evaluation with Symmetric Heterogeneous Cluster

We now present the evaluation of CellMR with a symmetric cluster using eight Sony PS3

compute nodes connected via 1 Gbps Ethernet to a manager node. The manager has two

quad-core Intel Xeon 3 GHz processors, 16 GB main memory, 650 GB hard disk, and runs

Linux Fedora Core 8. The manager also runs an NFS server. Of the 8 SPEs of the Cell,

only 6 SPEs are visible to the programmer [45,201] on the PS3. Each PS3 node has a swap

space of 512 MB and runs Linux Fedora Core 7. We evaluate the performance of CellMR

in a symmetric heterogenous cluster shown in Figure 3.1(a) using Cell-based PS3 nodes as

compute nodes. For the experiments, we use the following resource configurations:

• Single configuration, which runs the benchmarks on a stand alone PS3, with data pro-

vided from an NFS server to factor out any effects of the PS3’s slow local disk. Single

provides a measure of performance of one small-memory, high-performance computa-

tional accelerator running the benchmarks.

• Basic configuration uses the manager and compute nodes as follows. The manager

equally divides the input at the beginning of the job and assigns it to the compute

nodes in one step. The manager then waits for the data to be processed, before merg-

ing individual output to produce the final results. Basic serves as the baseline for

evaluating streaming and dynamic work unit scaling in CellMR.
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Figure 3.4 Linear Regression execution
time with increasing input size on symmetric
cluster.
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Figure 3.5 Word Count execution time
with increasing input size on symmetric
cluster.

• CellMR configuration that also uses all nodes but employs CellMR for work unit scaling

and scheduling.

Benchmark Performance In the following, we describe the performance of Linear Re-

gression, Word Count, Histogram and K-Means benchmarks using the above-mentioned

resource configurations.

Linear Regression For this benchmark, we chose input sizes ranging from 222 points (file

size 4 MB) to 229 points (512 MB). Figure 3.4 shows the results. Under Single, the input

data quickly becomes larger than the available physical memory, resulting in increased swap-

ping, and consequently increases the execution time. In Basic, a smaller fraction of the data

is sent to each of the PS3s, which relieves the memory pressure on them somewhat. Ini-

tially, CellMR performs slightly better than Basic, 18.9% on average for input size less than

400 MB, mostly due to its data streaming characteristics and work unit size optimizations.

However, as the input size is increased beyond 400 MB, the peak virtual memory footprint

for Basic is observed to grow over 338 MB, much greater than the 200 MB available mem-

ory, leading to increased swapping. Once Basic starts to swap, its execution time increases

noticeably. In contrast, CellMR is able to dynamically adjust the work unit size to avoid

swapping on the PS3s, thus, achieving 24.3% average speedup across all the considered input

sizes compared to Basic.
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Figure 3.7 K-Means execution time
with increasing input size on symmetric
cluster.

Word Count During our experiments with Word Count, we observed exponential growth

in memory consumption relative to the input data size, since each input word would emit

additional intermediate data out of the map function. Therefore, for any input size greater

than 44 MB, Single experienced excessive thrashing that caused the PS3 node to run out

of available swap space (512 MB) and ultimately crash. Similarly, Basic was also unable to

handle input data sizes greater than 176 MB, and took 631.9 seconds for an input size of

164 MB. Figure 3.5 shows the results. Here, CellMR is not only able to process any input

size, it outperforms Basic by 65.3% on average for the points, emphasized in the inset in the

figure, where Basic completed without thrashing (input data size < 96 MB).

Histogram Figure 3.6 shows the result for running Histogram under the three test con-

figurations. It can be observed that CellMR scales linearly with the input data size. In

contrast, Basic only scales initially, but then looses performance as the increased input size

triggers swapping, e.g., for an input size of 160 MB, the peak virtual memory size grows to

285 MB and it takes 285.3 seconds to complete. On average across all input points less than

192 MB, CellMR does 68.2% better than Basic for Histogram. The maximum input size

that Single and Basic can handle without crashing is 192 MB, for which the execution times

are 394.8 and 328.6 seconds, respectively.

K-Means The results for the K-Means benchmark are shown in Figure 3.7. Note that

K-Means use a different number of iterations for different input sizes. Therefore, considering

total execution times for different inputs does not provide a fair comparison of the effect of
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Configuration # of Drivers # of PS3s PS3s per Driver

Conf I - 8 -
Conf II 8 8 1
Conf III 2 8 4
Conf IV 5 8 4,1

Table 3.2 Resource distribution under different configurations.

increasing input size. We remedy this by reporting the execution time per iteration in the

figure. While the CellMR implementation scales linearly, Single and Basic use up all the

available virtual memory with relatively low input sizes. Both Single and Basic crash for an

input size greater than 8 MB and 32 MB, respectively. For 32 MB input size, Basic takes

over 319 seconds/iteration compared to 5.5 seconds/iteration of CellMR. The only input size

where the Basic case doesn’t thrash is for 1 MB. In this instance Basic outperforms CellMR

by 17%, as this input size is too small to amortize the management function overhead of

CellMR. However, this is not of concern, as with any input size greater than 1 MB, CellMR

does significantly better than Basic.

3.2.4.3 Evaluation with Asymmetric Heterogeneous Clusters

We now present the evaluation of CellMR with asymmetric clusters in various configurations

as shown in Figure 3.2. All resource configurations use CellMR to execute the assigned

workload.

Our testbed consists of eight Sony PS3s, a manager node, and an 8-node x86 multi-core

cluster, where each node can serve as a driver. All components are connected via 1 Gbps

Ethernet. The manage is the same as described in Section 3.2.4.2.

Table 3.2 shows the distribution of resources that we use for each of the configurations pre-

sented in Figure 3.2, in addition to the manager node. Note that in Conf I, the PS3s are

connected directly to the manager, and in Conf IV, four PS3s share a driver, while each

of the other four has a dedicated driver. Moreover, in all the test configurations, the total

number of accelerators is fixed, i.e., 8 PS3s or 48 SPEs and only the resource arrangement

is varied.

Benchmark Performance We now examine the effect of different resource configura-

tions on the average execution time for each of our benchmarks.
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Figure 3.8 Linear Regression execution
time with increasing input size on asymmet-
ric cluster.
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Figure 3.9 Word Count execution time
with increasing input size on asymmetric
cluster.

Linear Regression For this benchmark, the input size ranges from 222 points (4 MB)

to 231 points (2 GB). Figure 3.8 shows the average execution time for running the Linear

Regression benchmark with increasing input size under different resource configurations. All

four resource configurations show similar scaling patterns with the increasing input size.

Overall Conf II performs 53.1% better than Conf I, since each driver node in Conf II makes

use of its large memory to store and process the intermediate results from the attached

PS3s. For similar reasons, i.e., having a higher number of drivers to handle the PS3s, Conf

II performs 14.4% and 8.0% better than Conf III and Conf IV, respectively.

Word Count For Word Count, we observe an exponential growth in memory consumption

relative to the input data size, since each word emits additional intermediate data out of

the map function. This has the direct impact on the execution time as shown in Table 3.1.

For any input size greater than 44 MB, a single accelerator node thrashes and runs out of

available swap space (512 MB). However, all the resource configurations in our setup are

not only able to process any input size, but also complete the benchmark without thrashing,

with linear increase in execution time with increasing input size (Figure 3.9). Once again,

Conf II outperforms Conf I, Conf III and Conf IV by 32.5%, 19.2% and 12.7%, respectively,

since job scheduling and merging tasks are distributed efficiently between driver nodes.

Histogram Figure 3.10 shows the average execution time for running the Histogram bench-

mark under the four test configurations. On average Conf II performs 25.1%, 17.8% and

11.1% better than Conf I, Conf III and Conf IV, respectively. In our experiment with a
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Figure 3.11 K-Means execution time
with increasing input size on asymmetric
cluster.

stand-alone PS3, we observe that the execution time for 192 MB input size is 394.8 seconds

because of excessive swapping of intermediate data. This benchmark also shows that our

design scales linearly for any input size for all tested configurations.

K-Means Figure 3.11 shows the results for the K-Means benchmark. K-Means uses a dif-

ferent number of iterations for different input sizes. Therefore, considering total execution

times for different inputs does not provide a fair comparison of the effect of increasing input

size. We remedy this by reporting the execution time per iteration in the figure. The result

for this benchmark shows that Conf II outperforms Conf I, Conf III and Conf IV by 9.0%,

6.6% and 4.4% respectively. Just as in the case of previous benchmarks, the improvement

comes from the fact that in Conf II each accelerator node has more memory and computation

resources in the form of a dedicated front-end node attached with it.

3.2.4.4 Scaling Characteristics

We observe how the performance of our benchmarks scale with the number of accelerator

nodes using Conf I, Conf II, and Conf III. Figure 3.12(a) shows the speedup in performance

normalized to the case of 1 node in Conf I and Conf II. Both these configurations have

similar speedups because of similar manager to compute node relationship, and are shown in

a single graph. For Conf III, we only have enough PS3s to scale up to using four drivers with

four PS3s each. However, we emulate up to 8 drivers as follows. During our tests with 1 to

4 drivers, we observe near identical load on the manager from each of the drivers. Based on
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Figure 3.12 Effect of scaling on resource configurations.

this observation, we create a test-loader that generates the same requests to the manager as

that of a driver with accelerators and use it to scale the experiment beyond four accelerators.

Figure 3.12(b) shows the speedup for our benchmarks in Conf III. We use the same input

size for all runs of an application. However, the input sizes for the different applications are

chosen to be large enough to benefit from using 8 nodes: 512 MB for Linear Regression and

Histogram, 200 MB for Word Count, and 128 MB for K-Means. The curve of K-Means is

based on time per iteration, as explained earlier.

Although we are only able to evaluate scaling on the relatively modest scale of 8 nodes,

our results show that our framework scales almost linearly as the number of compute nodes

increases and this behavior persists for all the benchmark. However, we observe that the

improvement trend does not hold for all benchmarks in Conf I/II when the eighth node

is added. Upon further investigation, we find that the network bandwidth utilization for

such cases is quite high, as much as 107 MB/s compared to the maximum observed value

of 111 MB/s on our network, measured using remote copy of a large file. High network

utilization introduces communication delays even with double buffering and prevents our

framework from achieving a linear speedup. However, if the ratio of time spent in computa-

tion compared to that in communication is high, which is the case in scientific applications,

we can obtain near linear speedup. We test this hypothesis by artificially increasing our

compute time for Linear Regression by a factor of 10, which results in a speedup of 7.8.

For Conf III, no such network bottleneck exists, since each driver manages the attached

accelerator using a dedicated connection.
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3.3 Advanced Software Engineering Approach to Pro-

gram Heterogeneous Clusters

The impressive performance advantages provided by heterogeneous accelerator-based clus-

ters make them desirable computing facilities for researchers and enterprises alike [21, 36].

The heterogeneity of the hardware units of accelerator-based cluster, the complexity of their

API, and the ad-hoc nature of their communication interfaces confine the use of these power-

ful and power-efficient computing facilities to all but advanced computer users. Researchers

in other fields — whose simulations and computer-models for investigating a myriad of fields,

e.g., medicine, high-speed physics, etc., can benefit from such resources — are simply left

out. The current state-of-the-art is such that one literally needs to be a seasoned computer

scientist to be simply able to set up and use an accelerator-based heterogeneous cluster, let

alone optimize and derive peak performance from one.

Layered architectures are a proven approach for expressing the logic of complex com-

puter systems [205–208], with several implementation techniques. Some of these techniques

require specialized languages or language extensions. We explore an approach called mixin-

layers [209], which provides all the benefits of layered architectures within the confines of

standard C++ [210]. This design choice is influenced by the unique requirements of our

target environment.

A typical accelerator-based cluster requires coordination of the execution of multiple het-

erogeneous devices connected to each other through a high-speed interconnect. Due to the

ubiquity of C++, one can find a standards-compliant C++ compiler almost on any comput-

ing device and operating system. One of the advantages of C++ is its natural interoperability

with C. Thus, even if a C++ compiler is not available on some esoteric device, it is always

possible to write a module in C and link it with the encompassing C++ component.

In this section, we present the design and implementation of a reusable and adaptable soft-

ware component framework for setting up accelerator-based heterogeneous systems. The

framework provides both ease-of-use and extensibility advantages. We started with our

optimized implementation described in the previous sections concerned with optimizing

accelerator-based heterogeneous clusters. As is commonly the case, our initial point was

an hand-coded implementation for particular deployment environment, with the resulting

code not easily reusable or adaptable. We present the results of rearchitecting this initial
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code into a mixin-layer-based implementation that provides reusable and adaptable software

components and reduce the application deployment time for heterogeneous clusters.

3.3.1 Feature-Oriented Programming and Mixin-Layers

Feature-oriented programming (FOP) is a software development methodology in which

features are first-class citizens in the software architecture [211, 212]. FOP decomposes ap-

plications into a set of features that together provide the requisite functionality. Composing

multiple objects from a single set of features separates the core functionality of an object

from its refinements making the resulting software more reusable and robust.

In addition, FOP allows easy mix-and-match composition of features in a modular fashion,

as an application is built using step-wise refinement. A common implementation strategy in

FOP is to use a layered architecture, in which layers correspond to features. The resulting

“feature stack” is composed of many layers with each layer (1) providing a single feature,

and (2) refining existing features in the stack [213].

To incrementally refine and flexibly compose features of an accelerator-based cluster cluster,

we use mixin-layers, a novel layered architectures’ implementation that uses advanced C++

programming techniques. Mixin-layers model different collaborating roles within each layer

by means of inner classes [209]. Inner classes mirror the inheritance relationships of their

enclosing classes in the layer above. With mixin-layers, the programmer can add function-

ality flexibly but systematically: each added layer supplies those inner classes that provide

the required functionality.

Mixin-layers fits our design goals: it implements features as collaborations of smaller, en-

capsulated units, each of which can be refined step-wise. As our experimental infrastructure

matures, new research issues may warrant switching to another implementation strategy

that better satisfies the newly-discovered set of requirements. For example, domain-specific

languages have been shown to be effective for flexibly composing features [214–216]. Fol-

lowing a different implementation strategy, however, would still leverage the key conceptual

contributions of our approach: demonstrating how a reusable and adaptable software com-

ponent framework can streamline the process of composing accelerator-based heterogeneous

clusters.
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3.3.2 Software Components for Heterogeneous Clusters

A major challenge in designing a component-based system is to decide what functionality

should be included into which software components. Among the major criteria to be con-

sidered is the intuitiveness of the client interfaces and ease-of-reuse. Other criteria tend to

be more domain-specific, defined by the constraints of a given computing platform. In this

case, our major objective is to encapsulate reusable functionality that can serve as conve-

nient building blocks for constructing accelerator-based clusters. We aim at hiding much of

the low-level implementation details from those programmers who simply want to use these

software components to quickly put together a cluster of accelerator engines. In the following

discussion, we outline the main software components that we chose to make available as part

of our infrastructure. We support our decision to expose this particular set of functionality

as software components by describing their functionality and client interfaces.

The software components are divided between manager and compute node roles. Figure 3.13

shows different manager and compute nodes software components that provide the execution

logic of our design, and their corresponding interactions with each other. In this following,

we describe how the functionality of accelerator-based cluster can be decomposed into dis-

tinct software components and explain the functionality of these components. These software

components are reusable and can be maintained with minimal effort. Furthermore, the com-

ponents can be used to design heterogeneous accelerator-based clusters comprising different

types of accelerators. In the following we explain the functionality of these components.

3.3.2.1 Manager Components

We now describe the main components of our manager layer.

Communicator The Communicator component encapsulates the methods required to

communicate between different heterogeneous resources of the cluster. This component

also implements communication and computation overlapping opportunities by implement-

ing techniques such as double-buffering for each end of the communicating device. The

Communicator is an extensible module, which can also be used to introduce hardware-

component-specific optimizations such as hiding communication latency and improving

bandwidth utilization.
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Figure 3.13 Manager and compute nodes components and their interactions.

Data Reader This component prefetches the user specified input data and stores it in the

framework according to the application requirement. The data is read in large chunks from

the storage device — to amortize access costs such as disk seek times — and further divided

and arranged based on application-desired layout. The newly arranged data is then passed

to the Node Scheduler for streaming to available compute nodes. The Data Reader provides

interfaces to manipulate the prefetched data and to change the layout as desired.

Node Scheduler The Node Scheduler component manages a compute node. For each

compute node available to the cluster, the manager initiates one instance of the Node Sched-

uler. Each Node Scheduler receives a chunk of unprocessed data from the Data Reader,

and further optimally streams it to the corresponding accelerator-based compute node. The

streaming is attuned to the compute node’s data handling capabilities, and can be specified

by the user in this component. The streaming process is continued until the entire input

data is consumed and processed by the compute node.

The Node Scheduler also retrieves the results from the compute nodes, and sends the partial-

results to the compute nodes for final merging, as explained next.

Result Merger The Result Merger exposes the interfaces to the programmer for including

application-specific mechanisms for merging partial results from individual compute nodes

into a combined result set, and the global merging criteria for producing the final results
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at the manager node. The Node Scheduler retrieves and passes on the partial results from

compute nodes to the Result Merger as the results become available. The Result Merger

combines the partial results based on the application-specific criteria, e.g., in-order sort, and

perform the specified global-merge function to produce the final results. Note that, if needed,

the Result Merger may also use the Node Scheduler again for offloading the combining and

merging operations to the accelerator-based compute nodes to improve performance.

3.3.2.2 Compute Node Components

We now describe the main components of the compute nodes layer as shown in Figure 3.13,

and how data is manipulated between the different components at the compute nodes.

Input Reader The Input Reader at the compute node prefetches blocks of data from the

manager, and passes it to the Accelerator Scheduler component. We have used multiple

buffers for reading the data from the manager to overlap the communication and computa-

tional latency, as well as provided support for specifying more optimizations as necessary. If

an empty buffer is available, the Input Reader initiates a request for another block of data.

If no empty buffers are available for the input data, Input Reader simply waits until some

buffers become free.

Accelerator Scheduler The Accelerator Scheduler component schedules the data read

from the Input Reader for execution on the attached computational accelerator of the node.

This component is specific to the kind of attached accelerator of the node, and provides the

opportunity to implement any device specific optimization. The input buffer from the Input

Reader is further divided into small slices suitable to fit into the available memory of the

corresponding accelerator. These small slices of data are then scheduled to be streamed to

the Accelerator Offloader component for execution on the accelerator.

Accelerator Offloader The Accelerator Offloader component provides an interface to ex-

ecute the device specific offload routines, such as application specific data processing and

merging functions. This component provides abstractions for the methods required to inte-

grate device-specific programming languages, such as C for CUDA, and C for PS3, with a

general-purpose language such as C++. The application and accelerator specific compute

routines can be specified in separate files to maintain the modularity of the framework.

The Accelerator Offloader reads the input data from the Accelerator Scheduler and processes
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it on the attached Accelerator Core. The Accelerator Core represents the specific accelerator

device, such as Cell or GPU, which executes application specific task on the given data and

produces the result. The results are then returned back to the Accelerator Scheduler that

passes them to the Result Writer component.

Result Writer The Result Writer component receives the results from the Accelerator

Scheduler, and sends them to the manager. Once a block of result data is sent to the man-

ager, its associated buffer is marked as free and can be reused by the Input Reader. Note that

the result from the Accelerator Offloader can not be sent directly to the Result Writer com-

ponent without involving the Accelerator Scheduler component. The Accelerator Scheduler

component should be notified when the processing of a particular data slice is completed

at the Accelerator Offloader component so that the next data slice can be scheduled. If

results are sent directly to the Result Writer component without involving the Accelerator

Scheduler component, then some signaling mechanism needs to be implemented to notify

the Accelerator Scheduler component that the processing of a particular data slice has been

completed, which would increase the synchronization overhead between components.

3.3.3 Illustrative Example

We now present an illustrative example of a real cluster to describe how different compo-

nents of our design operate and interact with each other. By describing each component’s

functionality, this example illustrates how our framework orchestrates pre-existing software

components to complete a concrete computational task. In particular, we focus on Word

Count application discussed in the earlier sections, and show how the computationally-

intensive problem of counting word frequencies in text files can be naturally decomposed for

efficient execution on an accelerator-based cluster.

The heterogeneous cluster that we used in this example consists of two PS3 compute nodes,

two GPU-based compute nodes, and a manager, all connected via a high-speed network.

3.3.3.1 Synthesizing the Application

First, we discuss the software components needed for the Word Count application.

Programming-wise, the entire functionality of each cluster node is encapsulated in a tem-

plate instantiation of the required components for the node. For our example application,

the template instantiation for the manager node is as follows:
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typedef Manager<WordCount> manager ;

#define NUM PS3 2
#define NUMGPU 2

manager : : DataReader datReader ;
manager : : NodeScheduler<PS3> PS3Schedule [NUM PS3 ] ;
manager : : NodeScheduler<GPU> GPUSchedule [NUMGPU] ;
manager : : ResultMerger resMerger ;

void main ( ) {
datReader . startReadingThread ( ) ;
for ( int i = 0 ; i < NUM PS3; ++i ) {

PS3Schedule [ i ] . s tar tSchedu l ingThread ( ) ;
}
for ( int j = 0 ; j < NUMGPU; ++j ) {

GPUSchedule [ j ] . s tar tSchedu l ingThread ( ) ;
}
resMerger . doMerging ( ) ;

}

The corresponding template instantiation for a PS3 compute node is as follows:

typedef PS3<ComputeNode<WordCount>> cNode ;

cNode : : InputReader inpReader ;
cNode : : Acce l e r a torSchedu l e r accSchedule ;
cNode : : Acc e l e r a t o rO f f l o ad e r accOf f l oader ;
cNode : : ResultWriter resWr iter ;

void main ( ) {
inpReader . startReadingThread ( ) ;
accSchedule . s tar tSchedu l ingThread ( ) ;
accOf f l oader . s ta r tO f f l oad ingThread ( ) ;
r esWr iter . doWriting ( ) ;

}

Finally, a GPU-based compute node’s template instantiation is as follows:

typedef GPU<ComputeNode<WordCount>> cNode ;

cNode : : InputReader inpReader ;
cNode : : Acce l e r a torSchedu l e r accSchedule ;
cNode : : Acc e l e r a t o rO f f l o ad e r accOf f l oader ;
cNode : : ResultWriter resWr iter ;
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void main ( ) {
inpReader . startReadingThread ( ) ;
accSchedule . s tar tSchedu l ingThread ( ) ;
accOf f l oader . s ta r tO f f l oad ingThread ( ) ;
r esWr iter . doWriting ( ) ;

}

Note the functionality of each component as described in Section 3.3.2, e.g., Input/Data

Reader, is expressed as an inner class in each of the above template instantiations.

Figure 3.14 illustrates how different software components are represented as mixin-layers,

both for the manager node as well as for the Cell and GPU-based compute nodes. Each

layer represents a component, defined as a unit of functionality with multiple roles. For

example, the ComputeNode component defines the InputReader, Scheduler, Offloader,

and ResultWriter roles. These roles define the distinct operations that are used during

the execution of a generic ComputeNode. Each layer is added to the composition to either

refine or extend the existing components. For example, the GPU or PS3 components add the

functionality in their roles that are specific to their respective architectures.

Implementation-wise, each layer is implemented as a template C++ class, whose inner tem-

plate classes comprise the layer’s roles. Both the main component classes and their roles

participate in the inheritance relationship with the corresponding classes in the layer above.

Thus, to reuse a component, with all its roles, the programmer only has to include that com-

ponent into a template instantiation. As long as the component has the needed roles (which

can be ensured by following careful design practices), its functionality becomes immediately

available for constructing any application.

For the Word Count application whose code listings appear above, two out of three com-

ponents for the compute nodes can be reused out-of-the-box. In the figure, the reused

components are colored (shaded) identically. Even though the reusable components will

need to be recompiled for different hardware architectures, their functionality will remain

the same. This small but realistic example demonstrates how a layered software architecture

can be leveraged to provide easy-to-use-and-reuse software components, which can be both

architecture independent or device specific. This observation leads us to believe that follow-

ing this software construction paradigm has the potential to alleviate many implementation

complexities for the average programmer.
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3.3.3.2 Runtime Interactions

Next, we describe how the components we have described above are used at runtime. The

execution control flow steps in this discussion are illustrated in Figure 3.13 as numbers along

the arrows.

The cluster receives a request to start computing the frequencies of each word in a set of disk

files. This causes the Data Reader component, located at the manager node, to be invoked

(Step 1). The Data Reader prefetches and divides the input text file in small chunks. As

chunks are read into memory, a separate Node Scheduler component for each compute node

is instantiated at the manager node, a total of four in this example. Each Node Scheduler

component reads the next available chunk from the Data Reader (2), and divides it into

smaller blocks: 4 MB blocks for PS3 nodes, 12 MB blocks for our GPU nodes. Then, the

Communicator transmits the scheduled data blocks to their target compute nodes (3, 4).

This process is repeated until the computation is complete.

Once a compute node is done with counting different word frequencies in its assigned block,

the result is sent back (11, 12) to the manager via the node’s associated Result Writer. At

the manager node, the Result Merger combines all the received word lists by sorting them as

required for Word Count (13). When the Result Merger is done with sorting, the combined

word lists must be processed for combining repeated word counts to determine final word

frequencies. Since the counting of repetitions is computationally intensive, the work must be

once again distributed among the compute nodes (14). As before, this distribution task is

accomplished by the Node Scheduler. The final consolidated result is then computed by the

Result Merger component after all the compute nodes have finished their computations (13).

On the compute node, the Input Reader is responsible for retrieving the assigned blocks from

the manager (5). The received blocks are then passed to the Accelerator Scheduler (6) in

a loop. The Accelerator Scheduler is unique to each accelerator engine. Specifically, these

components encode the logic required to divide the assigned blocks into slices that can be

processed by the underlying architecture — 32 KB for PS3 and 256 KB for our GPUs. Each

slice is then passed to the Accelerator Offloader component (7), which then either counts the

different word frequencies in the assigned slice initially, or counts repeated words in a list

for merging repetitions later (8).

Once the Accelerator Scheduler has received all the results computed for each data slice, they

are passed to the Result Writer (9), which in turn sends them back to the manager node by
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means of the Communicator (10). The results are then reported to the user (15), completing

the application run.

Finally, if the hardware configuration is changed, the programmer can easily reuse many of

the software components, thus saving time and reducing time-to-solution.

3.3.4 Evaluation

We have implemented a prototype of our design as lightweight libraries for each of the plat-

forms, i.e., x86 on the manager and driver, PowerPC and SPE on the Cell-based PS3 compute

nodes, and GPU-based x86 compute nodes using only about 1650 lines of C/C++ and CUDA

code. The libraries provide the application programmers with necessary constructs for using

different components of the framework.

In our implementation for Conf V, we leverage the reusability of the components to build a

hierarchical accelerator-based cluster. For instance, the driver node is primarily composed

of components reused from the manager and the compute nodes, i.e., the driver instantiates

the same InputReader as that used for the compute node in the remaining configurations

for reading the data from the manager. Moreover, the NodeScheduler and ResultMerger

on the driver are instances of code designed for the manager in the other configurations and

is used to manage the attached computational accelerators and merge the partial results.

Finally, the ResultWriter is similar to that of the compute nodes, and is used to return the

results back to the manager.

3.3.4.1 Resource Configurations

Figure 3.15 shows different resource configurations of heterogeneous clusters that we have

considered while evaluating our reusable components. Although not exhaustive, we believe

these configurations cover most of the cases encountered in accelerator-based cluster de-

sign. We have used accelerators of various capabilities as the computing devices (or compute

nodes) in different configurations.

Our first configuration, Conf I (Figure 3.15(a)), consists of four Cell-based accelerator nodes

connected directly with the manager node via high-speed interconnect network (1 Gbps Eth-

ernet in our case). Our second configuration, Conf II (Figure 3.15(b)), is a generalization of

Conf I to n Cell-based accelerators. In these configurations, any workload assigned to the

manager is dynamically divided among the attached accelerator nodes by the manager node.
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Figure 3.15 Resource configurations for Cell and GPU based heterogeneous clusters.

Our third and fourth configurations, i.e. Conf III (Figure 3.15(c)) and Conf IV (Fig-

ure 3.15(d)), are similar to Conf 1 and Conf II, respectively, but instead of Cell-based

accelerators, use GPU-based computational accelerators.

The fifth configuration, Conf V (Figure 3.15(e)), employs a mix of Cell-based and GPU-based

computational accelerators in a hierarchical settings. Both the Cell-based and GPU-based

compute nodes are connected with the manager node through a driver node, which acts as

a ‘local manager’ for the attached accelerator nodes. Here, any workload assigned to the

manager is dynamically divided between the attached driver nodes that further divide the

assigned tasks to the attached computational accelerators based on the accelerators’ capa-

bilities. In this configuration, the manager node has to interact with only two driver nodes

instead of all the accelerator-based compute nodes of the cluster, thus the driver nodes allevi-

ate from the manager node the pressure of fine-grained computational resource management

and scheduling.
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3.3.4.2 Experimental Setup

Our testbed consists of several Sony PS3s and GPU enabled Toshiba Qosmio laptop com-

puters, a manager node, and an 2-node standard multicore cluster to serve as drivers. All

components are connected via 1 Gbps Ethernet. The manager has two quad-core Intel Xeon

3 GHz processors, 16 GB main memory, 650 GB hard disk, and runs Linux Fedora Core 8.

The driver nodes are identical to the manager except that they have 8 GB of main memory.

Each GPU enabled Toshiba Qosmio laptop computers has Intel Dual-Core 2 GHz processor,

and 4 GB of main memory installed in it. Moreover, each of the laptops has one GeForce

9600M GT [217] CUDA enabled GPU device, with 32 cores and 512 MB of memory, and

uses CUDA toolkit 2.2.

For our experiments, we distribute the resources as described in Section 3.3.4.1. For Conf II

and Conf IV we set n=10. In Conf V the two drivers have four PS3s and four GPUs connected

to them, respectively, and are connected with the manager node. Our goal is to determine the

effect of different heterogeneous environments in our prototype implementation, specifically,

varying the number, type, and hierarchy of the accelerators.

We conduct the experiments using our prototype implementation that uses the mixin-layers

for building high-performance accelerator-based clusters. The focus is on evaluating our

design decisions and to investigate how well we can reuse the mixin-based components in

different benchmarks applications, and how well it performs as compared to a hand-tuned im-

plementation of the benchmark applications. We have used well-known parallel applications

namely Linear Regression, Word Count, Histogram, and K-Means described in Section 3.2.4.

3.3.4.3 Mixin-Layer Components Reusability

We evaluate the effectiveness of our framework in reducing the amount of software-

engineering effort for designing applications for the targeted asymmetric hardware resources.

One potentially confusing issue is the meaning of the term component. In a mixin-layer com-

position, a component is a template class whose functionality is defined by its inner classes.

What is more important for this evaluation is our unit of reusability. Even though the unit

of reusability is an entire mixin-layer component, any instantiation can use only the needed

roles by simply creating objects of the appropriate inner classes. Therefore, each role can be

reused independently of the other roles in the same layer. Therefore, while our implementa-

tion is component-based, our measurements are specific to the software engineering metrics
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Component (Class)
Linear Code reuse (in %)

Regression LOC Word Count Histogram K-Means

Communicator 360 100 100 100
DataReader 42 14.2 11.9 42.8

NodeScheduler 423 100 100 100
ResultMerger 38 38.9 40.1 27.1

Table 3.3 Manager classes and corresponding reusable LOC (wrt. Linear Regression) for
benchmark applications in Conf I.

(e.g., lines of code) of the inner classes.

Code Reusability for Different Applications In this set of experiments, we evalu-

ated how well we can reuse the mixin-layer components across our benchmark applications

while keeping the cluster hardware configurations and resources fixed. Table 3.3 shows the

total number of lines of codes (LOC) of the major classes at the manager node for Linear

Regression along with the percentage of LOC that we were able to reuse across different

applications, all in Conf I. Note that except for the DataReader and ResultMerger classes

that are unique to different applications, all the other classes, i.e., NodeScheduler and

Communicator are reused by the benchmarks without any modifications. Nonetheless, since

we have used modular programming in our implementation, we were able to use some parts

of our code in the application-specific user-defined classes as well. Overall 90.7% of the code

of the classes at the manager node is reused between different applications in Conf I of our

implementation.

Table 3.4 shows the total number of LOC of the major classes at the compute nodes for

Linear Regression in Conf I. Here, except for the AcceleratorOffloader class, which con-

tains the application specific routines executed on the computational accelerators of the

compute nodes, all the other major classes, i.e., InputReader, AcceleratorScheduler, and

ResultWriter are reused without any modifications. Our evaluation shows that overall

64.7% of the code of the classes at compute nodes can be used across different applications.

However, the AcceleratorOffload class can not be reused as a whole since it is unique for

each application, even so by using the mixin-layers abstractions we are able to use 23.6% on

average across all benchmark applications.

Code Reusability for Different Configurations In this set of experiments, we fix

the application (Linear Regression) and vary the hardware configuration to determine how
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Component (Class)
Linear Reg- Code reuse (in %)
ression LOC Word Count Histogram K-Means

InputReader 92 100 100 100
AcceleratorScheduler 78 100 100 100
AcceleratorOffloader 148 15.4 19.5 35.8

ResultWriter 102 100 100 100

Table 3.4 Compute node classes and corresponding reusable LOC (wrt. Linear Regression)
for benchmark applications in Conf I.

Component Conf I Code reuse (in %)
(Class) LOC Conf II Conf III Conf IV Conf V wrt. I & III

Communicator 360 100 100 100 100
DataReader 42 100 100 100 90.4

NodeScheduler 423 100 52.2 52.2 100
ResultMerger 38 100 100 100 94.7

Table 3.5 Manager components and corresponding reusable LOC for Linear Regression
benchmark in different configurations.

well the mixin-layer components can be reused across different hardware. Table 3.5 shows

the total number of LOC of the major classes at the manager node in Conf I along with

the percentage of the LOC that we were able to reuse for Conf II, Conf III, Conf IV, and

Conf V, respectively. As observed from the table, we were able to use all of the classes

of the manager except the NodeScheduler class. This is because NodeScheduler interacts

with the attached accelerator-based compute nodes that change across the configurations.

However, we were still able to reuse 52.2% of our code because of our component-based

development approach. Note that in Conf V, we have reused 99.3% of the overall code since

the driver node is composed of some of the roles of the manager and the compute nodes.

The node scheduler component in Conf V is exactly the same as the manager node, since the

driver node manages the attached nodes in the same fashion as the manager node manages

the compute node. The difference in Conf V comes in the DataReader component, where

the driver node reads the data either from the manager, or from a distributed storage. In

the case of reading the input from a distributed storage, the driver reads only the part of

input that is assigned to it by the manager node. Another difference in the driver comes

in ResultMerger component, where in addition to merging the results, it sends the merged

results to the manager node.

Table 3.6 shows the total number of LOC of the major classes at the compute nodes in Conf



3.3 Advanced Software Engineering Approach to Program Heterogeneous Clusters 60

Component (Class)
Conf I Code reuse (in %)
LOC Conf II Conf III Conf IV Conf V

InputReader 92 100 62.5 62.5 98.1
AcceleratorScheduler 78 100 71.5 71.5 99.1
AcceleratorOffloader 148 100 20.5 20.5 100

ResultWriter 102 100 85.2 85.2 98.6

Table 3.6 Compute node components and corresponding reusable LOC for Linear Regres-
sion benchmark in different configurations.

I for Linear Regression benchmark, and the LOC that we were able to reuse across different

hardware configurations. Here, we have reused 100% of our code while moving from Conf

I to Conf II, and also from Conf III to Conf IV, as the only difference here is the number

of compute nodes. Interestingly, we reused 54.9% of our overall compute node code while

transforming our code from Conf I to Conf III. This is because different type of accelerators

offer different optimization opportunities for the corresponding type of attached accelerator,

and we have to modify our accelerator code base for the new accelerator to exploit the spe-

cific optimization opportunities available. Note that most of the source code that has to be

modified for supporting a new accelerator is in the platform specific AcceleratorOffloader

class, which as discussed earlier, contains the application-specific functions that are executed

on the accelerator of the compute node. Also, note that while reporting the code reusability

for Conf V, we compare it with the Conf I and Conf III since the compute nodes in Conf V

are the combination of the two configurations.

3.3.4.4 Benchmark Performance

In this set of experiments, we focus on the performance of the mixin-layers based code gener-

ated for our studied accelerator-based cluster configurations. First, we compare our code with

available hand-tuned implementations presented in Section 3.2.4 of the benchmarks. We have

extended our hand-tuned implementations from Cell-based compute nodes to GPU-based

compute nodes. We have implemented several optimizations in our hand-tuned implemen-

tations. These optimizations include implementing locality-aware data distribution between

compute nodes, implementing optimal offloading workload size for Cell and GPU based

nodes, and implementing double buffering at each communication layer (manager-to-driver

and driver-to-compute node) to overlap computation with communication.

Table 3.7 shows the comparison of the execution time for both implementations using Conf V.
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Application
Execution Time (sec.)

Overhead (%)
Hand-Tuned Mixin-Layer

Linear Regression 10.1 10.4 2.0
Word Count 65.3 66.4 1.5
Histogram 22.1 22.9 1.8
K-Means 93.4 94.2 0.8

Table 3.7 Execution time and overhead for hand-tuned and mixin-layer implementations
for benchmark applications using Conf V.

Application
Execution Time (sec.)

Conf I Conf II Conf III Conf IV Conf V

Linear Regression 10.4 4.7 39.8 16.5 18.0
Word Count 66.4 28.2 238.8 97.2 110.3
Histogram 22.9 11.0 86.8 36.5 39.8
K-Means 94.2 50.5 329.4 144.5 159.4

Table 3.8 Benchmark execution time with different resource configurations.

Note that the hand-tuned implementation is unique for each benchmark application, and is

not reusable across different applications. The result shows that the performance of our pro-

totype implementation is comparable to the performance of the hand-tuned implementation.

Overall, our mixin-layer based implementation has an average overhead of 1.5% across all the

benchmark applications as compared to the hand-tuned optimized implementation, which is

a reasonable overhead considering the ease-of-reuse and adaptation advantages provided by

our approach.

Next, we study how our implementation performs across our studied configurations. Ta-

ble 3.8 shows the execution time of our benchmark applications under different resource

configurations. We have used the input size of 512 MB for our benchmark applications for

each of the resource configurations. The result of executing different applications of various

computational densities shows that our implementation scales well with increasing the same

kind of accelerator-based compute nodes, as well as using them in a highly heterogeneous

environment. Note that between Conf 1 and II (and Conf III and IV), only the number

of accelerator-based compute nodes are increased. In both these scenarios, we increase the

number of compute nodes by a factor of (10/4 =)2.5, and observe the average speedup by a

factor of 2.2 in our prototype implementation. We also observe an increase in the manager

workload in distributing the given input and merging the received results from the compute

nodes, when we increase the number of compute nodes in Conf II and IV as compared to
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Conf I and III, respectively. Similarly, we observe a linear increase in execution time for the

benchmark applications in Conf V as compared to Conf I and III.

3.4 Chapter Summary

In this chapter, we have presented CellMR, an extended MapReduce-based programming

model, to program accelerator-based heterogeneous clusters. We have discussed the target

accelerators and have presented various resource configurations for heterogeneous clusters in

conventional and hierarchical settings. We apply CellMR on these resource configurations,

and show that it effectively captures the resource configuration complexity while expecting

minimal resource management directives from the application programmer. In addition,

CellMR provides a clear distinction between the operations of the manager and the compute

nodes, and implements these operations in the runtime framework. We evaluate and com-

pare the CellMR and its runtime with traditional, hand-tuned, approaches under different

symmetric and asymmetric heterogeneous resource configurations and find it to be more

efficient than traditional approaches and highly scalable with increasing number of compute

nodes. We have also explored how layered architecture based advanced software engineering

approaches can be used to reduce the application deployment time for accelerator-based het-

erogeneous clusters. We have developed mixin-layers based reusable software components

for Cell and GPU-based heterogeneous clusters that effectively encapsulates the manager

and compute node functionalities into distinct heterogeneous and platform-specific compo-

nents. Our evaluation reveals that our mixin-layer based implementation of the software

components can be reused with minimal modifications across all the studied heterogeneous

accelerator-based clusters and benchmark applications. Furthermore, the performance of the

component-based implementation is reasonable, as it has little overhead compared to the

hand-tuned and optimized implementations, which are nontrivial to achieve and maintain.



Chapter 4

Improving I/O Performance on
Asymmetric Clusters

Asymmetric multi-core processors are widely regarded as a viable path to sustaining high

performance, without compromising reliability. This chapter explores the use of the Cell/BE,

arguably a dominant asymmetric multi-core processor, in data-intensive applications. With

modern high-performance computing applications generating and processing exponentially

increasing amounts of data, the scalable parallel processing capabilities, large on-chip data

transfer bandwidth, and aggressive latency overlap mechanisms of the Cell/BE render it an

attractive platform for high-performance I/O. Although several recent efforts have demon-

strated the potential of the Cell/BE for high-speed computation on data staged through its

accelerator cores (SPE’s) [18,19], there is little understanding of how I/O operations interact

with the architecture of the Cell/BE. The implications of such Cell/BE characteristics as

asymmetry, DMA latency overlap, and software management of disjoint address spaces, on

the design and implementation of the I/O software stack have not been explored.

In this chapter, we describe the techniques that we have explored for improving the I/O per-

formance on asymmetric multicore, specifically the Cell processor. While designing the I/O

improvement techniques, our focus is on developing a data staging mechanism for Cell-based

asymmetric cluster. We first describe the I/O path that is followed from PPE and SPE while

servicing an I/O request in the Cell processor, and elaborate on the I/O characteristics of the

Cell processor. We then present and evaluate several schemes to improve I/O performance

on the Cell processor.
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Figure 4.1 I/O requests path on the PPE and SPE.

4.1 PPE/SPE I/O Path in the Cell Broadband Engine

Figure 4.1 shows the path that application I/O requests from the PPE and SPE’s follow

before being serviced by the disk. The PPE supports a full operating system, and the I/O

path on the PPE is a standard one. All I/O requests through the VFS layer are first sent

to the buffer cache. In case of miss in the buffer cache, a request to read the data from the

disk is issued. The kernel clustering mechanisms combine multiple requests for contiguous

blocks, and the kernel prefetching algorithm detects and prefetches blocks to reduce execu-

tion stalls due to synchronous disk requests. Interested readers are referred to [218] for a

detailed explanation of the standard Linux I/O path.

Since the SPE does not support a native operating system, there is no kernel context on

SPE and all system calls issued by SPE’s are handled as external assisted library calls. We

now discuss how external calls are supported. Note that the same process is used to service

all system calls from SPE’s on the PPE, not just the I/O related calls.

The SPE uses special stop-and-signal instructions [219] to hand over control to the PPE for

handling external service requests. In order to perform an external assisted library call, the

SPE allocates local store memory to hold the input and output parameters of the call and
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copies all the input parameters (from stack or registers) into this memory. It then combines

a special function opcode corresponding to the requested service with the address of this

input/output memory image to form a 32-bit message. The SPE then places this message

into the local store memory, immediately followed by a stop instruction. It then signals the

PPE to execute the library function on behalf of SPE. In response to the signal, the PPE

reads the assisted call message from SPE’s local store, and uses the stop and signal type

and opcode to dispatch the control (PPE context) to the specified assisted call handler. The

handler on the PPE retrieves the input parameters for the assisted call from the local-store

memory pointed to by the assisted call message, and executes the appropriate system call on

the PPE. On completion of the system call, the return values are placed into the same local

store memory, and the SPE is signaled to resume execution. Upon resumption, the library

on the SPE reads the input value from the memory image and places them into the return

registers, hence, completing the call. Thus all I/O calls on the SPE’s are routed through the

PPE operating system.

4.2 I/O Characteristics of Cell Broadband Engine

In the following, we first evaluate the I/O characteristics of Cell architecture by running

simple workloads, then we explore how the SPE’s can be used to handle I/O intensive tasks

such as data encryption. Finally, to account for experimental errors the presented numbers

represent averages over three different runs unless otherwise stated.

4.2.1 Workload Overview

The workload that we have chosen is a 256-bit encryption/decryption application. Our choice

is dictated by the computation intensive component of the encryption and decryption along

with the need to do large I/O transfers for reading the input and writing the output. The

workload reads a file from the disk, encrypts or decrypts it, and then writes back the results.

Given that the PS3 has only about 200 MB of main memory available to user programs, we

chose to encrypt a 64 MB file. This allows us to keep the entire file in memory if so needed

and isolate the effects of buffer caching etc. We also vectorized the computation phase of

our workload to achieve high performance on SPE’s, which improved the time taken in the

computation phase by 42.1%.
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PPE Time SPE Time

SPE Context Creation - 1.46
Program Loading on SPE - 0.16
Thread Creation on SPE - 0.104
Buffer Allocation 0.012 0.015
File Reading 48688 48414
Buffer Deallocation 0.012 0.016
Total SPE execution time - 48806
Total time 49664 49241

Table 4.1 Average time (in msec.) required by major tasks while reading a 2 GB file from
the disk on the PPE and a SPE.

Block Size 4 KB 16 KB
PPE SPE PPE SPE

Time (msec.) 48674 53779 48688 49414
Throughput (MB/s) 41.09 37.19 41.08 40.48

Table 4.2 The average time and observed throughput for reading a 2 GB file from disk on
the PPE and a SPE using different block sizes.

4.2.2 Identity Tests

In the first set of experiments, we created a workload that reads a large file of size 2 GB.

We refer to this experiment as the Identity Test. The goal of this Test is to determine the

maximum I/O bandwidth available on our experimental platform for the PPE and SPE’s.

Table 4.1 shows the timing break down for the Identity Test both on the PPE and a SPE

using a block size of 16 KB. Note that context creation, loading, and thread creation are

only needed when running the Test on the SPE. It is observed that the time to read the file

on the SPE is similar to that on the PPE. The table also shows that the cost of the context

loading steps on the SPE is relatively insignificant. However, this cost can become crucial if

SPE workloads are repeatedly loaded or if the execution time of the SPE program is small.

Next, we modified the block size to 4 KB, and determined the overall time it would take to

perform the Identity Test both on the PPE and the SPE. Table 4.2 shows the results, and

comparison with the previous case. We observe that while changing block sizes does not have

a significant effect on the PPE I/O throughput, the large block size gives better throughput
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Figure 4.2 Average time and observed throughput for simultaneously reading a 2 GB file
using 16 KB blocks from one to six SPE’s.

on the SPE. The reason for this improved throughput is that data transfers between SPE

and the memory is done via DMA, and DMA is optimized by using the maximum transfer

size per DMA operation, which for the Cell/BE is 16 KB. For this reason, in our remaining

experiments we set the buffer size to 16 KB.

Next, we repeated the Identity Test while increasing the number of SPE’s from one to six.

Figure 4.2 shows the result. For this experiment, the PPE invokes one thread on each of

the available SPE’s, however, the total size of data read is same as before, i.e., 2 GB. A

different file is read at each SPE so that unique requests are issued and any caching at the

I/O controller and/or memory does not come into play. As seen in the figure, the average

observed throughput decreases as the number of SPE’s reading the file increases. The aver-

age observed I/O throughput is reduced by 6.4% when all the six available SPE’s are used,

compared to the case of using a single SPE for the same amount of data. This is due to

increased contention for the EIB, and indicates that simply offloading I/O intensive jobs to

multiple SPE’s is unlikely to yield the best use of resources.

4.2.3 Effect of DMA Request Size

The execution model on Cell requires that the computation be offloaded to specific SPE’s.

Therefore, we first evaluate the effect of DMA buffer sizes on such offloading. Table 4.3

shows the time of computation offloading as we varied the buffer size used for DMA com-

munications between the PPE and SPE. Note that these buffers are different from the file

I/O block size of the previous experiments (which is fixed at 16 KB). We focused on the
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Num. Buffer size
SPE’s 1 KB 2 KB 4 KB 8 KB 16 KB

1 21750 13952 9427 7828 6394
6 95410 56953 37031 26168 21206

Table 4.3 Time measured (in msec.) at PPE for sending data to SPE through DMA under
varying buffer sizes, and for using one and six SPE’s.

decryption phase of our workload for this experiment. In this case, all I/O is performed at

the PPE, which after reading a full buffer of data from disk, passes its address in the main

memory to a SPE. The SPE uses the passed address to do a DMA transfer and brings the

contents of the buffer to its local store. The SPE then processes the data in the local store,

and upon completion of the computation issues another DMA to transfer the processed con-

tents back to the main memory. Finally, the PPE can write the updated buffer in the main

memory back to the disk. Note that the maximum size of a single channel DMA that can

be sent on the EIB is 16 KB, thus the maximum DMA size of our experiments is limited to

that. The whole experiment is repeated for two cases: using a single SPE, and using all six

SPE’s. These results show that increasing the buffer size improves the execution times of

our workload.

4.2.4 Timing Breakdown for 4 KB and 16 KB DMA Buffers

For the previously described experiment, we also performed a detailed timing analysis for

4 KB and 16 KB DMA’s using a single SPE. Table 4.4 shows the results. This experiment

was conducted to see the effect of different DMA sizes on the time spent on various parts

of the program. For the same input file, when the DMA size is increased from 4 KB to 16

KB, the number of times the PPE has to invoke a thread on an SPE is reduced by a factor

of 4, thus reducing SPE loading time. The number of times the SPE is loaded to perform

the same task also affects the total execution time, since it cuts down the number of times

initialization is required on the SPE. Table 4.4 shows that the total execution time for the

same workload is less when SPE and the PPE communicate with each other through DMA

operations and a block size of 16 KB, than using a block size of 4 KB for the same data set.

Observe that the total execution time is significantly less when using 16 KB blocks compared

to 4 KB blocks. This is due to the fact that the total time also includes the time required

at SPE to fetch the data into its local store through DMA operations, and the number of
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Time (msec.)
Buffer size 4 KB 16 KB

Number of times SPE is loaded 16384 4096
SPE loading (excluding execution) time 1787 823
SPE execution (including loading) time 8014 4273
CPU time used by SPE 5200 1850
Disk read time 450 497
Disk write time 1191 1221
CPU time for disk read operations 400 570
CPU time for disk write operations 330 250
Execution time of program 10176 6565
CPU time used by PPE 6050 2890

Table 4.4 Breakdown of time spent (in msec.) in different portions of the code when data
is exchanged between a SPE and the PPE through DMA buffer sizes of 4 KB and 16 KB.

PPE PPE SPE SPE

Time 3403 205 714 640

SPE SPE PPE PPE

Time 4174 329 217 217

Table 4.5 Time (in msec.) for reading workload file at PPE/SPE followed by access from
SPE/PPE.

DMA operations done by SPE for 16 KB blocks is 4 times less than that for 4 KB blocks

for the same data set.

4.2.5 Impact of File Caching

As discussed in Section 4.1, the I/O system calls from the SPE are handed over to the PPE

for handling. This implies that once a file (or portion of a file) is accessed by the PPE it may

be in memory when subsequent access for the file are issued from a SPE or the PPE, and

these accesses can be serviced fast. In this experiment, we aim at confirming this empirical

observation. First, we flushed any file cache by reading a large file (2 GB). Then we read

the 64 MB workload file on the PPE, followed by reading the same file at a SPE. Table 4.5

shows the result for reading a file cold first on the PPE, followed by reading at SPE. The

same experiment is repeated for first reading the file at a SPE, followed by at the PPE. From

the table, we conclude that the caching effect is noticeable, and can help in reducing I/O
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times both on the PPE and on the SPE’s, by first reading a file on the PPE. We also notice

that file reading on the SPE is slower due to the I/O being routed through the PPE.

4.3 Memory-Layout and I/O Optimization Techniques

for Cell Architecture

Given the effectiveness of file caching, we have explored a number of schemes to improve I/O

performance of our workload. Figure 4.3 shows the results. In some schemes tasks are exe-

cuted in parallel at the PPE and SPE’s. This is shown as two side-by-side bars for a scheme,

with the total execution time dictated by the higher of the two bars. The breakdown for

various steps is also shown. In the following we describe these schemes in detail.

4.3.1 Scheme 1: SPE Performs All Tasks

Under this scheme, we perform all the tasks of our workload, i.e., reading the input file (b),

processing it (d), and writing the output file (f), on the SPE. Note, however, that we still

utilize the PPE to invoke the tasks as a single program on the SPE.

4.3.2 Scheme 2: Synchronous File Prefetching by the PPE

In this scheme, we attempt to improve the overall performance of our workload by allowing

the PPE to prefetch the input file in memory. This scheme is driven by the above obser-

vation that subsequent accesses by SPE’s to a file read earlier by the PPE improves I/O

times due to file caching. For this purpose, the PPE first pre-reads the entire file causing it

to be brought in memory. Then the program from Scheme 1 is executed as before. Results

in Figure 4.3 show that the File read at SPE (b) is much faster for this scheme, compared

to Scheme 1. However, the time it takes to read the file on the PPE (a) is 81.6% longer

compared to File read at SPE (b) in Scheme 1. We believe this is due to the PPE flooding

the I/O controller queue, and lack of overlapping opportunities between computation and

I/O in a sequential read compared to the read and process cycle of Scheme 1. Hence, Scheme

2 shows promise in terms of improving SPE read times, but suffers from slow I/O times on

the PPE. The overall workload execution time is longer in Scheme 2 than Scheme 1.
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Figure 4.3 Timing breakdown of different tasks for five data transfer schemes.

4.3.3 Scheme 3: Asynchronous Prefetching by the PPE

In the next scheme, we try to remove the file reading bottleneck of Scheme 2. For this

purpose, we created a separate thread to prefetch the file into memory. Simultaneously, we

offloaded the program of Scheme 1 to the SPE. The goal is to allow the prefetching by the

PPE to overlap with computation on SPE, thus any data accessed by SPE will already be

in memory and the overall performance of the workload will improve. Note that we do not

have to worry about synchronizing the prefetching thread on the PPE with the I/O on SPE.

In case the PPE thread is ahead of SPE, no problems would arise. However, if the SPE gets

ahead of the PPE thread, the SPE’s I/O request will automatically cause the data to be

brought into memory, which in turn will make the PPE read the file faster, thus once again

getting ahead of the SPE. The integrity of data read by SPE will not be compromised.

It is observed from the results in Figure 4.3 that although the I/O times (a) for individual

steps increased, better I/O/computation overlapping resulted in an overall improvement of

4.7%, compared to Scheme 2. This shows that the PPE can facilitate I/O for SPE’s and

doing so results in improved performance.
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4.3.4 Scheme 4: Synchronous DMA by the SPE

The schemes presented so far attempts to improve SPE performance by indirectly bringing

the file in memory and implicitly improving the performance of the SPE workload. However,

such schemes are prone to problems if the system flushes the file read by the PPE from the

buffer cache before it can be read by SPE, hence negating any advantage of a PPE-assisted

prefetch.

In this scheme, we explicitly prefetch the file on the PPE and give the SPE the address of

memory where the file data is available. The SPE program is modified to not do direct I/O,

rather use the addresses provided by the PPE. Hence, the PPE will read the input file in

memory, give its address to the SPE to process, the SPE will create the output in memory,

and finally the PPE will write the file back to the disk. The SPE will use DMA to map

portions of the mapped file to its local store and send the results back. Figure 4.3 shows the

results. Here, we observe that the DMA read at SPE (c) takes 55.0% and 62.0% less time

than File read at SPE (b) in Scheme 2 and Scheme 3, respectively. However, the synchronous

reading of file in this scheme takes long, causing the overall times to not improve as much:

4.9% and 0.2% compared to Scheme 2 and Scheme 3, respectively.

4.3.5 Scheme 5: Asynchronous DMA by the SPE with Signaling

The main shortcoming in Scheme 5 is the lack of a signaling mechanism between the prefetch-

ing thread producing the data (reading into memory) and the SPE consuming the data. One

way to address this to use the mailbox abstraction supported by the Cell/BE. However, doc-

umentation [220] advises against using mailboxes given their slow performance. Therefore,

we used DMA-based shared memory as a signaling mechanism to keep the prefetching thread

synchronized with the SPE’s. The PPE starts a thread to read the input file, and simulta-

neously also starts the SPE process. The difference from Scheme 5 is that the prefetching

thread continuously updates a status location in main memory with the offset of the file

read so far, and uses this location to determine how much of the data has been produced

by SPE for writing back to the output file. Moreover, the SPE process, instead of blindly

accessing memory assuming it contains valid input data, periodically uses DMA to access

a pre-specified memory status location. In case the prefetching thread is lagging, the SPE

process will busy-wait and recheck the status location until the required data is loaded into

memory. Finally, the SPE can also use the shared location to specify the amount of pro-
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cessed output. This allows the PPE to simultaneously write back the output to the disk,

and achieve an additional improvement over Scheme 5 where output was written back only

after the entire input was processed. Thus, Scheme 6 achieves both reading of the input file

and writing of output file in parallel with the processing of the data. Figure 4.3 shows the

results, which are quite promising. Scheme 6 achieves 22.2%, 24.1%, and 24.0% improvement

in overall performance compared to Scheme 1, Scheme 3, and Scheme 4, respectively.

4.4 Chapter Summary

In this chapter, we have investigated prefetching-based techniques for supporting data inten-

sive workloads involving significant computation components on the Cell architecture. We

study the data path to and from the general-purpose (PPE) and specialized (SPE) cores

within the Cell architecture. We have presented and evaluated different prefetching tech-

niques for the Cell processor, and have shown that the asynchronous prefetching techniques,

where the PPE prefetches the data into the main memory for SPE, can effectively eliminate

the I/O bottlenecks from the Cell processor.



Chapter 5

Capability-Aware Workload
Distribution for Heterogeneous
Clusters

While the potential of many-core accelerators to catalyze HPC is clear, attempting to

integrate heterogeneous resources seamlessly in large-scale computing installations raises

challenges, with respect to managing heterogeneous resources and matchmaking computa-

tions with resource characteristics. The trend towards integrating relatively simple cores with

extremely efficient vector units, leads to designs that are inherently compute-efficient but

control-inefficient. As such, the capabilities of many-core accelerators to run control-intensive

code, such as an operating system, or a communication library, are inherently limited. To ad-

dress this problem, large-scale system installations use ad hoc approaches to pair accelerators

with more control-efficient processors, such as x86 multicore CPUs [21], whereas processor

architecture moves in the direction of integrating control-efficient and compute-efficient cores

on the same chip [6]. Using architecture-specific solutions is highly undesirable in both cases,

because it compromises productivity, portability, and sustainability of the involved systems

and applications.

In Chapter 3, we have presented a solution that addresses the challenges of programmability

for asymmetric accelerator-based clusters. In this chapter, we extend CellMR to address

the challenges of memory limitations in using heterogeneous resources. We introduce en-

hancements in three aspects of the MapReduce programming model presented in Chapter 3:

(a) We exploit accelerators with techniques that improve data locality and achieve over-

lapping of MapReduce execution stages; (b) We introduce runtime support for exploiting

multiple accelerator architectures (Cell and GPUs) in the same cluster setup and adapting

workload task execution to different accelerator architectures at runtime; (c) We introduce

74
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Figure 5.1 High-level overview of a Cell and GPU-based heterogeneous cluster.

workload-aware execution capabilities for virtualized application execution setups. The lat-

ter extension is important in computational clouds comprising heterogeneous computational

resources, where effective and transparent allocation of resources to tasks is essential.

5.1 Heterogeneous System Architecture

Figure 5.1 shows the heterogeneous cluster architecture that we explore in this chapter.

A general purpose multicore server acts as a dedicated front-end manager for the cluster

and manages a number of back-end accelerator-based nodes. The manager is responsible

for scheduling jobs, distributing data, allocating work between compute nodes, and pro-

viding other support services at the front-end of the cluster. Accelerator nodes provide

high-performance data processing capabilities to the cluster. To isolate our exploration from

the impact of the numerous optimizations available on each accelerator-type processor, we

assume that readily optimized, architecture-specific executable code for the different com-

ponents of the application is available for all types of accelerators, for example, through

vendor-optimized libraries. In our experimental setup, this code would typically be available

through accelerator-specific programming toolkits, such as CUDA [4], and Cell SDK [220].

The manager divides the MapReduce components (map, reduce, partitioning and sorting)

into small tasks suitable for parallel execution. It then invokes the associated binaries on the

accelerators and assigns the tasks to accelerators for data processing and aggregation. If the

back-end is a Cell-based compute node, its generic core uses MapReduce within the node, to

map the assigned workload to the accelerator cores (SPEs). If the back-end is GPU-based,

its generic x86 core uses MapReduce to execute the assigned workload to the attached GPU.

When compute nodes complete execution of their respective workloads, the manager collates
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the results, performs any application-specific data merging needed, and produces the final

result. The manager has the option to offload part of the data merging workload operations

to accelerators as necessary.

Our framework uses transparently optimized accelerator-specific binaries on the accelerators.

In this way, the runtime hides the asymmetry between different available resources. Never-

theless, a given application component will exhibit variation in performance on the different

combinations of processor types, memory systems, and node interconnects available on the

cluster. To improve resource utilization and matchmaking between MapReduce components

and available hardware resources, the runtime system monitors the execution time of tasks

on hardware components and uses this information to adapt the scheduling of tasks to com-

ponents, so that each task ends up executing on the resource that is best suited for it. The

application programmer may also guide the runtime by providing an affinity metric that

indicates the best resource for a given task, e.g., a high affinity value for a GPU implies that

an application component would perform best on a GPU, whereas an affinity of zero implies

that the application should preferably execute on other types of processors. The runtime

system takes these values into consideration when making its scheduling decisions.

5.2 Efficient Application Data Allocation

Efficient allocation of application data to compute nodes is a central component in our de-

sign. This poses several alternatives. A straw man approach is to simply divide the total

input data into as many chunks as the number of available processing nodes, and copy the

chunks to the local disks of the compute nodes. The application on the compute nodes can

then get the data from the local disk as needed, and write the results back to the local disk.

When the task completes, the result-data can be read from the disk and returned to the

manager. This approach is easy to implement, and lightweight for the manager node as it

reduces the allocation task to a single data distribution.

Static decomposition and distribution of data among local disks can potentially be employed

for well-provisioned compute nodes. However, for nodes with small memory, there are several

drawbacks: (i) it requires creation of additional copies of the input data from the manager’s

storage to the local disk, and vice versa for the result data, which can quickly become a

bottleneck, especially if the compute node disks are slower than those available to the man-

ager; (ii) it requires compute nodes to read required data from disks, which have greater
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latency as compared to other alternatives, such as main memory; (iii) it entails modifying

the workload to account for explicit copying, which is undesirable as it burdens the applica-

tion programmer with system-level details, thus making the application non-portable across

different setups; (iv) it entails extra communication between the manager and the compute

nodes, which can slow the nodes and affect overall performance. Hence, this is not a suitable

choice for use with small-memory accelerators.

A second alternative is to still divide the input data as before, but instead of copying a

chunk to the compute node’s disk as in the previous case, map the chunk directly into the

virtual memory of the compute node. The goal here is to leverage the high-speed disks

available to the manager and avoid unnecessary data copying. However, for small-memory

nodes, this approach can create chunks that are very large compared to the physical memory

available at the nodes, thus leading to memory thrashing and reduced performance. This

is exacerbated by the fact that available MapReduce runtime implementations [31] require

additional memory reserved for the runtime system to store internal data structures. Hence,

static division of input data is not a viable approach for our target environment.

The third alternative is to divide the input data into chunks, with sizes based on the memory

capacity of the compute nodes. Chunks should still be mapped to the virtual memory to

avoid unnecessary copying, whereas the chunk sizes should be set so that at any point in time,

a compute node can process one chunk while streaming in the next chunk to be processed

and streaming out the previously computed chunk. This approach can improve performance

on compute nodes, at the cost of increasing the manager’s load, as well as the load of the

compute node cores that run the operating system and I/O protocol stacks. Therefore, we

seek a design point which balances the manager’s load, I/O and system overhead on compute

nodes, and raw computational performance on compute nodes. We adopt this approach in

our design.

5.3 Capability-Aware Workload Scheduling

We consider two types of accelerators, Cell processors and CUDA-enabled GPUs and design

a scheduler that handles both stand-alone and virtualized execution of applications. In the

latter case, applications share resources in space and/or time. The scheduler takes two pa-

rameters as input: (i) the number and type of compute nodes in the heterogeneous cluster;

and (ii) the number of simultaneously running applications on the heterogeneous cluster. In
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Figure 5.2 State machine for scheduler learning and execution process.

the following, we first describe different execution states of the scheduler, and then present

the scheduling algorithm.

5.3.1 Scheduling States

Figure 5.2 shows the different states representing the learning process and the execution flow

of the scheduler. Initially, the scheduler starts with a static assignment of tasks to nodes

and processors, based on the user-provided affinity metric, the performance of the resources

in terms of time spent per byte of data or if no information is available by simply dividing

the tasks evenly between resources. The scheduler then enters its learning phase, where it

measures the processing times for different application components on the resources on which

they are initially scheduled. Based on the processing time of the workload on each of the

available compute nodes, the scheduler then computes the processing time per byte for each

of the available compute nodes. Once a processing rate is known, the scheduler moves to the

adaptation phase, where the schedule is adjusted so as to greedily maximize the processing

rate. Note that, even in this phase, the scheduler continues to monitor its performance and

adjust its scheduling decisions accordingly.

For simultaneously executing multiple applications, the scheduler must decide which appli-

cation to run on what particular accelerator. For this purpose, the scheduler tries different

assignments, e.g., starting by scheduling an application A on the Cell processor and applica-

tion B on the GPU for a pre-specified period of time Tlearn, then reversing the assignment for

another Tlearn, determining the assignment that yields higher throughput, and finally using

that assignment for the remaining execution of the application. The time to determine a best

schedule will increase with the number of applications executing simultaneously, however, it
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Algorithm 5.1: Capability-aware workload scheduling.

Input: nodeArray, appArray

for node ∈ nodeArray do
for app ∈ appArray do

estArray = sendNextChunk(node, app);
end

end

nodeAppMap = GenNodeAppComb(estArray, nodeArray, appArray);

while incompleteAppExist(nodeAppMap) do
for appNode ∈ nodeAppMap do

app = getApp(appNode);
node = getNode(appNode);
if appCompleted(app) then

nodeAppMap = GenNodeAppComb(estArray, nodeArray, appArray);
end
else

estArray = sendNextChunk(node, app);
end

end

end

can be reduced by using user input or information from past application runs. If one of the

applications completes earlier than the other, the scheduler enters the learning phase and

attempts to assign the newly freed resources to either applications waiting in the queue, or to

the running application if the queue is empty. We note that it is not always possible to assign

the applications to the most suitable nodes, e.g., when multiple applications need the same

type of accelerators and only a limited number of the accelerator is available. Nonetheless,

our approach ensures that all the compute nodes are kept busy, and that the assignment of

the applications to the compute nodes is optimal in that the overall completion time for the

scheduled applications is minimized for the given resources and applications.

5.3.2 Scheduling Algorithm

Algorithm 5.1 describes how our capabilities-aware dynamic scheduling scheme works. Since

the scheduler does not have any information about how the available compute nodes perform

for the given tasks, a static schedule is chosen in the beginning. The schedule is adjusted

dynamically as the tasks execute and their performance on the assigned compute nodes can
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be measured. Note that if there are more accelerators available than the number of applica-

tions, each application is scheduled on a separate accelerator during the learning phase. This

eliminates any resource conflicts between different applications and allows for determining

accurate processing rates. For example, if applications A and B are assigned to a cluster

with four each of Cell- and GPU-based compute nodes, the system assigns half of the nodes

(2 Cells and 2 GPUs) each to A and B during the learning phase. The assignment is then

readjusted using the performance measurements to improve the overall execution time.

5.4 Addressing Manager-Accelerator I/O Mismatch

Even with adaptive scheduling and programmer-supplied affinity metrics, the inherent asym-

metry between cluster components may lead to performance degradation, especially due

to communication delays associated with data distribution and collection by the manager.

Thus, it is critical to handle all communication with different components of the system

asynchronously. This design choice needs careful consideration. If chunks from consecutive

input data are distributed to multiple compute nodes, it would require time-consuming com-

plex sorting and ordering to ensure proper merging of the results from individual compute

nodes into a consolidated result set. We address this issue by using a separate handler thread

on the manager for each of the compute nodes. Each handler works with a consecutive fixed

portion of the data and avoids costly ordering operations by exploiting data locality. Each

handler thread is also responsible for receiving all the results from its associated compute

node, and for performing the application-specific merging operation on the received data.

This design leverages multicore or multi-processor head nodes effectively. Moreover, we use

well-established techniques such as prefetching and double buffering to avoid I/O delays

when reading data from the disks, and transferring the data between manager and compute

nodes.

5.5 Dynamic Work Unit Scaling

Efficient utilization of compute nodes is crucial for overall system performance. A key ob-

servation in CellMR is that a compute node’s performance can be increased many fold by

reducing memory pressure, which is in turn tied to the work unit size. A very large work unit

results in thrashing on the compute nodes, while an unnecessarily small work unit increases

the workload of the manager. In either case, system performance is reduced. The challenge
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is finding an optimally-sized work unit, which offers the best trade-off between the compute

node performance and manager load.

An optimum work unit for running an application on a particular cluster can be manually

determined by hard coding different work unit sizes, executing the application, and mea-

suring the execution time for each size. The best work unit size is the one for which the

application execution time is minimized. However, this is a tedious and error-prone process,

and requires unnecessary “test” access to resources, which is difficult to obtain given the ever

increasing need for executing “production” tasks on a cluster to maintain high serviceability.

To remedy this, CellMR provides the manager with the option to automatically determine

the best work unit size for a particular application. This is done by sending compute

nodes varying work unit sizes at the start of the application and recording the comple-

tion time corresponding to each work unit. A binary search technique is used to modify

the work unit size to determine one that gives the highest processing rate calculated using

(work unit size)/(execution time). If the processing rate is the same for two work unit

sizes, the larger one is preferred as that minimizes load on the manager. The determined

work unit size is chosen as the most efficient for use with the application and employed for

the rest of the application run.

All available compute nodes participate in finding the optimal work unit size. The manager

sends increasing work units to multiple compute nodes simultaneously, although one size is

sent to at least two compute nodes to determine average performance. Once the optimal

work unit size is determined, it can also be reported to the application user to possibly

facilitate optimization for a future run.

5.6 Evaluation

In this section, we present our experimentation platforms, the benchmarks that we use to

evaluate our framework in heterogeneous settings, and the results of our experiments along

with their analysis.

5.6.1 Experimental Setup

We build an experimental testbed using 4 Sony PlayStation 3 (PS3), 4 GPU enabled Toshiba

Qosmio laptops, and a manager node. All cluster components are connected via 1 Gbps
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Ethernet in our testbed.

Manager Node The manager has two quad-core Intel Xeon processors with 3 GHz clocks,

16 GB main memory, and 650 GB hard disk. The manager node runs Linux Fedora Core 8

(kernel version 2.6.26).

Cell-based PS3 Node The PS3 has eight Synergistic Processing Elements, out of which

six are available to user-level programs [45, 201], 256 MB of main memory (of which about

200 MB is available for applications and the rest is reserved for the operating system and a

proprietary hypervisor), and a 60 GB hard disk. The PS3 node further has a swap space of

512 MB and runs Linux Fedora Core 7 (kernel version 2.6.24).

GPU-based Node The GPU enabled Toshiba Qosmio laptops have one Intel dual-core

processor with a 2.0 GHz clock, 4 GB of DRAM, and run Linux Fedora Core 9 (kernel

version 2.6.27). Each of the laptops also has one GeForce 9600M GT CUDA enabled GPU

device [217], with 32 cores and 512 MB of memory. We program the GPU using the CUDA

toolkit 2.2.

5.6.2 Raw Performance Comparison of Cell and GPU Nodes

Table 5.1 shows the raw performance comparison of Cell and GPU nodes used in our eval-

uation. It can be seen that the peak performance of each component of GPU nodes is

considerably lower than that of PS3. Overall, considering all computational units on PS3

and GPU nodes, the GPU-enabled laptops are 1.31× slower than the Cell-based PS3 nodes

in terms of peak performance.

5.6.3 Methodology

We focus our evaluation on the design decisions for accelerator-based clusters and on deriving

clues about the best way to utilize a given set of accelerator-based resources for maximizing

overall performance. We also evaluate the performance of our capabilities-aware scheduling

scheme for simultaneously running multiple applications on heterogeneous resources. To this

end, we compare the performance of our dynamic scheduling scheme with a static schedul-

ing scheme. The static scheme takes into account the overall performance of the assigned

workloads on Cell and GPU nodes, which in essence incorporates all the performance pa-
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Cell Node

PowerPC Clock Speed 3.2 GHz.
SPE Clock Speed 3.2 GHz.
PowerPC Peak Performance 25.6 GFLOPS.
SPEs Peak Performance 153.6 GFLOPS.
On-chip Mem. Bandwidth 204.8 GBps.
Mem. Interface Controller 25.6 GBps.

GPU Node Wrt. Cell

Intel Clock Speed 2.0 GHz. 62.5%
GPU Clock Speed 1.25 GHz. 39.1%
Intel Peak Performance 16.0 GFLOPS. 62.5%
GPU Peak Performance 120.0 GFLOPS. 78.1%
GPU Internal Mem. Bandwidth 25.6 GBps. 12.5%
PCI-Express Bandwidth 8.0 GBps. 31.2%

Table 5.1 Performance comparison of Cell and GPU nodes.

rameters shown in Table 5.1, thus providing the best static scheduling scheme for the given

applications on the studied platforms.

5.6.3.1 Applications

We have used well-known parallel applications namely Linear Regression, Word Count,

Histogram, and K-Means described in Section 3.2.4 to evaluate the performance of our

capability-aware workload scheduling in a heterogeneous cluster. These applications are

commonly used in scientific computing environments, including epidemiology, environmen-

tal science, image segmentation, and statistical analysis [202–204] and have characteristics

that are representative of many parallel applications.

5.6.3.2 Resource Configurations

Figure 5.3 shows three different resource configurations that we have used in our evaluation.

PS3 Cluster (Figure 5.3(a)) and GPU Cluster (Figure 5.3(b)) configurations have 4 PS3

nodes and 4 GPU nodes connected to the manager node, respectively. The PS3+GPU Clus-

ter (Figure 5.3(c)) configuration has all the 8 accelerator-nodes (4 PS3 and 4 GPU nodes)

connected with the manager node.
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Figure 5.3 Resource configurations for Cell and GPU based heterogeneous clusters.

5.6.4 Results

We first examine how the studied benchmarks behave on alternative cluster configurations.

Table 5.2 shows the execution time for running the four benchmarks on a stand-alone PS3

and GPU node without using our framework. It is observed that for the PS3 node, Linear

Regression is the only benchmark that successfully completes for all of the specified input

sizes. For the GPU node, all benchmarks incur swapping and run out of swap space and

available memory for input sizes greater than 192 MB. Furthermore, the observed perfor-

mance difference of executing these benchmarks on the PS3 node versus the GPU node is

higher than the corresponding raw performance. This is because CUDA-enabled GPUs use

stream processing with each CUDA thread executing the same instructions but on different

data. If some threads take a different execution path on a branch, the execution of such

threads is serialized. The map and reduce phases of Word Count, Histogram and K-Means

have many branch instructions, which cause some threads to stall while others to continue

their execution on different execution paths. Thus, reducing overall performance of these

benchmarks on the GPUs. On the other hand, each SPE of the Cell processor in the PS3-

node can process the assigned data chunk independent of other SPEs without stalling. This

gives an additional performance advantage to the PS3 node over the GPU node. However,

for both accelerator types, the execution time for all the benchmarks increases rapidly with

the increasing input size without utilizing our framework. Thus, these compute nodes cannot

be simply plugged into traditional clusters to achieve high performance. An integrated man-

agement framework with capabilities-aware scheduling across heterogeneous compute nodes
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Input Linear Regression Word Count Histogram K-Means
(MB) PS3 GPU PS3 GPU PS3 GPU PS3 GPU

4 0.34 0.35 1.95 4.28 1.06 22.15 1.66 5.46
64 2.88 40.65 - 1396.56 45.66 390.67 167.93 509.54
128 12.56 81.65 - - 318.66 1805.98 - -
192 21.81 231.98 - - 394.78 - - -
256 34.89 - - - - - - -

Table 5.2 Execution time (in seconds) on a single PS3 and GPU node.

is necessary to address this problem.

5.6.4.1 Benchmark Performance

Linear Regression For this benchmark, the input size ranges from 221 points (file size

2 MB) to 229 points (512 MB). Figure 5.4 shows the results. All the resource configurations

show similar scaling patterns with the increasing input size. Overall PS3 Cluster performs

11.4% better than GPU Cluster. Note that although the PS3 node is 1.31× faster than

the GPU in terms of GFLOPS, the speedup achieved in terms of overall execution time

improvement is much less. The lower gains are due to the fact that Linear Regression is a

map-dominated application and spends a significant portion of its time on map operations.

These operations require DMA transfers from DRAM to local accelerator memory. The

GPU has 512 MB of device memory and the needed 4 MB data chunk is transferred in a

single DMA operation. In contrast, PS3’s SPE local stores are only 256 KB (for holding

the executable, data, etc.) and the most efficient DMA transfer size is 16 KB [45], conse-

quently it requires a large number of DMA operations. Although we attempt to overlap

DMA transfers with the computation as explained in Section 5.4, these DMA operations

consume cycles for setting up data transfers, therefore even though the PS3 node has much

better raw performance than the GPU, most of the PS3 node’s advantage is negated due to

it having small per-core local store. Overall, our framework effectively utilizes the combined

heterogeneous resources in PS3+GPU Cluster. On average, the 8 computational nodes in

PS3+GPU Cluster perform 46.9% and 53.0% better than the 4 computational nodes in PS3

Cluster and GPU Cluster, respectively.

Table 5.3 shows the percentage of time spent in different MapReduce stages by PS3 and

GPU nodes when a chunk is assigned to them. Note that both types of compute nodes show

similar trends in terms of the percentage of time spent at each MapReduce stage.
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Figure 5.4 Execution time of Linear Re-
gression with increasing input size on het-
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Figure 5.5 Execution time of Word
Count with increasing input size on hetero-
geneous cluster.

Application Name
Partition Map Sort Reduce
PS3 GPU PS3 GPU PS3 GPU PS3 GPU

Linear Regression 1.3 2.1 95.1 93.3 2.4 1.0 1.2 3.6
Word Count 87.1 86.1 3.0 7.5 9.4 4.3 0.5 2.1
Histogram 75.2 56.1 3.5 3.0 20.8 40.1 0.5 0.8
K-Means 40.3 42.1 55.2 52.4 2.4 2.2 2.1 3.3

Table 5.3 Distribution of time (in %) spent in different stages of MapReduce for both the
PS3 and GPU based clusters.

Word Count The input partitioning in Word Count is a serial operation performed on

the main core of the compute nodes and is not parallelized between the SPE/GPU cores.

Here, we observe an exponential growth in memory consumption relative to the input data

size in both PS3 and GPU nodes, since each word would emit additional intermediate data

out of the map function. This has a direct impact on execution time as shown in Table 5.2.

For any input size greater than 44 MB, a single accelerator node thrashes and runs out of

available swap space (512 MB).

Figure 5.5 shows the result of running Word Count using our framework under the studied

resource configurations. We vary the input size from 2 MB to 512 MB. All resource configu-

rations show linear increase in execution time with increasing input size. For this benchmark,

on average, PS3+GPU Cluster performs 34.1% and 65.9% better than PS3 Cluster and GPU

Cluster, respectively. Further analysis reveals that, on average, PS3 Cluster performs 48.1%

better than GPU Cluster.
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Figure 5.6 Execution time of Histogram
with increasing input size on heterogeneous
cluster.
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Figure 5.7 Execution time of K-Means
with increasing input size on heterogeneous
cluster.

In Word Count, the amount of data offloaded to the SPE and GPU is 4 KB and 2 MB,

respectively. The size of the data offloaded to the SPE and GPU is dynamically computed

at runtime so as to give optimal overall processing time (including map, reduce and merge

time) on each compute node. It also enables each SPE and GPU to process the data with-

out overwhelming their local stores or device memory, respectively. As shown in Table 5.3

both the Cell and GPU implementations of Word Count spend more than 86% of their time

in partitioning the input and intermediate data between the accelerator cores. PS3 nodes

outperform GPU nodes because of the higher sustained GFLOP rates and faster intra-node

interconnects.

Histogram Figure 5.6 shows results from executions of Histogram under the three test

configurations. On average PS3+GPU Cluster performs 24.4% and 75.6% better than PS3

Cluster and GPU Cluster, respectively. Similarly, on average PS3 Cluster performs 67.7%

better than GPU Cluster, since Histogram requires excessive sorting operations (as shown

in Table 5.3) on the intermediate data that incurs additional penalty on GPUs, e.g., syn-

chronization with the other CUDA threads at each iteration. On PS3 nodes parallel sort is

performed on the SPE, which is controlled by the PPE, resulting in less execution stalls in

each iteration. In this benchmark, the amount of data offloaded to the SPE and GPU is

2 KB and 0.6 MB, respectively, which is computed dynamically at runtime to optimize the

data processing performance of each accelerator.
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Figure 5.8 Speedup with increasing compute nodes in PS3 and GPU based cluster for
studied benchmarks.

K-Means Figure 5.7 shows the results of experiments with K-Means. K-Means uses a dif-

ferent number of iterations for different input sizes. Therefore, considering total execution

times for different inputs does not provide a fair comparison of the effect of increasing input

size. We remedy this by reporting the execution time per iteration in the figure. The result

for this benchmark shows that PS3+GPU Cluster performs 21.2% and 78.8% better than

PS3 Cluster and GPU Cluster, respectively. Moreover, PS3 Cluster performs 73.0% better

than the GPU Cluster. In K-Means, the amount of data offloaded to the SPE and GPU is

3 KB and 1 MB, respectively.

5.6.4.2 Speedup with Increasing Number of Compute Nodes

Next, we observed how the studied benchmarks scale with the increasing number of nodes

in PS3-based and GPU-based clusters. Figure 5.8 shows the achieved speedup of executing

the benchmarks normalized to the corresponding 1-node cluster for PS3-based and GPU-

based cluster setting. In this experiment, the input size is set to 512 MB for the studied

benchmarks under PS3-based and GPU-based cluster configurations. The result of this ex-

periment shows that our implementation scales almost linearly for both the PS3-based and

GPU-based clusters for all the benchmark applications.



5.6 Evaluation 89

5.6.4.3 Scheduling Multiple Applications on Available Resources

In the next set of experiments, we invoked multiple applications on the manager node to

simulate a cloud computing environment where multiple applications are assigned to the

cluster and computational resources are shared transparently between applications. The

goal here is to see how well our scheduler assigns the job to the compute nodes based on the

performance of each type of compute node for the given application.

We compare our dynamic scheduling with a static scheduling scheme that simultaneously

schedules all applications to be run on all the compute nodes. The static scheduling scheme

uses knowledge about how the applications would perform on each type of the compute nodes

and how much data can be handled by the nodes at a time, i.e., the amount of memory the

nodes have available, to divide and assign to the nodes the input data to be processed. In

contrast, our dynamic scheduler has no prior knowledge of the nodes’ capabilities, and learns

and adapts as the applications proceed.

Word Count and Histogram In this experiment, we simultaneously executed Word

Count and Histogram jobs, with input data of 512 MB each, on PS3+GPU Cluster, with 4

PS3 and 4 GPU nodes, and observe how these two benchmarks are scheduled on PS3 and

GPU nodes based on the capabilities of individual compute nodes. As shown in the ear-

lier experiments, PS3 nodes execute Word Count 48.1% faster than GPU nodes. Similarly,

Histogram is executed 67.7% faster on PS3 node than on GPU nodes.

Figure 5.9 shows the result of this experiment with static and dynamic scheduling of com-

pute nodes to the given tasks. In static scheduling, both the benchmarks are executed on

the PS3 and GPU nodes. However, most of the execution is carried out by the PS3 nodes

because it has a higher GFLOP performance, higher on-chip memory bandwidth, and faster

memory-to-chip interfaces compared to the GPU nodes as indicated in Table 5.1. Overall,

about 68.7% and 97.6% of Word Count and Histogram data, respectively, is processed by

PS3 nodes and the remaining by the GPU nodes.

In contrast, the dynamic scheduler is quickly able to learn that assigning PS3 nodes to His-

togram and the GPU nodes to Word Count is more beneficial. Specifically, Word Count

on GPU node and Histogram on PS3 node take 53.9s and 20.3s to complete, respectively.

Conversely, Word Count on PS3 node and Histogram on GPU node take 61.2s and 62.3s,

respectively. The former assignment is 13.6% and 206.9% better for Word Count and His-
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Figure 5.9 Percentage of data processed on PS3 and GPU nodes for simultaneously run-
ning Word Count and Histogram using static and dynamic scheduling schemes.

togram performance, respectively, and is thus chosen by our scheduler.

Once the execution of Histogram is completed, the scheduler includes the PS3 nodes in avail-

able resources for the Word Count application, and assigns the remaining data to both PS3

and GPU node. The result of this experiment shows that 98.0% and 56.5% of Histogram and

Word Count data, respectively, is processed by PS3 nodes. Conversely, 2.0% and 43.5% of

Histogram and Word Count data, respectively, is processed by the GPU nodes. Compared

to static scheduling, 12.2% more of Word Count data is processed at the GPU nodes under

the dynamic scheduling scheme. Note that the Histogram completes soon after the learning

phase that also uses static scheduling. This accounts for why only a small (0.4%) increase

in the amount of Histogram data processed at the PS3 node is observed between static and

dynamic scheduling.

Figure 5.10 shows the execution time for simultaneously running Word Count and Histogram

using the static and dynamic scheduling with increasing input sizes. For static scheduling,

both the benchmarks are executed on all the resources, and completion of an application

does not affect the allocation of resources for other applications. For dynamic scheduling,

although the benchmarks start to execute together, Histogram completes quickly, leaving

Word Count to utilize all the available resources for its remaining execution. Overall, com-

pared to static scheduling, our dynamic scheduling scheme performs 31.5% and 11.3% better

for Word Count and Histogram, respectively.



5.6 Evaluation 91

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
.)

Input Size (MB)

Dynamic
Static

(a) Execution time for Word Count.
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(b) Execution time for Histogram.

Figure 5.10 Execution time for simultaneously running Word Count and Histogram.

 0

 20

 40

 60

 80

 100

Word Count Linear Regression

D
a
ta

 P
ro

c
e
s
s
e
d
 (

%
)

Benchmarks

PS3 Cluster Static
PS3 Cluster Dynamic

GPU Cluster Static
GPU Cluster Dynamic

Figure 5.11 Percentage of data processed on PS3 and GPU nodes for simultaneously
running Word Count and Linear Regression using static and dynamic scheduling schemes.

Word Count and Linear Regression In this experiment, we simultaneously executed

Word Count and Linear Regression jobs, with input data of 512 MB each, on PS3+GPU

Cluster, with 4 PS3 and 4 GPU nodes. As shown in earlier experiments, PS3 nodes execute

Word Count 48.1% faster than GPU nodes. Similarly, Linear Regression is executed 11.4%

faster on PS3 node than on GPU nodes.

Figure 5.11 shows the result of simultaneously running Word Count and Linear Regression

with static and dynamic scheduling of compute nodes.

In case of static scheduling, both the benchmarks are executed on the PS3 and GPU nodes.

Both types of compute nodes execute both benchmarks during their entire execution lifecy-
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(a) Execution time for Word Count.
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(b) Execution time for Linear Regression.

Figure 5.12 Execution time for simultaneously running Word Count and Linear Regres-
sion.

cle, and process the data for each benchmark based on their respective capabilities. In this

case, 68.7% and 50.9% of Word Count and Linear Regression data, respectively, is processed

by PS3 nodes. Similarly, 31.3% and 49.1% of Word Count and Linear Regression data,

respectively, is processed by the GPU nodes.

In contrast, the dynamic scheduling scheme schedules resources based on the components

capabilities to execute a particular benchmark. Since the performance advantage of running

Word Count on PS3 nodes is more than executing Linear Regression on PS3 nodes, the

scheduler of our framework schedules Word Count on PS3 nodes, while executing Linear

Regression on the GPU nodes. Once the execution of Linear Regression is completed on

the GPU nodes, the scheduler divides the remaining unprocessed data for Word Count be-

tween the PS3 and GPU nodes and assigns the remaining data to both PS3 and GPU nodes

based on their processing capabilities. The result of this experiment shows that 72.8% and

2.0% of Word Count and Linear Regression data, respectively, is processed by PS3 nodes.

Conversely, 27.1% and 98.0% of Word Count and Linear Regression data, respectively, is

processed by the GPU nodes.

Figure 5.12 shows the execution time for simultaneously running Word Count and Linear

Regression with increasing input sizes using the static and dynamic scheduling schemes.

Overall, our dynamic scheduling outperforms the static scheduling schemes by 39.3% and

12.5% for Word Count and Linear Regression, respectively.
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Figure 5.13 Percentage of data processed on PS3 and GPU nodes for simultaneously
running Linear Regression and K-Means using static and dynamic scheduling schemes.

Linear Regression and K-Means In this experiment, we simultaneously executed two

map-intensive jobs, i.e. Linear Regression and K-Means, with input data of 512 MB each, on

PS3+GPU Cluster, with 4 PS3 and 4 GPU nodes, and observed how our framework sched-

ules these benchmarks on the available compute nodes. Note that we have shown earlier that

Linear Regression and K-Means execute 11.4% and 73.0% faster on a PS3 node compared

to a GPU node, respectively.

Figure 5.13 shows the results for both static and dynamic scheduling. In case of static

scheduling, both types of compute nodes execute both the benchmarks during the entire

execution lifecycle of the benchmarks. In this case, 50.9% and 76.7% of Linear Regression

and K-means data, respectively, is processed by PS3 nodes. Similarly, 49.1% and 23.3% of

Linear Regression and K-Means data, respectively, is processed by the GPU nodes.

In the case of dynamic scheduling, our scheduler exploits the capabilities of individual nodes

for executing the benchmarks. Here, Linear Regression is scheduled on the GPU-cluster be-

cause it provides better performance on GPUs than K-Means. K-Means is executed on the

PS3 cluster until Linear Regression is execution, however, once Linear Regression completes,

the scheduler utilizes all resources, i.e., PS3- and GPU-cluster, for K-Means to expedite the

overall execution. Overall, PS3 nodes process 2.0% and 81.7% of Linear Regression and K-

Means data, respectively, while GPU nodes process 98.0% and 18.3% of Linear Regression

and K-Means data, respectively.

Figure 5.14 shows the execution time for simultaneously running Linear Regression and K-
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(a) Execution time for Linear Regression.
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(b) Execution time for K-Means.

Figure 5.14 Execution time for simultaneously running Linear Regression and K-Means.
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Figure 5.15 Percentage of data processed on PS3 and GPU nodes for simultaneously
running the studied benchmarks.

Means using the static and dynamic scheduling schemes. Overall, our dynamic scheduling

outperforms the static scheduling schemes by 19.1% and 45.7% for Linear Regression and

K-Means, respectively.

All Benchmarks In this experiment, we simultaneously executed all of our benchmarks

with the input data of 512 MB each, on the PS3+GPU Cluster and observed the perfor-

mance of our scheduler compared to the static scheduling for these benchmarks. Figure 5.15

shows the results. In case of static scheduling, shown in Figure 5.15(a), all of the bench-

marks are scheduled simultaneously on all compute nodes. In this case, PS3 nodes process
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50.9%, 68.7%, 97.6% and 76.7% of Linear Regression, Word Count, Histogram, and K-Means

respectively. Similarly, the GPU nodes process 49.1%, 31.3%, 2.4% and 23.3% of Linear Re-

gression, Word Count, Histogram, and K-Means data respectively. In the case of dynamic

assignment of resources to applications, shown in Figure 5.15(b), our scheduler takes ad-

vantage of the relative capabilities of the cluster nodes for each benchmark: it schedules

Linear Regression and Word Count on the GPU nodes, while Histogram and K-Means are

scheduled on the PS3 nodes. This way, Linear Regression completes earlier than the other

benchmarks, enabling our scheduler to start scheduling the unprocessed Word Count data

between the PS3 and GPU nodes. The next benchmark which completes its execution is His-

togram, which leaves K-Means executing on the PS3 nodes and Word Count on the PS3 as

well as GPU nodes. Overall, in the case of dynamic scheduling, the PS3 nodes process 2.0%,

11.9%, 98.0%, and 98.0% of Linear Regression, Word Count, Histogram, and K-Means data,

respectively. Conversely, the GPU nodes process 98.0%, 88.1%, 2.0%, and 2.0% of Linear

Regression, Word Count, Histogram, and K-Means data, respectively.

Figure 5.16 shows the execution time for simultaneously running all the studied benchmarks

with increasing input sizes using the static and dynamic scheduling schemes. Overall, our

dynamic scheduling outperforms the static scheduling schemes by 17.3%, 35.2%, 11.7% and

47.4% better for Linear Regression, Word Count, Histogram and K-Means respectively.

5.6.5 Work Unit Size Determination

As discussed earlier in Section 5.5, the work unit size affects the performance of compute

nodes, and consequently the whole system. In this experiment, we first show how varying

work unit sizes affect the processing time on a node. For this purpose, we use a single PS3

node connected to the manager, and run Linear Regression with an input size of 512 MB1.

Figure 5.17 shows that as the work unit size is increased, the execution time first decreases to

a minimum, and eventually increases exponentially. The valley point (shown by the dashed

line) indicates the size after which the compute node starts to page. Using a larger size

reduces performance. Using a size smaller than this point wastes resources: notice that

the curve is almost flat before the valley indicating no extra overhead for processing more

data. Also, using a smaller work unit size increases the manager’s load, as the manager now

has to handle larger number of chunks for a given input size. Using the valley point work

unit size is optimal as it provides the best trade-off between compute node’s and manager’s

1The results are the similar in other applications and input sizes.
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(a) Execution time for Linear Regression.
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(b) Execution time for Word Count.
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(c) Execution time for Histogram.
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(d) Execution time for K-Means.

Figure 5.16 Execution time for simultaneously running all the benchmarks.

performance, and results in minimal execution time.

Next, we evaluate CellMR’s ability to dynamically determine the optimal work unit size.

In principle, the optimal unit size depends on the relative computation to data transfer ra-

tios of the application and machine parameters, most notably, latencies and bandwidths of

the chip, node and network interconnects. We follow an experimental process to discover

optimal work unit size. We manually determined the maximum work unit size for each ap-

plication that can run on a single PS3 without paging to be the optimal work unit size. We

compared the manual work unit size to that determined by CellMR at runtime. For each

application, Table 5.4 shows: the work unit size both determined manually and automati-

cally, the number of iterations done by CellMR to determine the work unit, and the time

it takes for the reaching this decision. Our framework is able to dynamically determine an

appropriate work unit that is close to the one found manually, and the determination on
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Figure 5.17 Effect of work unit size on execution time.

Application
Hand-Tuned CellMR
Size (MB) Size (MB) # Iterations Time (s)

Linear Regression 32 30 16 0.65
Word Count 3 2 8 1.82
Histogram 2 1 4 0.15
K-Means 0.37 0.12 16 1.09

Table 5.4 Performance of work unit size determination.

average across our benchmarks takes under 0.93 seconds. This is negligible, i.e., less than

0.5% of the total application execution times when input size is 2 GB. Note that optimal

work unit size determination is independent of the given input size, and has a constant cost

for a given application. Thus, dynamic work unit scaling in our framework is efficient as well

as reasonably accurate.

5.6.6 Impact on the Manager

In this experiment, we determine the affect of varying work unit sizes on manager perfor-

mance. This is done as follows. First, we start a long running job (Linear Regression) on

the cluster. Next, we determine the time it takes to compile a large project (Linux kernel

2.6) on the manager, while the MapReduce task is running. We repeat the steps as the work

unit size is decreased, potentially increasing the processing requirements from the manager.

For each work unit size, we repeat the experiment 10 times using symmetric heterogeneous

cluster, and record the minimum, maximum, and average time for the compilation as shown
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Figure 5.18 Impact of work unit size on the manager.

in Figure 5.18. The horizontal dashed line in the figure shows the overall average of average

compile time across all work unit sizes. Given that the overall average remains within the

minimum and maximum times, we can infer that the variations in the compile time curve

is within the margin of error. Thus, the relatively flat curve indicates that CellMR has a

constant load on the manager and our framework can support various workloads without

the manager becoming a bottleneck.

5.7 Chapter Summary

In this chapter, we have presented different data distribution alternatives for allocating the

application data between heterogeneous resources, and have developed an efficient data dis-

tribution approach that divides the application data between asymmetric resources based

on the memory capacities of individual accelerators and streams the resulting data chunks

to each compute node. We have also addressed the challenges of asymmetric resource ca-

pabilities by developing a capability-aware workload distribution technique for concurrently

executing multiple applications on heterogeneous resources. The proposed mechanism takes

into consideration the I/O characteristics of individual application and the memory resources

available to each compute node while executing concurrent applications on the heterogeneous

cluster. Our experimental results show that the proposed approaches significantly improve

the application performance compared to the static data allocation and workload distribu-

tion techniques, and enable our framework to efficiently execute data-intensive applications

on heterogeneous many-core clusters.



Chapter 6

Energy-Aware Resource Scheduling
for Heterogeneous Clusters

Reducing energy consumption has a significant role in mitigating the total cost of ownership

(TCO) of computing clusters. Building heterogeneous clusters by combining high-end and

low-end server nodes (e.g., Xeons and Atoms) is a recent trend towards achieving energy-

efficient computing. However, this requires a cluster-level resource scheduling that has the

ability to predict future load, and server nodes that can quickly transition between active

and low-power sleep states. In this chapter, we explore the energy benefits of using heteroge-

neous server nodes, and provide an energy-aware resource scheduling scheme that identifies

the optimal cluster configuration based on the power profiles of the heterogeneous nodes and

workload characteristics, and maximizes work done per watt by dynamically assigning low

power states to the nodes based on the current request rate.

Dynamic Voltage and Frequency Scaling [221] (DVFS) is a popular power optimization tech-

nique. Typically each server node runs a default policy (such as on-demand) that scales

the frequency of the processor based on operating system performance counters. The power

consumption of the CPU constitutes a portion of the total power consumption of a system;

therefore the gains from DVFS (i.e., P-states) are relatively small as compared to low power

sleep states (i.e., S-states). However, in order to provision for peak load which is hard to

anticipate, and due to high wake-up times, servers are typically kept awake. Idle power for

servers is usually more than 50% of the peak power. High idle power together with hard-

to-predict load spikes limits the effectiveness of sleep states. The energy-aware resource

scheduling mechanism presented in this chapter uses P-states and S-states to reduce the

energy consumption of the cluster and maximize the work done per watt by the cluster. We

observe that performing DVFS at the cluster level and combining it with sleep states yields

better energy efficiency than using the either approach in isolation or at the node level.

99
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Application
CPU Peak Rate Response Efficiency

Frequency Power (req/ Time (throughput
(GHz.) (W) sec.) (ms) per W)

MediaWiki 1.0 12.9 7 391.0 0.54
MediaWiki 1.5 14.5 10 263.0 0.69

Dynamic Content Server 1.0 12.6 105 20.6 8.33
Dynamic Content Server 1.5 14.2 180 14.2 11.2

Table 6.1 Power/performance profile of Atom N550 machines for the two workloads, Er-
rors/Violations=0

Application
CPU Peak Rate Response Efficiency

Frequency Power (req/ Time (throughput
(GHz.) (W) sec.) (ms) per W)

MediaWiki 1.6 257.3 110 186.0 0.43
MediaWiki 2.4 316.0 175 110.0 0.55

Dynamic Content Server 1.6 248.5 2250 10.5 9.05
Dynamic Content Server 2.4 281.1 3000 8.9 10.67

Table 6.2 Power/performance profile of Xeon E5620 machines for the two workloads,
Errors/Violations=0.

6.1 Motivational Data

In this chapter, we use a heterogeneous cluster consisting of Atom N550-based Netbooks

and Xeon E5620-based servers. The Atom N550 [222] is the most recent in the line of Atom

processors and the only one to support DVFS. It runs at two frequencies: 1.0 GHz. and

1.5 GHz. Table 6.1 shows the power-performance profile of Atom N550 with respect to the

two web workloads, MediaWiki and Dynamic Content Server. Table 6.2 shows the power-

performance profile of the Xeon server for the same workloads. The power range of Xeon

(difference between peak and idle power) is much higher as compared to Atom for the two

workloads. Similarly the throughput range of Xeon is much higher than that of Atom. This

motivates a scale-out approach for Atom’s (adding Atom servers incrementally to handle

increasing load).

Figure 6.1(a) and 6.2(a) show the raw power consumption of Atom and Xeon as a function

of increasing load (requests per second) for the two applications (such that errors/viola-

tions=0). As we increase the request rate, a single Atom server cannot sustain the QoS.

Therefore, we scale out and provision more Atom servers; the number of Atoms provisioned
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Figure 6.1 Power and energy profiles of Atom and Xeon clusters for MediaWiki.

is shown on the right vertical axis. Even with scaling out, the Atoms come out on top in

terms of power consumption. When we consider energy efficiency (throughput per watt)

shown in Figure 6.1(b) and Figure 6.2(b), we see that as request rate increases, Xeon starts

to catch up with Atom, although the Atom stays ahead.

The idle power of Xeon is about 14 times that of the Atom, while the energy efficiency

of Atom (throughput per watt) is much higher than that of the Xeon (as shown in Fig-

ure 6.1(b) and 6.2(b)). This makes Atom-based servers good candidates for handling light

web server workloads. However, as Table 6.1 and Table 6.2 show, Atom has a significantly

higher latency (response time per request) than the Xeon for both workloads. Since this

has implications on both QoS as well energy consumption, we normalize energy efficiency by

response time. This is shown in Figure 6.1(c) and Figure 6.2(c). For low request rates, Atom
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Figure 6.2 Power and energy profiles of Atom and Xeon clusters for Dynamic Content
Server.

does better than Xeon on this metric, while the Xeon performs better for high request rates.

This motivates heterogeneous clusters for the two workloads (explained in Section 6.3).

There is a significant difference in the maximum throughput being handled by both Atom

and Xeon at low and high clock frequency. The efficiency (throughput per watt) is higher

at peak frequency for both. This would suggest that consolidating and directing requests to

a few servers and running them at higher frequency would result in good energy efficiency.

This would certainly be true if the unused servers could be put into hibernation or standby

mode. However, in order to provision for unforeseen load spikes, a certain number of servers

would have to be kept awake. The total power consumption in this case would be obtained

by adding the power consumed by the heavily utilized servers and the power consumed by the



6.2 System Architecture 103

idle servers. The other strategy would be to run the servers at low frequency and distribute

the workload among them. We compare different strategies in Section 6.4.

Minimizing the power spent on idle servers by keeping the minimum number of servers awake

for handling spikes would improve energy efficiency [223]. Since the idle power of our Xeon

is 14 times that of the Atom, it would be profitable to keep Atom-based servers awake and

put Xeon-based servers to sleep. When a spike comes, the idle Atom servers can handle the

increasing load, while a Wake-on-Lan signal is sent to Xeon servers. Prior studies [224, 225]

have shown that it usually takes a few minutes for a load spike to peak. Xeon servers take

around 90 sec. to be brought up from standby. Therefore, in order to plan for load spikes,

we need enough idle Atom-based servers to handle the load till the Xeons are brought back

into operational state.

6.2 System Architecture

Figure 6.3 shows the power manager architecture. Input Handler receives client requests

and stores them in a request queue. Policy Manager is the central component. It interacts

with the other components and implements the power management policy for the cluster.

It reads the requests from the queue, and redirects them to the appropriate server. During

the initialization process, Policy Manager invokes Profiler and Cluster Configurator, which

profiles the given workload on the cluster, generates lookup tables and identifies the optimal

cluster configuration (described later in this section). DVFS Driver remotely sets the ap-

propriate CPU frequency on a given server node. Standby/Hibernate Driver implements the

functionality for putting servers to standby mode and waking them over LAN. Load Ana-

lyzer interacts with the Input Handler and monitors the rate of incoming user requests. The

Policy Manager periodically polls the Load Analyzer to detect any spikes in the incoming

user requests.

We study two web server workloads that are commonly hosted in a data center. The first

workload is a web server application serving dynamic content from the local filesystem. This

workload is hosted on a single tier. The second is the MediaWiki+MySQL application. Me-

diaWiki and MySQL are hosted by two separate server tiers; we focus on the front-end tier

running the MediaWiki. We consider lightweight workloads to make sure that the QoS/la-

tency is within acceptable bounds, since prior studies [226] has shown that Atom is not

suitable for computationally intensive workloads.
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Figure 6.3 High-level system architecture of our power manager.

6.3 Power Manager for Heterogeneous Cluster

The input to the power manager is workload-independent power-performance characteristics

of the different server types in the cluster, such as CPU model, idle power, P-states (CPU

frequencies) and S-states (hibernate/suspend). We assume that the characteristics of the

workload (e.g., average request rate, peak request rate and transition time) are available to

the power manager in the form of traces or otherwise, as well as the SLA. The power man-

ager profiles the workload and derives workload-specific power-performance characteristics

for each server, such as power consumption, CPU utilization and response time for different

request rates at different CPU frequencies. A lookup table is created for each server type

for a given workload.

6.3.1 Relationship Between Response Time and Cluster Configu-

ration

The response time knob is crucial in assessing the right composition of a cluster for a given

workload. Figure 6.4 shows how the response time for the Dynamic Content Server work-

load varies with the request rate for Atom and Xeon (at peak frequency). The response time

increases slowly with increasing request rate and then jumps to a high value (at which point
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Figure 6.4 Response time profiles for Atom and Xeon for Dynamic Content Server.

the error rate becomes non-zero). If we assume that 14 ms as response time is acceptable

QoS for this particular workload, we find that a cluster composed entirely of Atom nodes

would maximize the throughput per watt (as shown in Figure 6.2(b)). From Figure 6.2(a)

it can be seen that around 16 Atom nodes can handle as much load as the Xeon node for

this particular workload. Since a Xeon node would typically cost as much as a cluster of 10

Atom nodes or more and the throughput per watt difference is significant, it is safe to say

that the TCO for a cluster of 16 Atom nodes would be less than that of a Xeon. The only

reason to have Xeon nodes in the cluster at that point would be because the data center

already had them before acquiring Atom nodes.

However, if the acceptable response time were 9 ms, the scale-out factor for Atom nodes

would increase and so would the capital expenditure as well as power consumption (as sug-

gested in [226]). Figure 6.2(c) incorporates the response time factor in the cost analysis. The

Y-axis shows throughput per watt normalized by the response time. If the response time

for a cluster of Atom nodes were to be matched with that of a Xeon, then for a request rate

of more than 50 req/sec. for MediaWiki (and 600 req/sec. for Dynamic Content Server) a

Xeon would be preferred over an Atom cluster, while for lower request rates, an Atom cluster

would do better (in terms of power consumption), thus motivating a heterogeneous composi-

tion. In real life, the QoS would typically be defined by an SLA and the normalization factor

would be a function of the response time. Our power manager incorporates the normalization

function (response time for now) in deciding the optimal cluster composition/configuration.
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In order to identify the optimal cluster configuration, the power manager runs the workload

and finds the throughput per watt for different request rates for both Atom and Xeon (such

that the number of violations/errors is zero). It notes the corresponding response times.

It then divides the throughput per watt by the response time (which is assumed to be the

normalization function) and stores the values in a table (one for each server type) indexed

by the request rate. From the two tables, it estimates the point at which the normalized

throughput per watt values for an Atom cluster would match that of a Xeon (i.e., the inter-

section point in Figure 6.1(c)). If such a point is found then the cluster configuration would

be heterogeneous. The number of Atom nodes per Xeon would be equal to the number of

Atom nodes needed to handle the request rate at the intersection point while keeping the

response time within specified bounds (5 Atom nodes per Xeon for the Dynamic Content

Server). If such a point is not found then the cluster configuration is homogeneous. If the

normalized values for Atom are higher across the board, the cluster should be composed

entirely of Atom nodes. If the normalized values for Xeon are higher then the cluster should

be composed entirely of Xeon nodes.

6.3.2 Policy Manager

Once the cluster configuration is identified, the policy manager attempts to maximize

throughput per watt by assigning P-states and S-states to the server nodes in the clus-

ter for a given request rate such that the response time is within specified bounds and the

error rate is zero. In the current implementation, the policy manager only works with the

minimum and maximum frequency. That corresponds to 1 GHz. and 1.5 GHz. For Atom

N550, and 1.6 GHz. and 2.4 GHz. for Xeon E5620. Only S3 sleep state (i.e., standby) is

used. The following values are associated with each server type: Pidle (idle power), Pminf

(peak power for the given workload at the lowest CPU frequency), Pmaxf (peak power for the

given workload for the highest CPU frequency), Pstdby (power consumed in standby mode),

Tminf (max throughput handled at lowest CPU frequency for given response time), Tmaxf

(max throughput handled at highest CPU frequency for given response time). As mentioned

before, these values are stored in a lookup table for each server type. For a given request

rate, the policy manager tries to find the tuple {Nidle, Nminf , Nmaxf , Nstdby} for each server

type (Atom and Xeon in this case) such that throughput per watt represented as:

∑

servertype

NminfTminf +NmaxfTmaxf

NidlePidle +NminfPminf +NmaxfPpeakf +NstdbyPstdby
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is maximized and

∑

servertype

((Nminf +Nmaxf +Nidle)× Tmaxf )− k × reqRate

is minimized, subject to the constraints:

∑

servertype

((Nminf +Nmaxf +Nidle)× Tmaxf )− k × reqRate ≥ 0

and Nidle +Nminf +Nmaxf +Nstdby ≤ Nmax.

Nmax is the maximum number of servers of each type available in the cluster. The factor

k is determined by the nature of the workload. We set k as 2 in our experiments implying

that the cluster is always ready for handling twice the current request rate. k is typically

greater than 1 so as to handle unanticipated increase in load.

Under normal operation, the policy manager executes periodically and sets the power states

of the servers appropriately. In order to handle load spikes, the policy manager constantly

monitors the request rate and whenever it detects a sudden increase in request rate that

persists for some time, the standby servers are alerted. The value of k (as mentioned before)

is chosen in such a way that there are enough servers to handle the increase in load till

the standby servers are ready for work. This design decision is based on the assumption

that most load spikes take a minute or more to peak, which would give enough time for the

standby servers to become operational. Once the spike subsides, the policy manager returns

to its normal operation.

The power manager automatically derives a policy that uses both DVFS and standby mode.

Under normal operation, the Xeon nodes are put to sleep, and the Atom nodes operate

at low frequency (with the load distributed among the them intelligently). While a spike

detector is used, no explicit workload prediction is carried out.

6.4 Evaluation

We experiment with two web server workloads: Dynamic Content Server (serving HTML

pages from the local filesystem) and MediaWiki+MySQL. We compare the performance of
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Figure 6.5 Response time profiles for Atom and Xeon for MediaWiki.

Atom and Xeon nodes for the two applications to understand the power/performance trade-

offs (as shown in Figure 6.1 and Figure 6.2) in order to identify the scale-out factor for

Atom nodes. The acceptable response time and corresponding request rate handled for both

workloads at different CPU frequencies is shown in Tables 6.1 and Table 6.2. The acceptable

response times were set so that the throughput is maximized while keeping errors/viola-

tions=0 (this happens at the knee of the curve such as the one shown in Figure 6.5). For

instance, at peak frequency Xeon node starts to drop requests and response time shoots up

at about 176 req/sec.

In our evaluation, we focus on understanding the performance of different power manage-

ment policies for a fixed cluster composition and workload. Since 1 Xeon can handle as much

load as about 16-17 Atom machines for the two workloads, we fix the cluster size at 16 Atom

netbooks + 1 Xeon server. We provision for twice the peak load, therefore peak is set at

the capacity of 1 Xeon/16 Atoms (which is about 3000 req/sec. for Dynamic Content Server

and around 160 req/sec. for MediaWiki). 1 Xeon and 32 Atom D510 servers are used for

generating client side requests using httperf [227]. Power is measured using Watts Up Pro

power meters. Before evaluating the power manager on a cluster of Atoms and Xeon, we try

to understand the potential of DVFS on a cluster of Atom nodes alone.
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Power State Atom Xeon

Idle 11.7 201.1
Standby (S-State) 2.4 24.1
Hibernate 1.0 21.1

Table 6.3 Power consumption (in Watts) for the Atom and Xeon servers under different
power states.

6.4.1 Experimental Setup

The server cluster is composed of 16 Intel Atom N550 1.5 GHz. nodes each with two cores

and 2 GB RAM, and 2 Intel Xeon E5620 2.4 GHz. nodes each with four cores and 48 GB

RAM. Both Atom N550 and Xeon E5620 support DVFS, standby and hibernate modes.

Atom takes 35 sec. and 90 sec. to wake up from the standby and hibernate modes respec-

tively. Xeon takes 90 sec. and 120 sec. to wake up from the standby and hibernate modes

respectively. Table 6.3 shows the power consumption for the Atom and Xeon servers under

different power states.

6.4.2 Impact of DVFS on Power Consumption of Atom Cluster

We now evaluate the effect of DVFS on Atom for web server workloads. For this experiment,

we turn the Xeon server off completely and use only 8 Atom nodes. 100% load corresponds

to the capacity of 8 Atom nodes i.e., 1500 req/sec. for Dynamic Content Server and 80 re-

q/sec. for MediaWiki. Standby/hibernate modes are not used, therefore all the 8 Atoms are

awake at all times. The load is gradually increased from 20-90%. We compare five different

policies:

No DVFS: All the Atom nodes run at peak frequency (1.5 GHz.). No power management

policy is used; the load is equally distributed among all the nodes.

No DVFS (Consolidated): All the nodes run at peak frequency. The load is consolidated

and directed to the fewest number of nodes in the cluster.

Node Level DVFS: The default Linux policy governor (on-demand) is activated on all

Atom nodes; each node is responsible for scaling its frequency based on CPU utilization.

The load is equally distributed among the nodes.
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Figure 6.6 Evaluation of DVFS on Atom cluster.

Node Level DVFS (Consolidated): This policy is similar to the previous one, however

the input requests are consolidated and directed to the fewest number of nodes possible.

Cluster Level DVFS: All the Atom nodes are initialized to low frequency (1 GHz.). The

load is balanced among the nodes. The frequency of a node is scaled up only when the

capacity of the entire cluster at low frequency is saturated, which would happen when the

load exceeds around 60%, since the maximum capacity of an Atom at low frequency is about

60% of the capacity at high frequency.

Figure 6.6 shows the power consumption of the cluster with respect to MediaWiki and Dy-

namic Content Server. Both applications show similar power consumption trends for the

five policies. Interestingly enough, Node Level DVFS is the least power efficient among the

five while Cluster Level DVFS comes out on top. Workload consolidation also helps: we

observe an average improvement of 2.5% between No DVFS and No DVFS (Consolidated),

and 4.6% between Node Level DVFS and Node Level DVFS (Consolidated). We observe an

average gain of 6.5%, 4.3%, 7.6%, and 4% when using Cluster Level DVFS as compared to No

DVFS, No DVFS (Consolidated), Node Level DVFS and Node Level DVFS (Consolidated)

respectively. Although the relative gains with Cluster Level DVFS are small (4-7%), they

could translate to a few hundred thousand dollars to a corporation in energy savings per

year.
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6.4.3 Power Manager Performance Evaluation

We now evaluate our power manager on a cluster of 16 Atom nodes and 1 Xeon server. The

power manager implements a meta-policy, which is to assign P-states and S-states to the

cluster servers such that throughput per watt is maximized. In our design, the use of P-

states and S-states is optional not mandatory. The policy generated by the power manager

is compared against other well known policies:

No DVFS or Standby: All nodes run at peak frequency, no power management is carried

out. The load is distributed among the nodes in the cluster.

No DVFS or Standby (Consolidated): All the nodes run at peak frequency. The load

is consolidated and directed to the fewest number of nodes in the cluster.

Cluster Level DVFS: Described in Section 6.4.2.

Cluster Level Standby: All the nodes run at peak frequency. The load is consolidated

and directed to the fewest number of nodes in the cluster. The remaining nodes are put into

standby mode.

As described in Section 6.3, in order to be able to sustain sudden load increases, when the

request rate is r req/sec., the cluster should be prepared to handle 2 ∗ r req/sec. (value of

k = 2). The policy generated by the power manager uses a combination of P-states and

S-states. At any given point in time, some of the nodes are in standby mode, some are idle,

some are running at low frequency and others are running at peak frequency.

Figure 6.7 shows the power consumption of the policy generated by the power manager at

equilibrium point. We find that when the load is low: 10-40%, the Xeon is in standby mode

along with some of the Atom nodes, while others operate at either low or high frequency.

When the load exceeds 50% all the standby nodes in the cluster are alerted. Note that the

power consumption of the cluster suddenly goes up when the load exceeds 50%, which is

due to the waking up of Xeon. As evident from Figure 6.7, the gains from standby are most

significant when the load is < 50%. Due to the scale of Figure 6.7, the power consumption

curve of our policy manager seems to coincide with that of Cluster Level Standby. A closer

look (as shown in the nested graph) reveals that there is a 3-4% net average gain with our

policy manager when the load is < 40%, which is due to DVFS. For higher load (> 50%),

the different policies tend to converge, and the gains from our policy manager (relative to

Cluster Level Standby) become more pronounced (around 6%).
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Figure 6.7 Power consumption with different power policies under increasing input load
using heterogeneous cluster. DVFS+Standby gives an additional 3-4% savings as compared
to Standby alone.

6.4.3.1 Workload Emulation

In order to evaluate the power manager in the presence of load spikes, we emulate a web

server workload as shown in Figure 6.8. minutes, around 95-100% for about 6 minutes, 195-

200% for about 9 minutes and the remaining 8 minutes are spent in between. Taking a cue

from prior studies, we model the spikes such that it takes 90 sec. or more from the time the

spike occurs till it reaches the peak. This gives enough time for the standby servers to wake

up. Note that this workload pattern will not benefit our power manager, which yields higher

energy savings when the load is between 50-80% (Figure 6.7). The workload emulation is

meant to stress test the power manager.

We measure the total energy consumed by the cluster for MediaWiki application with the

generated workload. Table 6.4 shows the energy savings obtained with our power manager

and Cluster Level Standby as compared to the baseline: No DVFS or Standby (Consolidated).

The relative gain from the power manager with respect to the baseline is about 28.6%. The

relative gain with respect to Cluster Level Standby is about 3.2%.

6.5 Chapter Summary

In this chapter, we explore strategies to improve the energy benefits of heterogeneous clus-

ters by assigning DVFS (P-states) and low power sleep states (S-states) to heterogeneous
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Figure 6.8 Generated workload for study the energy consumption with different power
management schemes.

Power Management Scheme Energy (kJ) Energy Savings (%)

No DVFS/Standby (Consolidated) 413.5 0
Cluster Level Standby 304.9 26.2
Our Power Manager 295.2 28.6

Table 6.4 Energy consumption with different power management schemes for MediaWiki
for the generated workload. Our power manager yields 3.2% improvement relative to Cluster
Level Standby.

nodes. We design a cluster-level power manager that is able to automatically deduce the

correct power states of the heterogeneous resources based on the current application load

and the power profiles of the heterogeneous nodes. Our evaluation shows that compared to

traditional power management policies, our cluster-level power manager significantly yields

better throughput per watt for the studied enterprise scale applications, and maximizes the

energy benefits of heterogeneous cluster.



Chapter 7

QoS-Aware Scheduling for
Multi-Tenant Heterogeneous Clusters

Coprocessors, such as GPUs, are increasingly being deployed in clusters to process scientific

and compute-intensive jobs. GPUs, in particular, are increasingly being used to acceler-

ate non-graphical compute kernels, providing a 10− 100× performance boost for workloads

such as linear system solvers, physical simulations, partial differential equations and flow

visualizations [228–232]. At the same time, client-server applications which have tradition-

ally been classified as compute- or data-intensive types now exhibit both characteristics

simultaneously. Examples of such client-server applications are semantic search [233], video

transcoding [234], financial option pricing [235] and visual search [236]. As in any client-

server application, an important metric is response time, or the latency per request. For

applications with enough parallelism within a single client request, latency per request can

be improved by using GPUs. However, latency per request by itself is not enough. Multiple

applications must be able to concurrently run and share a GPU-based heterogeneous cluster,

i.e., the cluster must support multi-tenancy [237–239]. Further, client-server applications in

practice experience varying rates of incoming client requests, sometimes even unpredictable

load spikes. Thus, any practical heterogeneous cluster infrastructure must handle multi-

tenancy and varying load, including load spikes, while delivering an acceptable response

time for as many client requests as possible.

In order for a heterogeneous cluster to handle client-server applications with load spikes,

a scheduler that enables dynamic sharing of heterogeneous resources is necessary. As an

example, client requests of applications incurring load spikes should be processed by faster

resources like the GPU, while requests of other applications could be deferred, or processed

by slower resources. Without such a scheduler, decisions made for one application may

114
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adversely affect another. For instance, sending one application’s client request to the non

multi-tasking GPU could block a more critical application.

In this chapter, we provide a scheduling solution for a multi-tenant GPU-based heteroge-

neous cluster to deliver acceptable response times (i.e., a response time that is less than or

equal to the pre-specified response time) in the presence of load spikes. Response time is an

important part of the system’s Quality-of-Service (QoS), and is also the main concern of the

client. We present a novel cluster-level scheduler, Symphony, that enables efficient sharing

of heterogeneous cluster resources while delivering acceptable client request response times

despite load spikes. Symphony manages client requests of different applications by assigning

each request a priority based on the load and estimated processing time on different process-

ing resources like the CPU and GPU. It then directs the highest priority application to issue

requests to suitable processing resources within the cluster nodes. If necessary, the scheduler

also directs applications to consolidate their requests (pack and issue multiple requests to-

gether to the same resource), and load-balances by directing client requests to specific cluster

nodes.

7.1 System Architecture Overview

Figure 7.1 shows a high-level overview of the system. It consists of a GPU-based het-

erogeneous cluster hosting multiple client-server applications. The heterogeneous cluster

has a cluster manager, which is a dedicated general-purpose multicore server node. It

runs the cluster-level scheduler and application client interfaces. It manages a number of

back-end servers, or worker nodes. The worker nodes contain heterogeneous computational

resources comprising conventional multicores and CUDA-enabled GPUs. They expose their

heterogeneity information to the cluster manager so that the manager can make appropriate

decisions and schedule application user requests. All cluster nodes are interconnected using

any standard interconnection network.

Each worker node hosts multiple applications concurrently on its resources. To isolate the

performance of our framework, we assume that optimized architecture specific application

code is available for the types of computational resources that we use, i.e., x86 CPU and

GPU. That is, each of our applications has libraries containing optimized CPU and GPU

implementations. These libraries are integrated within our middleware framework and used

for scheduling, deriving CPU/GPU performance models and task (user request) dispatching.
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Figure 7.1 High-level system architecture of Symphony.

7.2 Application Characteristics and Interfaces

In this section, we describe our application characteristics, the cluster architecture, and

define how applications interact with Symphony.

7.2.1 The Applications

We focus on applications that adhere to the client-server model and process remote client

requests. Each application specifies an acceptable response time for its requests. We assume

that all requests are of the same type, and only differ in size, e.g., semantic search pro-

cesses text queries, but the queries can range in size from a single word to a large sentence.

We make no assumptions about inter-dependency of client requests; after interfacing with

Symphony, applications will still process requests in the order in which they were received.

All applications have a client interface and a server portion. The server portion, along with

static application data, is mapped to specific cluster nodes, and is expected to be online and

communicating with Symphony. When a client request arrives, it may be processed by one

or more nodes where the application data is pre-mapped. Some applications may require

all nodes to process each request, while others may just need any one node. Applications

specify this information to Symphony, as we explain in Section 7.2.2.

Since we specifically target GPU-based heterogeneous clusters, we focus on applications

whose request processing involves executing parallelizable compute kernels. We assume that

applications already have optimized CPU and GPU implementations available in the form

of runtime libraries with well-defined interfaces for such kernels. This enables Symphony to

intercept calls to these kernels at runtime, and dispatch it to either CPU or GPU resources,

as described later.
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API Description

void newAppRegistration( Application registers with scheduler.
float response time Expected latency (ms) for each client request.
float average load Average number of requests expected every

second.
int * nodelist Possible cluster nodes on which a client request

could be processed.
int nodelist size Size of above nodelist.
int num nodes Number of nodes necessary to process a client

request.
int consolidate) Number of requests that can be consolidated by

application.
void newRequestNotification( Application notifies scheduler of the arrival

of a new request.
int size) Size of data sent by request.

bool canIssueRequests( Application asks scheduler if requests can
be issued.

int * num reqs Number of consecutive requests that can be
consolidated and issued.

int * id Unique scheduler ID for this set of requests.
int * nodes Which cluster nodes to use.
int * resources) Which resources to use within each cluster node.

void requestComplete( Application informs scheduler that issued
requests have completed processing.

int id) Scheduler ID pertaining to the completed
requests.

Table 7.1 List of APIs exposed by Symphony.

Finally, some applications may have the ability to consolidate requests, i.e., pack and pro-

cess multiple independent client requests together to achieve better throughput via increased

parallelism. Symphony leverages this to drain pending requests faster.

7.2.2 Scheduler-Application Interface

We now define how client-server applications can communicate with a scheduler such as

Symphony by making simple modifications. An application initially registers itself with

Symphony and sends a notification each time it receives a client request. It then waits to

receive the “go-ahead” from Symphony to process pending requests. Once requests have
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completed processing, the application informs Symphony. Applications can use two threads

to do this: one to notify the scheduler of new requests, and the other to ask if requests

can be issued, and inform the scheduler of completion. This is not a major change since

most client-server applications already do this to simultaneously fill buffers with incoming

requests, and drain requests from the other end. The application modifications only require

linking with the scheduler library and adding a few lines of code, with no reorganization or

rewriting.

Table 7.1 provides the lists of the APIs exposed by Symphony. First, the application regis-

ters with the scheduler (newAppRegistration()) and specifies its expected response time for

each client request (latency). The application also specifies the average number of client

requests it expects to receive each second (average load), the set of cluster nodes onto which

its static data has been mapped (nodelist), and how many nodes each request will require

for processing (num nodes). For example, an application’s data may have been mapped to

4 cluster nodes, but any of those 4 nodes can process a request. In this case, nodelist

will contain names (or other descriptor) of the 4 nodes, and num nodes will be 1. Finally,

when an application registers with Symphony, it must also specify how many requests it can

consolidate together (consolidate). For example, in the case of the Semantic Search, several

user queries can be packed and executed simultaneously on a single worker node.

Applications notify Symphony of each new client request (newRequestNotification()) and

specify the size of the request. In parallel, the application polls the scheduler to receive the

go-ahead for processing pending requests (issueRequests()). Symphony tells the application

how many requests to consolidate (num reqs) and provides a unique identifier (id) for this

set of requests. The application then processes the requests, and informs Symphony after

they complete using requestComplete().

7.3 Architecture of Symphony

Symphony is a request scheduler for multi-tenant client-server applications on heterogeneous

clusters with a goal to deliver acceptable response times in the presence of load spikes. It

combines application-specified parameters with its own inferences to make scheduling de-

cisions. Symphony consists of cluster-level and node-level components. Figure 7.2 shows

the manager node running the cluster-level component and client interfaces for the appli-

cations. The figure also shows the worker nodes running the node-level components. Both
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Figure 7.2 Architecture of Symphony.

components are implemented as user-space middleware.

7.3.1 Cluster-level Component of Symphony

This is the primary orchestrator in our system. Given client requests for different applica-

tions, it decides:

• which application should issue requests;

• how many requests should the application consolidate;

• to which cluster nodes should the requests be sent; and

• which resource (e.g., CPU or GPU) in the node should process the requests.

The architecture of the cluster component of Symphony consists of six portions as shown in

Figure 7.2: (i) Pending Request List, (ii) Resource Map, (iii) History Table, (iv) Performance

Estimator (v) Priority Metric Calculator and (vi) Load Balancer. We describe each of these

below.
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7.3.1.1 Pending Request List

Each application notifies Symphony upon the arrival of a client request. As shown in Fig-

ure 7.2, the scheduler stores certain information pertaining to pending requests, so that it

can prioritize them and direct the applications to consolidate and dispatch the requests for

processing. It does not store actual request data, but maintains for each request, the appli-

cation that received the request, the time at which the request was received, the deadline by

which the request should complete and the size of the request data.

7.3.1.2 Resource Map

Symphony monitors current cluster resource usage using a map of the CPU and GPU re-

sources on each cluster node. For the CPU resource, it maintains a count of the number

of requests being processed, while for the (non-multitasking) GPU, a BUSY/IDLE tag is

maintained. This information is used to determine resource availability as well as to bal-

ance the load across the cluster. The resource map is updated each time the scheduler asks

an application to issue requests (issueRequests()), and when an application informs the

scheduler that it has completed requests (requestComplete()).

7.3.1.3 History Table and Performance Model

The history table stores details of recently completed requests of each application. Each en-

try of the history table contains a recently completed client request, resources that processed

it, and the actual time taken to process the request. The history table is updated each time

client requests complete (requestComplete()).

The information in the history table is used to build a simple linear performance model,

the goal of which is to quickly estimate performance on the CPU or GPU so that the right

requests can be issued with minimal response time failures. After collecting request sizes and

corresponding execution times, we fit the data into a linear model to obtain CPU or GPU

performance estimations based on request sizes. The model is dependent on the exact type

of CPU or GPU; in our case we only have a single type of CPU and GPU, but if different

generations of CPUs and GPUs exist, a model can be developed for each specific kind.

In addition to the dynamic performance model builder, existing analytical models can also be

used to estimate the execution time of an application on available resources. Some analytical

models such as [240] may require application and resource specific information at compile
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time to accurately generate performance estimates. Although the performance model builder

used by Symphony is simple, it requires no compile-time information to generate performance

estimates.

7.3.1.4 Priority Metric

Symphony uses a priority metric to calculate the urgency of pending requests from the point

of view of response time and overall load. Given N applications, where application A has nA

requests in the pending request list, the goal of the priority metric is to indicate (i) which

of the N applications is most critical and therefore must issue its requests and (ii) which

resource (e.g., CPU or GPU) should process the requests. Note that Symphony does not

reorder requests within an application, but only across applications.

We assume that our heterogeneous cluster has r types of resources in each node, labeled R1

through Rr. For example, if a node has 1 CPU and 1 GPU, r is 2. Furthermore, the appli-

cation itself is responsible for actual request consolidation, but the scheduler indicates how

many requests can be consolidated. To do this, the scheduler is aware of the maximum num-

ber of requests MAXA that application A can consolidate (through newAppRegistration()).

So if A is the most critical application, the scheduler directs it to consolidate the minimum

of MAXA or nA requests.

If DLk,A is the deadline for request k of application A, CT the current time, and EPTk,A,R

the estimated processing time of request k of application A on resource R, we define slack

for request k of application A on resource R as:

slackk,A,R = DLk,A − (CT + EPTk,A,R) (7.1)

Initially, in the absence of historical information, EPTk,A,R is assumed to be zero. Resource

R is either the CPU or GPU; if the system has different types of CPUs and GPUs, then each

type is a resource since it would result in a different estimated processing time (EPT ). A

zero slack indicates the request must be issued immediately, and a negative slack indicates

the request is overdue. Given the slack, we define urgency of request k of application A on

resource R:

Uk,A,R = −slackp (7.2)
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The above is a polynomial urgency functions, and we find that an exponent such as p = 3

provides good performance for our applications. We compare linear, polynomial and also

exponential urgency functions in the results section. The above is the urgency of issuing a

single request, and it increases polynomially as the slack nears zero. To account for load

spikes, Symphony calculates the load LA for each application A, using the average number

of pending requests in the queue and the average number of requests expected every second

(navgA) specified at the time of application registration:

LA = nA/navgA (7.3)

We define the urgency of issuing the requests of application A on R as the product of the

urgency of issuing the first pending request of A and the load of A:

UA,R =

{

U1,A,R × LA , if R is available

∞ , otherwise
(7.4)

We only consider the first pending request for each application because all application re-

quests are processed in the order they are received, while requests across applications may

be reordered. All pending requests of an application will therefore be less urgent than the

first request.

The overall urgency UA for issuing A’s requests is the minimum urgency across all available

resources Ri. If there are r different types of resources in each cluster node:

UA = minr
i=1

(|UA,Ri
|) (7.5)

Given the urgency for all applications, the scheduler will request application A to consolidate

and issue q requests to resource R such that:

• Application A has the highest urgency among all applications;

• q is the minimum of MAXA and nA;

• Among all available resources, R is the resource when scheduled on which application

A has minimum urgency.
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Algorithm 7.1: Application selection algorithm of Symphony.

Input : appList, reqList, resList,DL,EPT
Output: app, q, R

for A ∈ appList do
k = getEarliestRequest(A);
slackk,A,R = calculateSlack(DLk,A, EPTk,A,R);
Uk,A,R = calculateReqUrgency(slackk,A,R);
nA = getAppReqCount(A);
navgA = getAvgAppReqCount(A);
LA = nA/navgA;

for R ∈ resList do
if resAvailable(R) then

UA,R = Uk,A,R×LA;
end
else

UA,R = ∞;
end

end
UA = getMinimum(UA,R, resList);

end

/* Select application app to issue q requests to resource R */;
app = getAppHighestUrgency();
q = MIN(MAXapp, napp);
R = getResWithLowestUrgency(app);

We note the following about the priority metric:

• If request falls behind in meeting its deadline, its urgency sharply increases (Equa-

tion 7.2).

• If an application experiences a load spike, its urgency sharply increases (Equation 7.4).

• Request processing is predicated on resource availability (Equation 7.4).

• For an application, the resource with the lowest urgency is the one with the best chance

of achieving the deadline, and is therefore chosen (Equation 7.5).

Algorithm 7.1 shows an approach to implement the priority metric described above. It re-

turns the application (app) with the highest urgency, the number of requests (r) that should
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be consolidated together in the next dispatch, and the resources (R) on which the application

should be executed. It is highly scalable since we do not compute the slack and urgency

for every request in the pending request list, but only for the first MAXA requests of every

application. This keeps Symphony’s overhead small, as we show in Section 7.4.

7.3.1.5 Load Balancer

As stated earlier, we assume static application data are pre-mapped to the cluster nodes.

Client requests can be processed by a subset of these nodes, and the application tells the

scheduler how many nodes are required to process a request (through newAppRegistration()).

When the scheduler directs an application to issue requests, it provides a list of cluster nodes

where the request can be processed by simply choosing the least loaded cluster node. The

application is expected to issue its requests to these nodes and thus maintain overall load

balancing.

7.3.2 Node-level Component

Besides the cluster-level scheduler that runs on the cluster manager node, separate node-level

dispatchers [241, 242] run on each worker node. The node level dispatcher is responsible for

receiving an issued request and directing it to the correct resource (CPU or GPU) as specified

by the cluster-level scheduler. In order to do this, we assume that parallelizable kernels in the

applications have both CPU and GPU implementations available as dynamically loadable

libraries. The node-level dispatcher intercepts the call to the kernel, and at runtime directs

it to either the CPU or GPU. For example, if processing a Semantic Search request requires

a call to matrix multiplication, we assume that CPU and GPU library implementations are

available for a specified function name, say sgemm. The node-level component intercepts

sgemm, and looks for a directive from the cluster-level component. When the request was

issued, the cluster component directly intimates the node-level component that sgemm in this

instance of Semantic Search should be directed to, say the GPU.

7.4 Evaluation

In this section we describe our evaluation methodology and present results. We run four,

full-fledged client-server applications concurrently on a high-end heterogeneous cluster with

Intel Xeon CPUs and NVIDIA Fermi GPUs over a period of 24 hours. We subject the
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applications to load spikes, where the duration and size of each spike are taken from pub-

lished observations. Using our implementation of the scheduler as user-space middleware,

we present the following results:

• Priority Metric: A comparison of Symphony’s performance under different priority

metrics and establish a “good” working metric for the following experiments.

• Scheduler Performance Comparison: A comparison of Symphony and baseline FCFS

and EDF schedulers considering the number of dropped client requests, i.e., requests

that do not meet response time constraints.

• Efficient Cluster Sharing: Empirical data showing that, compared to other schedulers,

Symphony needs a smaller cluster to achieve the same performance.

• Sensitivity to Load Spike Profile: Unlike the baseline schedulers, Symphony performs

well across a range of load spikes, i.e., spikes with varying height and width.

• Scalability: Data showing the running time of Symphony itself increases only marginally

with increasing number of cluster nodes and applications.

For the first four set of results, the common metric of comparison is the number of client

requests that do not meet response time constraints (QoS). We also call this “dropped

requests”.

7.4.1 Methodology

Our methodology consists of different sized heterogeneous clusters, with four real, end-to-end

applications concurrently running on each cluster. We compare Symphony with two schedul-

ing mechanisms, First Come First Served (FCFS) and Earliest Deadline First (EDF). In

FCFS, client requests are processed in the same order as they arrive at the cluster manager.

In EDF, the client request with the closest deadline is processed first. Both FCFS and EDF

incorporate application placement and pre-mapped data while making scheduling decisions.

Furthermore, FCFS and EDF consider GPUs as well as CPUs while scheduling application

requests on the available nodes. However, GPUs are preferred: requests are processed on

the CPUs only if all GPUs are busy.

We now describe the applications, cluster configurations and spike introduction mechanisms.
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Application Description Response Time

Semantic Search Supervised Semantic Indexing [233] (SSI)
matching to search large document databases.
It searches the indexed documents for the user
queries and ranks the results based on their se-
mantic similarity to the given queries.

5
msec/query

Video Transcoding An implementation [234] of x264 that converts
the video streams into the H.264/MPEG-4 AVC
format. Each cluster node executes an instance
of Video Transcoding application to encode the
given video stream.

500
msec/MB

SQL Server An implementation [66] of a subset of SQLite
commands processor. Each worker executes
an instance of SQL Server hosting the same
database.

150
msec/query

Option Pricing An implementation [243] of Black-Scholes finan-
cial model to compute the evolution of future
option prices. Each worker hosts an instance of
Option Pricing and provides the option prices
for user queries.

800
msec/query

Table 7.2 Enterprise applications with execution resources and performance criteria.

7.4.1.1 Enterprise Applications

Emerging cluster computing workloads consist of a mix of short- and long-running jobs. We

have selected four representative applications from different domains covering the spectrum

of latency- and throughput-intensive workloads. We choose Semantic Search, SQL Server,

Video Transcoding and Option Pricing as our representative workload set. Table 7.2 pro-

vides the brief description of each application along with their performance requirements,

and Table 7.3 describes the data layout for each application. Some of these applications, i.e.,

Semantic Search, and SQL Server, execute short-running tasks, while others execute long-

running jobs. The table also describes the application’s static data layout. Based on data

layout, a client request can be processed on a subset of worker nodes (e.g., Semantic Search),

or on any available worker node (e.g., Video Transcoding, SQL Server, Option Pricing) of

the heterogeneous cluster.
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Application Data Layout Data Size

Semantic Search Document repositories distributed across worker
nodes so that each document is available on at
least two worker nodes.

2 million doc-
uments

Video Transcoding Input video data accessible at each worker node
through Network File System (NFS) [244].

4− 45 MB

SQL Server Database replicated on all the worker nodes.
Any worker node can process the given query.

512 MB

Option Pricing Input data accessible at each worker node
through NFS.

400 MB

Table 7.3 Enterprise applications with data layout and data size.

7.4.1.2 Cluster Configurations

Our cluster consists of seven high-end worker nodes, and a manager node. Each worker node

has two Intel Xeon E5620 processors (2.4 GHz each), with QPI and 48 GB main memory.

A worker node also has two 1.3 GHz NVIDIA Fermi C2050 GPUs with 3 GB internal mem-

ory, connected as coprocessors on PCI-Express slots. The worker nodes are interconnected

together, and with the manager using gigabit ethernet.

7.4.1.3 Spike Introduction Mechanism

According to published observations, typical spike durations vary from 10 − 30 minutes,

while the peak of the spikes can be as high as 1.5× of the normal load [224, 225, 245, 246].

We introduce random load spikes with duration and heights in this range, but extend our

evaluation to a broader range of spikes. Our spike introduction mechanism injects spikes at

random time points for each application, independent of the other applications running at

the same time.

7.4.2 Priority Metric

Before we present results with Symphony, we explore the priority metric used in order to

empirically establish a good enough heuristic for the rest of the experiments. Specifically, we

replace the polynomial urgency function −slack3 from Equation 7.2, with exponential and

linear functions, and compare the final performance of the system in terms of the number of

client requests dropped. The polynomial function (−slack3) was replaced with exponential
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Spike Height Polynomial (−slack3) Linear (−slack)

Spike Width: 5 minutes
1.25 0.02 0.19
1.5 0.05 0.32
2.0 0.8 3.31

Spike Width: 15 minutes
1.25 0.02 0.16
1.5 0.04 0.29
2.0 0.81 3.16

Table 7.4 Average percentage of requests per minute not meeting the specified QoS under
different slack functions.

(2−slack) and linear (−slack) functions. We find out that the average percentage of dropped

requests are similar for the exponential and polynomial urgency functions, while the simple

linear urgency function underperforms. Table 7.4 compares polynomial and linear functions

for different load spike heights and widths, where the height of the spike is the ratio between

the spike and normal application load, and the width is the duration of the spike in minutes.

The data shows that using the linear urgency function table incurs far more requests dropped

than the polynomial (or exponential) urgency functions.

This is expected since the urgency function defines how responsive the system is to spikes.

In a sense, the urgency function has to “follow” a spike closely; the faster a spike rises, the

quicker the urgency of the those pending requests should become. Our data establishes that

in general polynomial or exponential urgency functions follow random load spikes well. We

thus use the polynomial urgency function for the rest of the experiments in this section.

7.4.3 Scheduler Performance Comparison

We now compare the performance of Symphony versus baseline FCFS and EDF schedulers

using a 5-node heterogeneous cluster. The metric for the comparison is the number of client

requests that do not meet response time constraints.

7.4.3.1 Low Application Load

We first run all four applications concurrently under low load conditions. Not surprisingly,

we find that at low loads, all scheduling schemes perform well, i.e., the fraction of dropped

requests is under 0.01% for FCFS, EDF and Symphony. For instance, for EDF and Sym-
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Application
No. of Requests Average Desired

Processed Latency/Request

Semantic Search 17.2 M 5 msec.
Video Transcoding 52 K 45 sec.
SQL Server 576 K 150 msec.
Option Pricing 108 K 800 msec.

Table 7.5 Number of requests processed with average desired latency.

phony the maximum fraction of dropped requests at any instance is 0.012% for and 0.011%

for Video Transcoding, respectively. Thus EDF and Symphony exhibit similar performance

for our applications under low application load.

7.4.3.2 Realistic Application Load (with Spikes)

Next we study the performance under varying load conditions using the realistic spike in-

troduction model of Section 7.4.1.3. Figure 7.3 shows the results. For FCFS, the maximum

observed percentage of dropped requests is around 7%, which occurs for Video Transcoding.

On average FCFS drops 3.3% of requests across all applications over 24 hours. For EDF and

Symphony, the maximum fraction of dropped requests is 3.5% and under 2%, respectively,

occurring for Video Transcoding and Option Pricing. Across all four applications over 24

hours, EDF (which is better than FCFS) drops close to 2% of requests on the average, while

Symphony drops under 1%. This shows that Symphony is effective in handling load spikes

when given a fixed number of heterogeneous cluster nodes. This is inline with expectations

since FCFS does not consider request deadlines at all, while EDF, although it prefers re-

quests that are closest to missing deadlines, does not consider estimated request processing

time.

7.4.4 Efficient Cluster Sharing

We now study how Symphony performs with limited resources. Specifically, we reduce the

cluster size to 3 worker nodes, and experimentally determine the number of dropped requests

for all three scheduling schemes. Then we gradually increase the cluster size, and find that

the baseline scheduling schemes need a cluster with more worker nodes to provide the same

fraction of requests dropped.

Table 7.5 and Table 7.6 show the results using the realistic load profile from Figure 7.3(a).
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Figure 7.3 Requests missing QoS under spike load conditions for the four concurrently
running applications.
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Application
3-Node Cluster 7-Node Cluster

FCFS EDF Symphony FCFS EDF Symphony

Semantic Search 24.1 20.2 3.0 2.9 1.2 0.05
Video Transcoding 27.2 21.6 3.3 3.2 1.3 0.05
SQL Server 21.8 14.7 2.8 2.6 1.1 0.04
Option Pricing 25.9 20.9 3.2 3.1 1.4 0.05

Table 7.6 Percentage of requests dropped under different cluster configurations for 24 hour
period.

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6 0
 10

 20
 30

 40
 50

 0

 5

 10

 15

 20

 25

%
 o

f 
re

q
u
e
s
ts

 n
o
t

m
e
e
ti
n
g
 Q

o
S

FCFS

EDF

Symphony

Height

Width

%
 o

f 
re

q
u
e
s
ts

 n
o
t

m
e
e
ti
n
g
 Q

o
S

Figure 7.4 Percentage of requests per minute not meeting QoS with increasing spike height
(normalized to average load) and width (minute).

With thousands to millions of requests and a 3-node cluster, FCFS and EDF end up drop-

ping 14 to 27% of requests, while Symphony drops around 3%. FCFS and EDF attain the

same level of performance as Symphony, i.e., 3% dropped requests, when provisioned with 7

cluster nodes. At that cluster size however, and the same load profile, Symphony drops only

around 0.05% of requests. Therefore, with its load- and heterogeneity-sensitive scheduling,

Symphony shares cluster resources more efficiently under varying load conditions, leading to

better utilization of the cluster.

7.4.5 Sensitivity to Load Profile

To study how Symphony performs under different types of load spikes, we introduced spikes

of varying height and width and measured the average percentage of dropped requests on the

7-node heterogeneous cluster. Figure 7.4 shows the percentage of dropped requests versus

the height and width of the spikes. The height of spike is relative to its height at low load,
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Figure 7.5 Scalability with increasing workers and applications.

while the width is its duration in minutes. The performance of FCFS and EDF deterio-

rates sharply with spike height. The maximum percentage of dropped requests is 20.5%,

18.0% and 2.15% for FCFS, EDF and Symphony respectively. Across all points, the av-

erage percentage of dropped requests per minute is 9.2%, 7.2% and 0.7% for FCFS, EDF

and Symphony respectively. This shows that Symphony is not very sensitive to the type of

load spike, and can handle a broader range of spikes that are outside previously published

observations.

7.4.6 Scheduler Scalability

A concern with the single-manager design is the overhead due to introduction of additional

middleware layers, as this could lead to performance bottlenecks when operating at scale. To

this end, we observed how the performance of Symphony scales with the number of worker

nodes and with the number of applications. We increase the number of worker nodes from

3 to 16 and the number of applications from 4 to 18. To run more than four applications,

we replicate our existing applications.

Figure 7.5 shows the overhead of Symphony, i.e., the time taken by the scheduler itself,

normalized to the overhead for a 3 node heterogeneous cluster executing four applications.

We see that it scales nearly linearly (with a small slope) as the number of worker nodes

and applications increase. The four corners of the 3-D plot represent: (i) 3-node cluster

with four applications; (ii) 3-node cluster with 18 applications; (iii) 16-node cluster with

four applications; and (iv) 16-node cluster with 18 applications. The scheduler takes longest



7.5 Chapter Summary 133

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e
la

ti
v
e
 M

a
n
a
g
e
r 

O
v
e
rh

e
a
d

p
e
r 

It
e
ra

ti
o
n

Number of Workers

Figure 7.6 Symphony overhead with increasing workers (diagonal from Figure 7.5).

when both the number of cluster nodes as well as the number of concurrent applications

are high. However, the running time of Symphony at 16 cluster nodes with 18 concurrent

applications is only 22% larger than the base case of 3 cluster nodes with four applications.

The marginal increase and Symphony’s scalability is apparent from Figure 7.6 (the diagonal

from Figure 7.5), which shows the overhead versus cluster size where a cluster with m nodes

hosts m+ 1 applications.

7.5 Chapter Summary

In this chapter, we enhance our framework by designing Symphony, a cluster-level hetero-

geneous resource scheduler, that takes into consideration the required performance require-

ments of individual applications while making the scheduling decisions. Symphony enables

efficient sharing of heterogeneous resources between concurrently executing multiple applica-

tions with strict performance requirements in a multi-tenant environment. It computes the

priority of issuing the user requests for each application, and reorders them based on their

performance requirements and associated deadlines. Our evaluation using enterprise-scale

applications under varying load conditions shows that compared to the traditional schedulers,

specifically FCFS and EDF, Symphony significantly reduce the number of user requests that

do not meet the desired performance requirements. Furthermore, Symphony is scalable and

provides efficient sharing of heterogeneous resources with better cluster utilization compared

to the traditional resource scheduling mechanisms.
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Conclusions

This dissertation presents the design of an adaptive framework for managing accelerator-

based heterogeneous many-core clusters for data-intensive computing. The framework ad-

dresses the challenges of designing intuitive programming models, and developing efficient

resource scheduling mechanisms for large-scale asymmetric clusters comprising of heteroge-

neous accelerator-based compute nodes with varying I/O and compute capabilities. The

use of the proposed framework reduces the time-to-solution for modern applications, and

improves the performance of the asymmetric clusters by avoiding I/O and computational

stalls at the heterogeneous resources. It schedules the applications on the available resources

based on the desired performance requirements of individual application and the computa-

tional capabilities of asymmetric nodes. Furthermore, the framework provides energy- and

QoS-aware resource scheduling mechanisms to yield maximum benefits from the available

heterogeneous resources.

Our extended MapReduce-based programming model, CellMR, provides an intuitive pro-

gramming framework for heterogeneous clusters of asymmetric multicores, such as IBM

Cell, and computational accelerators, such as programmable GPUs, coupled with conven-

tional general-purpose multicores in a distributed setting. CellMR relies on a streaming

approach and dynamic data distribution techniques to implement an architecture-agnostic,

yet scalable programming model for asymmetric distributed clusters, featuring accelerators

at their compute nodes. It preserves the simple, portable, and fault-tolerant programming

interface of MapReduce, while exploiting multiple interconnected computational accelerators

for HPC. The framework also provides dynamic schemes for memory management and work

allocation, so as to best adapt work and data distribution to the relative computation den-

sity of the application and to the variability of computational and storage capacities across

asymmetric components. The proposed dynamic data distribution schemes enable higher

134
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performance and better utilization of the available memory resources, which in turn helps

economizing on capacity planning for large cluster installations.

We also investigate an advanced software engineering approach to building software for the

accelerator-based heterogeneous clusters. Our approach adopts the well-established layered

software architecture implemented as mixin-layers. Applying this approach not only achieves

the required high performance, but also enables the reuse of the majority of the code, when

types, number, or hierarchy of accelerators is changed. The evaluation of mixin-layers based

reusable software components indicates that our approach enables effective reuse at the

software component granularity, which can reduce the time-to-solution metrics for creat-

ing accelerator-based heterogeneous clusters. Currently, leveraging these resources for HPC

requires the effort and expertise commensurate to that of a seasoned computer scientist.

However, the ability to build software for these resources from reusable software components

has the potential to lower the barrier-to-entry for accelerator-based clusters, making them

accessible to researchers from a myriad of scientific and engineering fields.

We research prefetching techniques for supporting data-intensive applications on the IBM

Cell multiprocessor, and observe that the current operating system facilities for performing

I/O directly on accelerator cores (SPEs) are limited, and do not provide judicious use of the

available resources. A particular concern is that currently, I/O on SPEs is redirected to the

PPE, hence creating a central bottleneck. We present an asynchronous prefetching-based

approach that partially breaks up this bottleneck, utilizes decentralized DMA to achieve

(22.2%) better performance compared to the case where all I/O is handled at the SPE.

We also present system design alternatives and capabilities-aware task scheduling for large-

scale data processing on accelerator-based distributed systems. We enhanced CellMR with

runtime support for utilizing multiple types of computational accelerators via runtime

workload adaptation and for adaptively mapping MapReduce workloads to accelerators in

virtualized execution environments where applications are distributed in space and time

on shared resources. We find that adaptively matching application execution properties to

the computational capabilities of accelerators significantly improves (up to 26.9%) system

performance compared to the static workload distribution techniques.

Our energy-aware resource management module provides a power manager that finds the

optimal cluster configuration for a given workload and then goes on to maximize the work

done per watt by dynamically assigning P-states and S-states to the cluster nodes based
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on the current application request rate. We find that the composition of a cluster, i.e., the

decision of whether or not a cluster should be heterogeneous and if so what the optimal

configuration should be, depends on the characteristics of the workload and the capabilities

of the heterogeneous nodes. We automate the process of finding the optimal cluster con-

figurations as part of our power manager that generates the policy that yields maximum

energy savings. The generated policy suggests the appropriate use of cluster-level DVFS

and standby mode. Although the relative gains from DVFS were found to be small (3-6%

in our setup), it might translate to a few hundred thousand dollars per year for a large-scale

cluster. As compared to the baseline, our generated policy shows significant energy savings

(28.6%) for the generated workload.

Finally, to support executing multiple concurrent applications with strict performance re-

quirements on a heterogeneous cluster in a typical cloud computing environment, we present

a novel priority based scheduler, called Symphony, that is characterized by three key at-

tributes. First, it continuously monitors the load on each application. Second, it collects

past performance data and dynamically builds simple performance models of the available

heterogeneous processing resources. Third, it computes a priority for pending requests based

not only on the user-specified parameters about the application but also on the information

inferred from its performance models. Symphony is largely immune to load spikes and main-

tains acceptable response times despite fairly large load variations, and incurs (2−20×) fewer

requests that do not meet the performance requirements compared with other schedulers.

Furthermore, our approach reveals that a QoS-aware resource scheduler can be effectively

used to significantly reduce the number of compute nodes in a heterogeneous cluster with-

out sacrificing the system performance. Specifically, in order to match the performance of

Symphony, other schedulers need (2×) more cluster nodes.

8.1 Future Research

Heterogeneous computing is a norm and large-scale heterogeneous systems are the future.

The framework presented in this dissertation addresses the challenges of programming and

managing many-core heterogeneous clusters comprising commodity accelerators. However,

there remain several barriers to the efficient use of such clusters by the community at large. In

the following, we discuss few research projects that are natural extensions of the framework

presented in this dissertation.
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8.1.1 Generic Programming Models for Heterogeneous Systems

Fully leveraging the parallelism opportunities offered by heterogeneous architectures poses

new challenges which brings into question conventional programming models and abstrac-

tions for designing large-scale systems. In this dissertation, we have explored how high-level

programming languages can be used efficiently to develop reusable components and middle-

wares for heterogeneous clusters. However, automatic parallelization of sequential programs

to exploit the inherent parallelism offered by the next generation architectures remains an

open issue. We plan to investigate innovative compiler techniques to automatically paral-

lelize and optimize the code generation for heterogeneous systems. Furthermore, we intend

to leverage the lessons learned from developing an extended MapReduce model to design

more generic programming models for accelerator-based distributed systems.

8.1.2 Inter-Application Interference-Aware Resource Scheduling

The framework presented in this dissertation provides power-aware and QoS-aware resource

scheduling mechanisms for heterogeneous clusters. However, in a multi-tenant accelerator-

based heterogeneous cluster, it is critical to schedule concurrent applications that have

minimum contentions for the same accelerator resources on the same compute node to im-

prove the overall system performance. If the applications having similar resource access

patterns are scheduled on the same compute node, then while one application is utilizing the

accelerator, the others would stall and wait for their share in time and space for the occupied

accelerator resources. This would result in reduced system throughput and may violate the

essential QoS requirements for critical applications. We plan to extend the resource schedul-

ing mechanisms presented in this work, and design an inter-application interference-aware

resource scheduling mechanism that executes the applications with contentions for the same

accelerator resources on separate compute nodes to increase the concurrency and improve

the utilization of heterogeneous cluster.

8.1.3 Virtualizing Computational Accelerators

The use of emerging accelerators and asymmetric multicores in data centers is critical for

providing high-performance with reduced setup and energy costs. Data centers typically

provide virtual machine containers that host dedicated applications for individual users in a

secure environment. A critical issue in enabling the use of powerful accelerators and asym-
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metric multicores for enterprise computing is the lack of virtualization support for these

architectures. We intend to investigate how emerging accelerators and asymmetric multi-

cores can be used efficiently in a virtualized setup and develop new computational models

and runtime frameworks to enable the use of these architectures in secure and cost-efficient

environments.

8.1.4 Supporting Operating System Operations

Emerging heterogeneous and asymmetric parallel architectures pose new research venues for

improving the performance of traditional operating systems while providing challenging op-

portunities to design next generation operating systems. The current state of the art does

not support executing operating system services on these massively parallel architectures,

hence limiting their use to improve the performance of user applications only. We intend

to investigate the design of next generation operating systems services that can leverage

the degree of parallelism, execution models and memory bandwidth offered by asymmetric

multicore and many-core processors to improve the overall system performance.
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[69] Christian Dick, Jens Schneider, and Rüdiger Westermann. Efficient geometry com-
pression for gpu-based decoding in realtime terrain rendering. Comput. Graph. Forum,
28(1):67–83, 2009.

[70] Yotam Livny, Zvi Kogan, and Jihad El-Sana. Seamless patches for gpu-based terrain
rendering. Vis. Comput., 25(3):197–208, 2009.

[71] J. Schneider, J. Georgii, and R. Westermann. Interactive geometry decals. In Proceed-
ings of Vision, Modeling, and Visualization 2008, 2009.

[72] Alexander Kohn, Jan Klein, Florian Weiler, and Heinz-Otto Peitgen. A gpu-based
fiber tracking framework using geometry shaders. volume 7261, page 72611J. SPIE,
2009.

[73] Adarsh Krishnamurthy, Rahul Khardekar, Sara McMains, Kirk Haller, and Gershon
Elber. Performing efficient nurbs modeling operations on the gpu. IEEE Transactions
on Visualization and Computer Graphics, 15:530–543, 2009.

[74] Alan Chu, Chi-Wing Fu, Andrew Hanson, and Pheng-Ann Heng. Gl4d: A gpu-based
architecture for interactive 4d visualization. IEEE Transactions on Visualization and
Computer Graphics, 15:1587–1594, 2009.

[75] J. Kruger and R. Westermann. Acceleration techniques for gpu-based volume render-
ing. In VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), page 38,
Washington, DC, USA, 2003. IEEE Computer Society.

[76] John Paul Walters, Vidyananth Balu, Suryaprakash Kompalli, and Vipin Chaudhary.
Evaluating the use of gpus in liver image segmentation and hmmer database searches.
In IPDPS’09: Proceedings of the 2009 IEEE International Symposium on Parallel
& Distributed Processing, pages 1–12, Washington, DC, USA, 2009. IEEE Computer
Society.



Bibliography 146

[77] Wen-mei W. Hwu, Deepthi Nandakumar, Justin Haldar, Ian C. Atkinson, Brad Sutton,
Zhi-Pei Liang, and Keith R. Thulborn. Accelerating mr image reconstruction on gpus.
In ISBI’09: Proceedings of the Sixth IEEE international conference on Symposium on
Biomedical Imaging, pages 1283–1286, Piscataway, NJ, USA, 2009. IEEE Press.

[78] Maraike Schellmann, Sergei Gorlatch, Dominik Meiländer, Thomas Kösters, Klaus
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