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RADAR AMBIGUITY FUNCTIONS AND GROUP THEORY*

L. AUSLANDER" AND R. TOLIMIERI

Abstract. P. M. Woodward in the early 1950’s introduced a mapping from a radar signal f to a function
of two variables W(f), called the ambiguity function, that plays a central role in the radar design problem.
We may think of W as a nonlinear operator from L (R) into L (R 2). The description of the range of 14" has
been an open problem. This paper provides, in terms of special functions in L2() and L2( 2) a fairly
complete description of W(L2()). We show also that W(L2()) is a closed subset of L2(R 2) and if
W(f)+ W(g)= W(h),f,g,hL2() thenf=A,g, a constant.

1. Introduction. Because radar computations are not familiar to the general
mathematical community, we have begun this introduction with a brief simplified
version of how ambiguity functions are used in radar computations. We will follow this
with the familiar listing of what we consider our important new results.

Let X1,--.,XN be N objects or targets and assume the radar is at the origin. Let
.(t), j= 1,-..,N, denote the range (distance from the,origin) of X. and vj(t) denotes
the velocity of X at time t. The problem is to transmit an electromagnetic wave or pulse
for T< < T and from the echo determine the quantities .(0) and vj(0), j= 1,. .,N.
Let s(t) denote the pulse, where s(t) is real valued, and let e(t) denote the echo.

We will now briefly outline how information is extracted from e(t). The computa-
tional process depends on a "representation" of s(t) and some simplifying assump-
tions. The first step is to pass from the pulse to a complex valued function (represen-
tation) called the waveform of the pulse. If g(t) L2(R) we will use (f) to denote the
Fourier transform of g and call the variable f, frequency. Because s(t) is real valued we
have

(-f) =*(f)

where we will (following electrical engineering notation) use * to denote the complex
conjugate. Hence s(t) is completely determined by its positive spectrum. Define

xI,s(t) (f)e:Ziftdf.

Then

s(t)=s(t)+it(t)

where a is the Hilbert transform of s. Explicitly, using principal part integrals,
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Using IIql,f L2(R), to denote the norm off, we have

Ilq’ (t) =-- 2lls(t)II =.
It is customary to call [Eli] 2 the "energy" of the signal f. For the rest of the motivational
discussion we will assume II,t,(t)ll --- 1, to--f_ tlW(t)l-dt < o and

fo fl(t)ldf< o.

It is usual to call o the epoch and f0 the carrier frequency.
DEFINITION. The waveform u(t)of the pulse s(t) is defined by

Us(t) xIZs ( -1- to ) e 2rif(t+ t).

It follows that s(t)= Re{ q(t)} Re{ u(t- to)erift}, where Re{. } denotes the
real part of the function in the bracket, and Ilu(t)llZ- 1. The function Us(t ) is "slowly
varying" in the sense that its spectrum is centered about the 0-frequency.

We would like the echo e(t) to be "as much like" s(t) as possible. If we have one
target and the physical assumptions listed later are satisfied then

e( ) Re( e-2rifXus( t- o- xo)e 2ri(f-y)t } Re(XlZe(t))
where Xo=(2/c)rl(O), yo=(2fo/c)vl(O) and c is the velocity of light. Hence for one
target

Xo time delay of the echo,

Yo doppler or frequency shift of echo

completely determine rl(0) and /)1(0). One estimates x0, Y0 by the following method
originally suggested by P. M. Woodward [W] and motivated by probabilistic considera-
tions. Consider

xy ( ) e- 2riyXus ( O- x e- :Zriyte 2rift

and form

I(x,y)= 12[
because [[u(t)l[---I,I(xo,Yo) 1 and I(x,y)<= 1 for all x,y. Thus if we plot l(x,y) by
light intensity on a screen the brightest point should be (xo,Yo) and so we can
determine rl(0) and o1(0) or the range and velocity of the target. It is crucial for us to
observe that

I(x,y)= IAu(xo-x,yo-y)[
where

Au(x,y)= u t-- u* t+ e dt.

We will now list our physical assumptions and then state the results for several
targets.
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Physical assumptions.
1. Radar cross sections of targets are independent of frequency.
2. All targets are in the far field of the radar.
3. Multiple reflecting waves among the targets are negligible.
4. The functions )(t),j 1,-..,N are approximately linear for T< < T.
5. The velocity of the targets is small compared to the speed of electromagnetic

propagation.
Then from several targets we have approximately I(x,y)=MlAu(x x,yl-y)l 2

+ + M2ulAu(xN x,yN-y)l 2 where the M depend on the range and the radar cross
sections of the targets.

Actually I(x,y) does not determine the number of targets, their range or velocity
uniquely and, of course, I(x,y) depends on the form of Au(x,y ). Because of this
Au(x,y) is called the ambiguity function of radar.

Woodward concludes his fundamental book [W] published in 1953 with the follow-
ing paragraph. (We have changed notation, but nothing else, to fit with our conven-
tions.)

The reader may feel some disappointment, not unshared by the writer, that the basic question of
what to transmit (choice of s) remains unanswered. One might have hoped that practical
requirements of range and velocity resolution in any particular problem could be sketched in an
x-y diagram and the waveform u(t) then calculated to satisfy the requirements. It seems that this is
not possible because the form of IAu(x,y)l cannot be arbitrarily chosen. The precise nature of the
restrictions which must be placed in IA,(x,y)l has not been fully investigated.

Calvin H. Wilcox [W1] in 1960 took up the detailed study of ambiguity functions
and called the problem posed above by Woodward the "synthesis problem of radar
design." Wilcox used only Abelian harmonic analysis in his work. However, it turns out
that there is a great deal to be gained by using the representation theory of the
Heisenberg group and considering ambiguity functions as special functions on the
Heisenberg group. This is not surprising because of the radar uncertainty principle and
the deep relation between the Heisenberg group and the Heisenberg uncertainty princi-
ple (see [Wg] and [Wyl]). The desire to use the non-Abelian results forces us to operate
in a slightly more general setting then Wilcox and so we will have to give slightly
different treatments of many of his results.

We will now introduce notation that we will follow for the rest of this paper. It is
intentionally slightly different from that used up to now.

If (f,g) denotes the usual inner product of functionsf,g L2(R), defined by

(f,g)=ff(t)g*(t)dt,
then we can write

(1) (f)(u,v)= f t- f* t+ e

as

(2) (f)(u,v)= f t-- e e
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For F(u, v) and G(u, v) we define

and IIFII= (F,F):. We will use L(R) to denote the above Hilbert space of square
summable functions on -.

We can now state two results from the paper.
TrIEOmM A. The set of ambiguity functions (, fL2(R), is a closed subset of

L2(R 2).
TrIEOREM B. For f, gL-() let ’( and ’(g) be the corresponding ambiguity

functions. ThenQ)+.’(g) is an ambiguity function if and only iff= ,g, a constant.
The last part of this paper is devoted to ways of describing all ambiguity functions.

In order to state some of these results we will need the following definition.
DEFINITION. LetfL2() and define

fab e g-"btf( + a ) a b Z

and let " denote the set (fabla, b7/}. We will say that f generates an L2-basis of
L2() if L2() is the closure of linear combinations of elements of o-, but no proper
subset of" has this property.

Theorem 6 of 4, due to R. Sacksteder, gives necessary and sufficient conditions
for f L2(R) to generate an L2-basis.

THEOaM C. LetfL2() generate an L2-basis. The set of ambiguity functions is the
closure in L ( 2) of the set offunctions

Y’. a(a,b)a*(c,d)K(a,b,c,d)A(f)(u+c-a,o+d-b),
a,b,c,d.

where

K( a, b, c, d ) ( 1)(a+ c)(b+ d) e_ri[<b+ d)u-(a+ c)v]

and a(a, b) is a function on 7I 71 taking a finite number of nonzero values.
The importance of Theorem C can perhaps best be illuminated by the following

special case.
Let

1

r(t)= 2’
1

0,

and let rab=e2ribtr(t+a), a,b71, then the set {rabla, b71 } is an orthonormal basis
of L2() and

sin(fro(1- [ul) )
a(r)= rv

0,

{ul<l,
otherwise.

THEOREM D. Let 1 be the set of complex valuedfunctions a on 71 71 such that
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Then the set of all ambiguity functions is given by

F(t)(u,v)= E a(a,b)a*(c,d)K(a,b,c,d)A(r)(u+c-a,v+d-b)
a,b,c,d.

where K(a,b,c,d) is defined in Theorem C and a. Further, iff=Ea,bZa(a,b)rab,
then oq’(f)( u, v) F(a)( u, v ).

Thus we can describe the set of all ambiguity functions in terms of well-known
functions.

Several theorems will be given different proofs. The techniques used in 2 will
probably be accessible to most readers, as they require only the most basic results from
Abelian harmonic analysis. Orthonormal bases play an important role, especially in the
proofs of Theorems A and B, and essentially, translate the problem under considera-
tion, into a problem of infinite matrices satisfying certain conditions (see the discussion
following Theorem 2.4). The inversion formula, given in Lemma 2.2, is the main tool in
earlier parts of the section and could be applied to prove these results, as well, Theorem
C is about a special kind of orthonormal bases.

In [}3, ideas arising from unitary representation theory of the Heisenberg group are
applied to the study of ambiguity functions. The definitions and results stated at this
point can be discussed within the framework of locally compact groups, but we wifl not
do so.

Equally powerful and related ideas can be introduced from the theory of
Hilbert-Schmidt operators. Certain of these ideas have been previously considered in
[W1] and [S] and applied to the problem of synthesizing ambiguity functions which best
approximate, in the L2-norm, a given function in L2(2). This theory will play no
direct part in this work.

An interesting aspect of ambiguity theory is that it finds itself within the scope of
several mathematical disciplines. However, it should be emphasized, that radar theory
and more generally image processing create special classes of problems not usually
encountered in these general mathematical theories.

2. Ambiguity functions. The elementary properties of ambiguity functions will be
established in this section using methods of Abelian harmonic analysis. Our main
reference will be [K].

Consider f, g LI(R) and define

i’(f,g)(u,o)= f t-- g* t+- e- dt.

We call ’(f, g) the cross-ambiguity function of f with g. The ambiguity function e’(f)
off is given by

A closely related expression ,g) is sometimes also called the cross-ambiguity
function off with g and for some puwoses is easier to work with. Set

(f,g)eio (f,g).

A simple change of variables argument shows that we can write

t(f,g)(u,v)= f f(t)g*(t+u)e-2tdt.
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In this paper we will study (f,g), but to avoid confusion we will only call
’(f, g) the cross-ambiguity function of f with g.

There are two obvious ways to consider (f,g). The first begins by setting

h(u,t)=f(t)g*(t+u)

and viewing h(u, t) as a family of functions in t, parameterized by u. In general, if
F(x,y) is any function of two variables x and y, for any fixed x R, we set

F(y)=F(x,y)

and consider F as a function of y. Using this notation, we can write

(f,g)u(V)=h,(v).

The behavior of h(u, t) determines to a large extent the behavior of ’ (f, g). The
following elementary result provides the necessary information upon which a great deal
of ambiguity function theory rests.

LMM 2.1. Forf, g L9_(), the function h ( u, ) f( )g*( + u) is in L ( ) and

2

Proof. By Fubini’s theorem and the positivity of Ih(u,t)l

ff Ih(u,t)[:zdudt= f If Ih(u,t)12du] dt

But

f Ig*(t + u)l
2
du Ilgll Vt.

Hence

Ilhll== Ilgll=f If( t)l = dr= Ilgll=llfll.
LEMMA 2.1’. Let fl, f2, gl, g_ L() and let

hl(U,t)=fl(t)g(t+ u),
h.( u,t) =f2(t)g(t + u).

Then (h,h2)2= (f,f2)(g2,gx).
Proof. Formally

g hl(U,t)h’(u,t)dtldt-- f If hx(u,t)h’(u,t)du] dt

f fl(t)f’(t)[f g(t-l-U)g2(’-]-U)du] dt.

But fg(t + u)gg_(t + u)du= (gg.,g2) all t. And so Lemma 2.1’ follows.
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To make this rigorous, note that if

ff Ihx(u,t)h(u,t)l dudt<

then we may replace the double integral with the iterated integral in any order. But, if
hi; h2L2(R2), so are Ihl, Ih21, and we know that the dot product (Ihl, lh21)2
Thus our formal manipulations are legitimate.

It follows, also by Fubini’s theorem, that for almost every u R, the function
huL2(l). Since h is the product of two L2() functions, it is in L2() by the
Schwarz inequality. The formula

implies that (f,g)u is the Fourier transform of huLI(R)NL2(R). By standard
Abelian harmonic analysis (see [K]) we have the following corollary.

COROLLARY. Let C(R) denote the continuous functions on . For almost every u ,
(f,g)u(O)

and

lim (f,g)u(o)=O.

THEOREM 2.1. g (f,g) L2( 2), wheneverf, g L2(I). Moreover,

I1 (f, g)I1-= Ilfll:llgll =.
Proof. By Fubini’s theorem,

II(f,g)ll"= f [f [h,,(v)l:zdv

which by the Plancherel theorem becomes

: [: ".

THEOREM 2.1’. Let fl, f2, gl, g. L2() Then

( (fl, gl), (rE, g2)) 2 (fl,f2) g2,gl).

Proof. Since (f,,g), a=l,2 are in L-(N 2) so are I(f=,g) and so we may
apply Fubini’s theorem and write

ff ’ (fl,gl)...*(f2,g2) dudo f f hlu(o)hlu(v)dv du

The following "inversion" formulas provide important tools for the further study
of (f,g).
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LEMMA 2.2. For any f, g L2(R).

f(t)g*(t+u)= f (f,g)(u,o)e2itdv,

f(t)(x)*e-2it= (f,g)(x,t),

for almost every ( u, t) 2 and almost every (x, t) 2, where denotes the inverse
Fourier transform in L2( 2 ).

Proof. Since for almost every u, (f,g)u L2(R) we can apply the inverse Fourier
transform to (f, g)u, in the sense given by the Plancherel theorem. Thus, for almost
every u, the first formula holds, for almost every t. By Fubini’s theorem, applied to the
characteristic function of the set of (u, t) 2 for which the first formula does not hold,
we get that it holds except on a set in R 2 of measure zero.

To prove the second formula, take the inverse Fourier transform of the first
formula with respect to the u variable.

Let ’ (f)= (f,f). Then

.(f)(-u,-v)= f f(t)f*(t-u)eg-"tdt.

Let s t- u. Then

q)(-u, -o)= f f(s+ u)f*(s)e2"’s+Uds=e2’ri (f)*(u,v).

Now consider the change of variables

z=t+u, t=t.

and let H(t, -) =f(t)f*(). Then

H(t,’)= f (f)(z-t,o)e2""dv and H*(t,-)= f (f)*(r-t,v)e-Z"tdv.

Using formula (**) we have

f  (f)(t-$,-o)e-2CritVe-2 ri(’-t)Vdo=n(q-,t).

Consider the mapping U: ’ (f)(u, v) H(t, ). This has the property that it is 1 to
1 and norm preserving. Further the H(t,) are easily seen to satisfy the functional
equations

1. H*(t,z)=H(z,t),
2. H(t,t)>=O,
3. H(IL I)H(t, z)= H(t,I)H(IL z).
THEOREM 2.2. Let F(t,z)L2(R 2) and satisfy equations 1,2 and 3 above. Then

there exists a (f) such that U(. (f))= F( t, ).
Proof. Equations 1 and 3 combine to yield

F(t,t)F(l,l)= IF(t,6)l.
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By hypothesis, F(t,)L2(R 2) and so

ff F(t,t)F(ld,ld) dtdld= ff IF(t,Cs)lEdtdld
2

IIF(t, )[1. <

Since F(t, t) >__ 0, we may apply Fubini’s theorem to conclude that

F(t,t)dt IIF(t,)l122>__0.

The only interesting case is when IIF(t,)ll2>0 and so there exists o such that
F(o,o)> 0 and F(t, lio)L2([).

Definef(t)= F(t, lio)/(F(o,g:o))/2. Then

f(t)f*()=F(t,).

It is clear that U( (f))= F(t,) and so we have proven our theorem.
Consider the mapping

It is clearly bilinear.
THEOIM 2.3. is continuous and the image of spans a dense subspace ofL2( 2).
Proof. If f,f and g,g in L2(R) then, by the continuity of the Fourier trans-

form . in L2(R) and

f(Y)(x)*e-2"ixy f(y)(x)*e-2’y

in L2(R 2). Lena 2 implies

(f,,g,)o(f,g)

in L() and hence, is continuous where denotes the inverse Fourier transform in
L2( 2).

Suppose FL(2) is orthogonal to the span of the image of . Then,
(x,y)ey is orthogonal to the span of the space of all products f(y)*(x) wch is
known to be dense in L2( 2). It follows F 0 and the theorem is proved.

COROLLARY. The collection offunctions (,fL(), spans a dense subspace of

Proof. SupposeFL() is orthogonal to eve (,fL(). Then, since

(f+g)=)+(f,g)+ (g,f)+ (g),

we have F orthogonal to ,g)+ (g,D. Also, since

(f+ ig)= (f)+i (g,f)-i(f,g)+ (g)

we have F orthogonal to (g,-,g). Thus, Fis orthogonal to ,g),f,gL(),
and by the theorem is zero almost evehere.

The function ,g) can also be viewed as a cross-correlation. For fixed v , set

Go(t)=g(t)e2"t.
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Form the cross-correlationf G defined by

fo Go(u)= f f(t)G*o (u+ t)dt.

and upon writing out the integral, observe that. (f,g)( u, o) e2=iuf Go(u ).

LEMMA 2.3. (f, g)(u, V) e 2riuo (f, )( V, U).
Proof. Since

gd (f,g)( u, v) e2i"v(f( t), Go(u+

it follows that

But

(f,g)(u,o)=e"’uo(f, Go(u+

f g(u+ t)e2 riVte-2 ritXdt=e-2"iUe2 riux (x-v)

which proves the lemma.
COROLLARY. i(X)(X-- 0)* f , (f,g)(u, v)e2iu(x-) du.
We will now show (f, g) is continuous. The first step is the next lemma.
LEMMA 2.4. lff, fand g, g in L2(R) then

(f.,g.)-o(f,g)

uniformly over g 2.
Proof. (R. Sacksteder independently suggested this proof to one of the authors.)

Set ,(u,o)=g(f,g)(u,v)-g(f,,g,)(u,o). Then

f ((f(t)-f(t))g*(t+u)+f.(t)(g*(t+u)-g*(t+u)))e-"iOtdt

and by the Schwarz inequality,

( u, <,)1=< IIf-LII Ilgll+ IILII IIg gnll"

The lemma follows.
THEOREM 2.4. ,g) is a continuous boundedfunction which achieves its maximum

(f g) at the origin.
Proof. The Schwarz inequality proves everything except for the continuity. By the

preceding theorem it is sufficient to prove continuity for f and g taken from a dense
subspace of L2(R). The set of functions

( e -r(t+r)z" F)

spans a dense subspace of L2(). Takingf and g from this span it is easy to see that we
are done once we show

q ( e-rt2, e-r(t+r)2 )
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is continuous, for all r. But,

/ -r/2(u+ r)2e-Cr/2 ri(r+ u)v-rt2, e -r(t+ r)2 ) "e 2e

which is clearly continuous.
Let de; be an orthonormal basis of L2(R). Then the set of functions qik (dei,dek),

i,k. is orthonormal by Lemma 1’ and complete by Theorem 3. Now f(t)L2(R)
can be written as

f(t)= E aidei,

Similarly, F(u, v) L2(R 2) can be written as

F(u,v)= E Cmnlmn
m,n.

Now consider (f) Lg-(R 2). Then if

m, n 71

ffCmn-- (f) mndudo,

; (f) ZCmnlmn

By Lemma 2.1’

Cmn f ’m)f den)* ama*
Conversely, if Cm, ama*n then f= _,amdem L2() and H( t, r)=f( )f()* satisfies

the hypothesis of Theorem 2.2. Hence F(u,v) L2(R 2) is an ambiguity function if and
only if Cm, amn.

COROLLARY. Let F(u,o)L2(R 2) and F=.m,nzCmnmn. Then F(u,v) is an am-
* and >Oallm, n k7]biguity function if and only if CkkCm, CmkCkn, C,,, Cmm Ckk

TrlEOREa A. The set of ambiguity functions is a closed subset ofL2( 2).
Proof. Let F(u,v) be the limit of sequence of ambiguity functions (f), i=

1,- .,n- ... Let

Cmn(i)-’((fi),mn)2,
cmn=(F,mn)2

Hence for each i, Cmn(i) satisfy the conditions in the above corollary. Since limi_
(f)= F, we have for all m, nlim+ Cmn(i)--Cmn. Hence the Cm, satisfy the equations of
the above corollary and F is an ambiguity function.

THEOREM B. For f, gL2(R) let (f) and l (g) be the corresponding ambiguity
functions. Then (f)+(g) is an ambiguity function if and only iff= Xg, X a constant.

Now consider (f) and (cf) where c is a constant. Then by direct computation

Now let f, gL2(R) and consider (f)+ (g). If

(/)= ] al(a,b,c,d)Vabcd, . (g) Y a_(a,b,c,d)Fabcd.
a,b,c,d, a,b,c,dZ
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Then

(f)+(g)= E [al(a,b,c,d)+a2(a,b,c,d)]F,bd.
a,b,c,d.

Now assume that (f)+ (g) is an ambiguity function. Then the corollary to
Theorem 2.4 implies that

(2.1)
al(r’s’r’s)a2(a’b’c’d)+a(a’b’c’d)a2(r’s’r’s)

=a(r,s,c,d)a(a,b,r,s)+a(a,b,r,s)a2(r,s,c,d).

Because ’ (f) and (g) are ambiguity functions, we know that

ax(a,b,c,d)=aa(a,b)a(c,d),

Hence we can rewrite (2.1) as

X ( r,S )OI.( r,S )cx2(a,b)a ( c, d ) +Ol(a,b)a(c,d)o[2(r,s)ol ( r,s )
(2.2)

Assumefis not the zero function, then al(ro, So)qO for some r0 and s0. It is easy to see
that there is no loss in generality in assuming that al(0, 0)=# 0. Then setting v s 0 in
(2.2) we obtain

[oq(O,O)a2(a,b)-a2(O,O)al(a,b)] [ot’(O,O)a’(c,d)-a’(O,O)a’(c,d)] =0;

this implies that

01(0 0).2(a.b) a: (0.0).l(a.b)
or

a:(a,b)=ll(-0) al(a,b), foralla, bZ.

Thus if c a2(0, 0)/%(0, 0) we have

g=cf

This proves our assertion.
THEOREM 2.5. Let f, g L2(R) and assume

(f)=(g).

Then f= c g almost everywhere, where c is a constant and Icl- 1.
Proof. By Lemma 2.2.

f(y)f(x)* =g(y)#,(x)*
for almost all (x,y) . If f does not vanish on a set of positive measure, then for
some Y0 we havef(Y0): 0 and

f( Yo)f(x)* g(yo) ’(x)*
holds for almost every x. Thus, there is a constant c= g(Yo)*/f(Yo)* such that

f(y)=cog(y),
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for almost every y. The constant must have modulus one since M(f)= (g).
If f vanishes almost everywhere that (f)=0 and g(y)=,(x)*=O almost every-

where in (x,y) I 3. It is easy to see that g(y)= 0 almost everywhere.
The same argument proves the following.
COROLLARY. For f, g L2(I), if (f,g)=0 then f=0 almost everywhere or g=0

almost everywhere.
We will return now to the ambiguity functions (f) and denote by the

collection of all ambiguity functions.
Let SL(2,) denote the group of all 2 2 real matrices of determinant one, acting

on by the rule

where

T( u, v) ( au + bv,cu + dv)

As a group SL(2, R) is generated by the following matrices:

j=[ 0 1
-1 0 t(a)=

To see this for c > 0, write

a 1’
aR, m(b)= 0 1/b

a b =t J-lm(c)t
c d c c

b>O.

We will now state how SL(2,) acts on.
THEOREM 2.6. is invariant under the action of SL(2, ), and
1. at(f) J =a/(f),
2. a(f) t(a)=a/(g) where g(t)=e"ia?f(t),
3.’( m(b)=.’(h) where h(t)=f(bt).
Proof. Statement 1 follows from Lemma 2.3. The last two statements can easily be

proved by direct substitution.

3. Ambiguity lunctions and the Heisenberg group. In this section, we will work
with the ambiguity functions (f). A unitary operator on L2() is a linear mapping U
of L() satisfying

( Uf Ug)=(f,g),

for all f, g L:(). The collection of all unitary operators U on La() forms a group
under composition which will be denoted by . An implication of the Plancherel
theorem is that the Fourier transform, denoted byo, is a unitary operator on L:().

The following two unitary operators on L:(R) play an important role in Abelian
harmonic analysis and hence, the development of the theory of the ambiguity function
given in the preceding section.

Forf La() and a, set

(S(a)f )(t)=f(t+a), t,

(M(a)f)(t)=e"tf(t), t,

and observe that the mappings S(a) and M(a) are unitary operators of L().
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Consider, now, S: R q/and M: R q/as mappings from R into q/. We set

=S(), /=(),
and call the shift operators and ’ the multiplication operators. Both and ’ are
subgroups of @ and in fact, we have the following lemma.

LEMM 3.1. S andM are group isomorphisms of into .
Proof. Immediate from the definition.
The reason that non-Abelian group theory enters into the study of ambiguity

functions is contained in the next result.
LEMMA 3.2. M(o)S(u)=e-giuS(u)M(o).
Proof. Forf L:(R),

( M( o)S(u)f)(t) e2i’( S( u)f )(t) e:itf(t + u),
( S( u ) M( o )f )( ) ( M( o )f )( + u) e:io(t+u)f( + u ),

which verifies the truth of the lemma.
Thus, the operators M(o) and S(u) do not commute. Ts observation is the

mathematical basis for the introduction of the Heisenberg group in quantum mechanics
and is an expression of the uncertainty principal. We will now define the Heisenberg
group and study its implications in ambiguity function theory.

Let I denote the identity operator on L:() and set

c(x)=xz, x c,
Then, C(X) is a unitary operator and the mapping

C" C(a)(()) ,
where C(1) denotes the multiplicative group of complex numbers of modulus 1, is a
group monomosm. We set equal to the range of C.

Clearly, is a subgroup of and is, in fact, the center of @.
Let

denote the set of operators of the form

C(X)M(b)S(a), IXI=I, a, b.

TaEOgEM 3.1. is a subgroup of.
Proof. By Lemma 3.2, we can write

C(X)M(b)S(a)C(X2)M(b2)S(a:)
C( X )C( X 2 )C( e 2iaxb ) M( b ) M( b2 ) S(a) S( a: ),

wch by Lemma 3.1, becomes

C(XxX2 e2iaxb:)M(bl+b2)S(a +a2).

Thus, the product of two operators in is again in.
It follows that

I C(Xx) M(bx)S(al)C(xg)M(- b)S(- al)
if and only if X X{e:ial bl and hence, the inverse of an operator in is again in.



RADAR AMBIGUITY FUNCTIONS AND GROUP THEORY 591

An alternate definition of can be taken to be the group generated by/’ and
is sometimes called the Heisenberg group, however, we will reserve this term for

the abstractly defined group N given as follows.
As a set N consists of all points x (xl, x2,x) g 3. The multiplication rule on N is

given by the formula

xy=(xl+yl,x2+y2,x+y+1/2(x2yl-xly2)).

It is easy to verify that N is a group having centext X consisting of all points (0, 0,x),
xR.

For future use, we will single out two especially important automorphisms of N.
Let og denote the mapping of N given by

J(X)-’(X2,--X1,X ).

Clearly, og is an automorphism on N which acts by the identity mapping when restricted
to the center.

Define D: N q/by setting

D(x) C(e 2’ix(x) ) M(x1)S(x2)

where )t(x)= x + 1/2x1x 2. Equivalently,

(D(x)f)(t) C( e 2"ix(x)) e 2pixxtf( + x2).

Using Lemma 3.2, the next result is easily proved.
THEOREM 3.2. D: N--* q/is a group homomorphism satisfying
1. kerD= {(0,0,x): x7/},
2. imD =9’.
The group homomorphism D has, by necessity, been built in a non-Abelian

fashion from the group homomorphisms S and M. In a sense, examined more closely in
the next section, the Fourier transform " is closely related to these group homomor-
phisms and hence, to the Heisenberg group N. For a more complete discussion see
[A-T]. At this time, the formulas of the next theorem will suffice.

THEOREM 3.3.

,’S(x).-= M(x), ’M(x)’-= S(-x), o’D(x)’-X=D(ogx).

Proof. The first two formulas are easily proved by Abelian harmonic analysis
methods. The last formula comes from the definition of D and Lemma 3.2.

The ambiguity function s (f) can be expressed in terms of the group homomor-
phism D. This is accomplished in the next theorem.

THEOREM 3.4. For x N, andf L2(N),

’(f) ( X2, X1) e2rix(f Dxf)

Proof. Since

Dxf( ) e2O"X(X)e:"xltf( + x: ),
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we can write,

(f, Dxf) f f(t)f*(t + x2)e-2"X’tdt,

e- 2,,X(x) (f)(x,xl),

e-2,,xc,(f)(x2 XI),

which proves the theorem.
The significance of ts result is that we can view ambiguity functions as well-known

objects in the theory of unitary representations of the Heisenberg group. For the most
part, the theory we develop can be generalized to the theory of unitary representations
of locally compact groups on Hilbert spaces but we will restrict our analysis to what we
need to study ambiguity functions.

A unitary representation of N is a homomowsm U of N into . Let U be a
unitary representation of N andf L2(R). Consider the function on N defined by

p(x)=(Uxf,f), xN.

THeOReM 3.5. The function p is positive define on N, in the sense that, for any finite
number of elements gl," ,g, in N and complex numbers 1,""" ,, we have,

k= j=

Proof. Let g=E= kUgf. A direct calculation shows,
n

k=l j=l

which proves the theorem.
We note that, by Theorem 3.4, we have

*

is positive definite. This enables us to translate general results about positive definite
functions into assertions about ambiguity functions.

The following results are well-known about positive definite functions. Observe the
relationship of these results to the corresponding results about ( cong from
Theorem 2.4. We list them without proof.

1.p(0)0,
2.p(g-i)=p(g)*,gN,
3. lp(g)lp(O),geN.
The unitary representation U of N is called continuous if, for eachf L:(R), the

mapping,

XUxf,

is continuous from N into the Hilbert space L2(R). We give N the topology of the
underlying Euclidean space. If U is a continuous unitary representation of N and
f L:(R), then p(x)= < Ux,f,f> is continuous. Since D .can be shown to be continuous,
we can prove, by this approach, that is continuous.
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A deeper result is that D is irreducible, in the sense of the following definition. The
unitary representation U is irreducible if, for any closed subspace V of L2(R) such that

Uxf V,

whereverf V, we have V= L2(R).
A proof that D is irreducible can be found in [Wyl]. The first implication of D

being irreducible is that, for anyfL2() which does not vanish on a set of positive
measure, the span of the set of functions,

(Dxf:xU},

is dense in L(R). As we see, in the proof of the following result, the uniqueness
Theorem 2.5 of {}2, the density of this span in L(), can be viewed as the key in the
uniqueness theorem.

THEOREM 3.6 Iff gL2() and(=(g) then

f=Ag,

for some constant IX I-- 1.
Proof. From (Dxf,f) (Dxg,g), x N it easily follows that (Dxf, Dyf)

(Dxg,Dyg) for all x,yN.
Note II12=llgll implies f=O almost everywhere if and only if g=O almost every-

where. We will assume, therefore, that both f and g are nonzero on set of positive
measure. From the irreducibility of D it follows that each of the set

A=(Dxf:xN }

and

B=(Dxg:xN }

spans a dense subspace of LE(R).
Define the mapping U: A - B by setting U(Dxf)= D g, x N. We have to show U

is well defined. Suppose Duf= Dvf. Then

(Duf Dxf)=(Dug,Dxg),

for all x, by the remarks above. This implies by the assumption Duf= Dvf that

(Dug,Dxg)=(Dvg,Dxg),R

for all x N. Since B spans a dense subspace of L:(R), Dug= D,,g. Thus, U is well
defined. The condition (Dx,D,,f) (Dxg,D,,g) immediately implies, along with the
previous described property of B, that U extends to a unitary operator of L2([).

It is trivial to see that

UDxU- D x N

and so U= ,I, Il 1 which proves the theorem.
Another consequence of the condition of irreducibility will now be discussed.

Consider two positive definite functions, Pl and P2, on N. We say that P2 dominates Pl
if P2-Pl is positive definite. A positive definite function p on N is called indecomposa-
ble if every positive definite function on N which is dominated byp is a scalar multiple
ofp.
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The following theorem can be found in [A], in a slightly different setting, and will
be asserted without proof.

THEOREM 3.7. If U is an irreducible unitary representation ofN andf L2(R) which
does not t)anish on a set of positive measure, then the corresponding positive definite
function, p,

is indecomposable.
An immediate implication is that Dxf,f) is indecomposable for everyfL(R)

which does not vanish on a set of positive measure.
We will now reprove Theorem B using these ideas from unitary representation

theory. ForfL2(R), we write,

?:(x) ( x N.

Supposef, g, h L2(R) and

’( h ) a’(f) +og’ ( g )

Then,

Ph =P+Pg.

Since Ph is indecomposable and Ph dominates both p/and pg, neglecting the trivial case,
we can write,

where c : 0 is constant. From pf(O)>__ 0 and pg(O) 0, we can infer c > 0. Let g’= v-g.
Then,

and

from which it follows, by Theorem 3.6, that,

f )g’ )v/-g,

which is the conclusion of Theorem B.

4. Another unitary representation of N. A "piece" of another unitary representa-
tion of N will be defined which is unitarily equivalent to the representation D defined
in the proceeding section. We will avoid as many technical details as possible. For
further details see [A-T].

Let F be the subgroup of N generated by (1, 0, 0) and (0,1, 0) and denote by H the
space of all functions F on N which satisfies the following conditions:

1. F(Vx)= F(x), ), F, x N,
2. IIFII2= folfolfoXlF(x)l 2 dx < ,
3. F(xz)= e 2riZF(x) x . N, z Z.
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One can prove that H is a Hilbert space and that for x N and F H, the function

( (x)F)(y) F(yx),

is again in H. In fact, we can prove the following
THEOREM 4.1. is a unitary representation ofN on H.
We will tie together D and by the Weil-Brezin mapping

defined by setting

W: Lv-(R) ---) H

W(f)(x) =e2’i(x+xlx2/2) E f(x2 + m) e2imx.

THEOREM 4.2. W is an isometry from L2(R) onto H satisfying

W-1 .@ (x) W=D(x), x N.

Proof. Complete details of the proof can be found in [A-T]. We will prove the
formula. Since

((x) W(f))(y) W(/)(yx)= W(f)( Yl q- Zl,Y2 + x2,Y + x + 1/2( y2x

it follows that

( (x)W(f))(Y) =e2i(y+x+y2xa/2-yx2)e2i(y +xl)(Yz+Xz) E f(Y2 + xg_ + m)e2i"(yx

m_

Upon expanding the right-hand side we get

( (x) W(f)) (y) W(D(x)F) (y).

We say that W is an intertwining operator between D(a) D aCand .
Consider aF. Then, al, a. and a=1/2ala2modT]. Let FH. Recall F(ay)=

F(y). It is easy to see that

y.a=a.y[y,a]

where [y, a]= y- la- lya (0, O,y2al -ya2).
THEOREM 4.3. For a F and F H,

(a)F(y)= (WD(a) W-F)(y)= eayl-aYF(y).

Proof. By definition,

( (a)F) (y) F(y. a) F(a .y. [y, a]) e -i<a-y -alyF(y).

COROLLARY. eiayl -aY2W(f)(y)= W(g)(y) where

g(y)=D(a)f(y).

Consider Ho= L(R/Z). For F,GH,

F(x) G*(x) Fo(xx,x:z)G(xx,x)
where Fo(x,x2)= F(xl,x2,0). Thus, Fo, GoH0 and

(r, G) tt {Vo Go) ,-io
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For a, a ’ and x1, x , define

Xaa2( X1, X2 ) e2ri(ax + ax).

Clearly X al,a no. We also have, for F, G H,

FGo)Xa’a2F’G)H (Xal’a2’ "o"

TrIEOREM 4.4. The set offunctions

( Xal,a2F’ al, a2 ’ )
is an orthonormal basis ofH if and only if

IF(x)l--1, almosteoerywhere.

Proof. Clearly, if IF(x)l--1, almost everywhere, then the set of functions is ortho-
normal since

(nal,a2f nbl,b2f)H’(nal,a2,nbl,b2)Ho --0"

Moreover, if G H satisfies

Xal,a2F, G) (Xal,a F’G) =0
H Ho

for all a1, a 2 ’ then by the completeness of Xa,a:, a, a
_

in Ho, F*G=-O, almost
everywhere. Since IFI 1, almost everywhere, G--0, almost everywhere which implies
the set ( Xa,aF: a1, a: 71 } is an orthonormal basis in H.

Conversely, if ( Xa,a:F: a, a2 _) is an orthonormal basis in H, then

IXal,a2F, Fl’(Xala2,, IF[
2) ,0

whenever both a and a are not both 0. Thus, IFI is constant almost everywhere. But

<F,F>,=a
implies IFI 1, almost everywhere.

Theorem 4.2, the corollary to Theorem 4.3, and Theorem 4.4 immediately imply
the next result.

THEOREM 4.5. Forf L2(), satisfying

IW(f)(Y)[ E f(Y2 + l) e2rrilyl 1,

almost eoerywhere, the collection offunctions

fa,a:(Y)=e2iayf(y+a),

as a, a 2 run ooer 7/, forms an orthonormal basis ofL2().
If F(x) does not satisfy the condition IF(x)l 1, almost everywhere, then the

collection of functions

W= (Xa,b’F(x)" a,b7/)
will not be an orthonormal basis but could be an L2-basis of H, in the sense that, the
linear span of W is dense in H and no proper subset of W has this property. It will be
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convenient to discuss the problem of when W determines an LZ-basis of H by consider-
ing the analogous problem on r 2= R 2,/7/2.

Consider F(u,v) LZ(r 2) and set

Let

W0= (Xa,b(U,v).F(u,v)" a,b7/).

g(t)=m{(u,o)qr 2" IF(u,v)l<=t),
where rn denotes Lebesgue measure on r 2.

Observe that g(t) is the distribution function of]F(u,v)], and hence determines a
probability measure on R.

THEOREM 4.6. Wo is a minimal basis of LZ(’rt"2) if and only if
1. g(O)= O,
2. f+(1/tZ)dg(t)< . (This includes 1.)
Proof. Take G LZ(’n"2) satisfying

(o, w0) =0.

Then

(X,,,bF, G)=(X,b,F*G)=O, a,b7/,

which by the completeness of the set (X,b: a,b 7/) in LZ(qr 2) implies F’G= 0 almost
everywhere. Thus, g(0)=0 implies G=0 almost everywhere. We have proved that
g(0)=0 implies W0 spans a dense subspace of LZ(’/r2). The converse is trivial, for if
g(0)4:0, let G be the function which is identically one where F vanishes and zero
otherwise. Then G is orthogonal to W0 but is not the zero function in LZ(’n’2).

We will now show the equivalence of minimality to Theorem 4.6, statement 2. The
argument includes the above discussion.

Suppose aobo7/ and that the closure V in LZ(’n"2) of the set F.(C.Xao,bo )-t- is
proper in LZ(rZ). As is standard (C .X,o,bo )+/- denotes the orthogonal complement of

C’Xao,bo in LZ(rZ). Choose G orthogonal to V. Then, for every function G2 orthogo-
nal to X ao,6o’ we have

(Ga,F’Gz)=(F*G1, G2)=O.
Thus, F*Gx=,.Xoo,bo for some constant ,4:0. This implies F*-l=,-1X-obo. Gl
LZ(r2) and hence F-I L(rrz). The converse is obvious. Thus, we have proved that
Wo is a minimum LZ-basis of L2( 2) if and only if F- L2( 2).

We will now show that F-L() and only if Theorem 4.6, statement 2 holds.
We simply observe that

IF(u,o)[-ldudo,

and hence F-1 L2(2) if and only if

. Examples fabfefis. In this section, we will build ambiguity func-
tions which include the standard ambiguity functions dealt with in radar theory along
with an example cong from Heisenberg group theory. We begin with a few general
remarks.
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An orthonormal basis of L2() is a set of functions f,, n 7/, in L2() such that

(f, fro) { 1, n=m,
O, n4:m,

and the closure of the linear span of these functions in L(). More generally, a
countable subset M of L() will be called an L-basis of L() if the closure of its
linear span equals L() and no proper subset of M has this property.

The LZ-basis of L() we construct will be of the following form. A fixed function
fL2() will be taken and we define

fa,b(t)=(M(b)S(a)f)(t)=eZ’ibtf(t+a), a,b7/.

We will consider examples where the set of functions

{fa,b:a,b 7/}
is an Le-basis and use Theorem 4 of 5 to show we have an orthonormal basis.

In the original manuscript, the authors believed that the Gaussian g(t)=e-t

leads to a minimal basis. As pointed out by the referee, this is not the case. A proof can
be seen by showing that G=IW(g)[ does not satisfy condition 2 of Theorem 4.6.

The two LZ-bases we consider will be orthonormal. Consider the rectangular
function

1, [tl < 1/2,
,(t)=

0, Itl> .
It is easy to see that r(t) satisfies the hypothesis of Theorem 4.5. Thus, the collection of
functions

= ( r,b: a,b7/}

is an orthonormal basis of L2(), called the rectangular basis of L2().
The rectangle function r is a standard signal processing function. The next basis

we consider is more exotic and comes from Heisenberg group theory, especially Theo-
rem 4.5 and [A-T, pp. 81-82]. Applying the Weil-Brezin mapping W to the Gaussian
g gives the Heisenberg group theory analogue of the classical theta function. Explicitly,

W( g)(x) e2"rix+x’/2) E

where g(t) e-,.2. Consider

w(g)(x)F(x)=
IW(g)(x)l

and observe F(x) satisfies the conditions needed for Theorem 4.5 to assert that the set
of functions

Xax,a F: al, a 2 7/)
is an orthonormal basis of H. By Theorem 4.5, if

t(y)=W-l(F)(y)
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then the set of functions

T= ( ta,b: a,b71)

is an orthonormal basis. The only facts we will need are given in the following lemma.
LEMMA 5.1. Let O(z)=Etze-:-e 2"tz, z=x + iy, be the classical theta function and

set

t(y)= l O(z)
dx, yR.

--0

Then the set offunctions
T= ( ta, b" a,b7/}

is an orthonormal basis of L2(R).
We call T the theta basis of L2(R).
We will now state, without proof, how the Fourier transform acts on the three

bases considered. First,

=t P(v)- sinrV
qT,[/r

Since, by Theorem 2.6

L,b= (f3 +b,-a
we have that T is invariant under the action of the Fourier transform and maps onto
sinusoidals.

We will now relate the cross-ambiguity function (fa,b,fc,d) to a:(f).
THEOREM 5.1. LetfL2() andfa,b=M(b)S(a).f Then

’(f,b,fc,d)( U, O) K.(f)( u + c a, o + d- b)

where K=(- 1)(a+c)(b+c)e-r[(b+d)u-(a+c)v].
Proof. Consider

(fa,bafc,d)( U, U )= (fa,baM( U )(U)fc,d)
which we can write

( M( b)S( a)f,M( v)S( u) M(d )S( c)f) (f,S(- a) M(- b ) M( v)S( u) M(d )S( c)f)
Using Lemma 3.2, this becomes

e- 2riUCe 2ria(v +c-b) (f)( u + c a, v + d- b ).

The theorem follows once we observe (f,g)= eriuvd:(f, g).
The ambiguity function of r is easy to compute and for convenience we give the

answer in the next lemma. The ambiguity function of does not have a simple form.
LEMMA 5.2.

sin(( u 1) fro)/ro,(r)(u,o)=
sin((u--1)ro)/rv,

0<U<l,
-l<u<0,

and vanishes elsewhere.
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The corresponding cross-ambiguity functions can be determined by Theorem 5.1.
Supposef L2(R) and

F= {f,b" a,b7/}

is an L2-basis of Lz(R). Then, any h L2() can be written as

h= E a(a,b)fa,b
a b 2i’

where

(h,h) Ea(a,b)a*(c,d)(f,a,f,d) < .
Of course, if F is an orthonormal basis the above condition reduces to

E Io(a b)l
2

a,bZ

By Theorem 5.1 and Lemma 5.2, we immediately have the following result.
THEOREM C. LetfL2() generate an L- basis. Let fdenote the set offunctions a"

7/ 7] C such that

_,(a,b)a*(c,)(L,,L,) < .
The set offunctions

F(a)= E
a,b,c,d

a(a,b)a*(c,d)K(a,b,c,d)A(f)(u+ c- a,o+ d- b)

where

K( a, b, c, d) (- 1)(a +c)(b+ d) e -i[(b+ d)u-(a+c)]

f, is the set of ambiguity functions.
Theorem D follows easily from Theorem C and the discussion in this section.
We close with an interesting example.
Example. Let p(t) be a periodic function of period 1 and consider

f(t)=p(t)e -t2.
Write p(t)= _.aZOl(a)eit.

Then, if

(p)(u,l) erilufol ( u) ( U)e2ilp t-- p* t+- dt

we have

(f)(u,v)=(e-t2)(u,) E (P)(u,l)e-’/2ei’(u+i)/9-

Thus we can interpret the ambiguity function of f as having a continuous part
(e -t2) and a "discrete" part which is a theta-like function with coefficients given by

the periodic version of the ambiguity function of p(t).
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