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Inference of transcriptional regulation, which includes discovering binding sites 

of a transcription factor (TF), identifying its direct target genes and detecting its 

dynamical activity, is an important step towards reconstructing transcription network. In 

this dissertation, I have developed three novel computational methods to tackle this task 

by integrating large-scale genomic data. 

All three methods train a probabilistic model using sequence motif, gene 

expression, TF binding and conservation data. This probabilistic model provides an 

elegant way to reduce noise in individual data by integrating multiple sources of data. 

Mathematically, they maximize the joint likelihood of the observable data using 

expectation-maximization (EM) method. The hidden variables in the models represent 
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the identity of a gene (target or not in TRANSMODIS and CompMODEM) and the 

activity of a TF (in ActivMiner). The EM algorithm iteratively determines these hidden 

variables and the parameters in the models. 

The three methods have different purposes. The first two methods called 

TRANSMODIS and CompMODEM aim to identify binding sites and direct target genes 

of TFs. TRANMODIS takes into account that target genes of a TF normally share similar 

sequence motifs in the TF binding regions and gene expression patterns under different 

conditions. If only a single gene expression or TF binding experiment is available, in 

addition to the sequence and expression information, CompMODEM considers 

conservation of TF binding sites in the model because functional regulatory sites tend to 

be evolutionarily constrained. Both TRANSMODIS and CompMODEM assume the TF 

of interest is active. When such information is not available, ActivMiner aims to 

simultaneously infer the dynamic activity of TFs and their regulatory targets. 

These methods have been successfully applied to multiple species including 

human, worm and yeast. The studies presented in this dissertation lay the foundation of 

inferring gene regulatory network, which is a great challenge in the post-genome era. 

With the fast accumulation of genomic data, these methods will provide a set of useful 

tools to understand transcriptional mechanisms. 
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Chapter 1. Introduction 

1.1. Introduction to gene regulatory networks 

The central dogma of molecular biology describes that transcription and 

translation are the two main steps while a protein is synthesized in a living cell. 

Transcription is a sophisticated multi-step cascade, in which RNA polymerase II (Pol II) 

transcribes a DNA template into a messenger RNA in concert with a wide range of 

transcription initiation, elongation, capping, termination, and histone modifying factors. 

During the process of transcription, it is well known how a single strand of mRNA is 

produced from a double stranded DNA template, but how the regulated transcription 

machinery is recruited conditionally still remains unclear. This regulation controls when a 

particular transcription is triggered or prevented and how much a specific mRNA needs 

to be created in response to different environmental stimuli. It is one of the most 

important and complicated processes in transcription. In the study of transcriptional 

regulation, biologists define a gene regulatory network (GRN) as a collection of 

regulatory proteins and their closely associated genes across a genome, within which the 

regulatory proteins interact with each other and directly and/or indirectly with their target 

genes, and thereby govern the expression lever of the target genes according to the 

external environment. The transcription factors (TFs), which initiate and subsequently 

control the gene expression, are the most important regulatory proteins in regulatory 

networks or cascades. They normally contain one or more DNA-binding domains, which 

usually attach to either enhancer or promoter regions of DNA adjacent to the genes that 

http://en.wikipedia.org/wiki/Enhancer_%28genetics%29�
http://en.wikipedia.org/wiki/Promoter�
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they regulate. These specific non-coding DNA binding sites, also called binding motifs or 

cis-regulatory elements, are highly evolutionarily conserved across different specials, 

which is an important and valuable character utilized by many biologists to identify these 

binding sites. After binding to DNA, the TFs perform their functions alone or with other 

TFs or other regulatory proteins, such as coactivators and methylases, by promoting (as 

an activator), or blocking (as a repressor) the recruitment of RNA polymerase to their 

target genes. There are a wide variety of mechanisms for the regulation of gene 

expression, such as  (1) stabilizing or blocking the binding of RNA polymerase to DNA, 

(2) catalyzing the acetylation or deacetylation of histone proteins (The TF can either do 

so directly or recruit other proteins with this catalytic activity), and (3) recruiting 

coactivator or corepressor proteins to the TF DNA complex. The combinatorial 

mechanism of regulation among a relatively small number of TFs and other regulatory 

proteins is a prerequisite for the efficient and unique control of expression of every single 

gene in a huge whole genome. In addition to the basal transcription regulation, the gene 

regulatory networks involve in many other vital cellular processes, such as cell cycle, 

development, and intercellular signaling. Due to their important roles in these biological 

processes, the gene regulatory networks have been associated with some human diseases 

like diabetes and cancers. This clinical importance makes many TFs the potential direct 

or indirect drug targets. For instance, approximately 10% of currently prescribed drugs 

directly target the nuclear receptor class of TFs, including tamoxifen and bicalutamide for 

the treatment of breast and prostate cancer, respectively, and the various types of anti-

inflammatory and anabolic. 

http://en.wikipedia.org/wiki/Coactivator_%28genetics%29�
http://en.wikipedia.org/wiki/Methylase�
http://en.wikipedia.org/wiki/Activator_%28genetics%29�
http://en.wikipedia.org/wiki/Repressor�
http://en.wikipedia.org/wiki/RNA_polymerase�
http://en.wikipedia.org/wiki/Acetylation�
http://en.wikipedia.org/wiki/Histone�
http://en.wikipedia.org/wiki/Coactivator_%28genetics%29�
http://en.wikipedia.org/wiki/Corepressor_%28genetics%29�
http://en.wikipedia.org/wiki/Nuclear_receptor�
http://en.wikipedia.org/wiki/Tamoxifen�
http://en.wikipedia.org/wiki/Bicalutamide�
http://en.wikipedia.org/wiki/Breast_cancer�
http://en.wikipedia.org/wiki/Prostate_cancer�
http://en.wikipedia.org/wiki/Glucocorticoid#Anti-inflammatory�
http://en.wikipedia.org/wiki/Glucocorticoid#Anti-inflammatory�
http://en.wikipedia.org/wiki/Anabolic_steroid�
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In recent years, the realization of gene regulatory networks has become the major 

challenge and goal of the systems biology enterprise. Because the networks themselves 

are extremely complex and combinatorial, and the available data for the construction of 

networks are often inaccurate and defective, this job has not yet been completed 

flawlessly over the last few decades. Though absolutely difficult, it still has attracted 

close attention from many researchers. The accomplishment of the transcriptional 

regulation networks will help to unearth the fundamental principle of sophisticated 

cellular processes, which has so far been poorly understood but is obviously beneficial to 

clinical demand. This task is so arduous and promising that both experimental and 

computational biologists have been very enthusiastic to cooperate with each other to 

build up the gene regulatory networks by utilizing the complementary techniques. 

Although the underlying detailed mechanism of the transcriptional regulation has still 

remained unknown, strictly speaking, a huge amount of valuable experimental data has 

been accumulated acceleratedly by the biologists. Owing to the various and massive 

information, a number of computational approaches to construct gene regulatory 

networks has been systematically and rapidly developed to address this challenge in the 

last few decades. 

All these approaches usually utilize one of the two major fundamental learning 

strategies, namely bottom-up and top-down. In the bottom-up approaches, the individual 

biochemical processes involved in the regulatory pathway are first specified in great 

detail. In contrast, the top-down approaches attempt to reverse engineer regulatory 

networks initially from high-throughput data sources. The bottom-up approaches have 

mainly been applied to small, well-defined biological model system, while the 



 

 

4

complementary top-down approaches have been mostly used to investigate the high-

throughput data sources in the entire genome. The top-down approaches have become 

increasingly popular and largely promoted by advances in high-throughput experimental 

technologies and rapid development in computational approaches, because the former 

makes it possible to measure the global response of a biological system to specific 

interventions and the latter is capable of systematically integrating and analyzing various 

high-throughput experimental data. 

 

1.2. Omics data in the inference of gene regulatory networks 

The inference of GRNs is greatly promoted by advances in high-throughput 

technologies, which have provided abundant different types of ‘omics’ data such as 

genomic data (DNA level), transcriptomic data (mRNA level), and proteomic data 

(protein level). In the following, the main characteristics and application of diverse omics 

data are outlined and their relative merits and demerits are discussed. 

 

1.2.1. Microarray data 

The most original yet still popular high-throughput data used to construct gene 

regulatory networks are the microarray data that describe the system’s response to time-

series, cell-specific, tissue-specific and/or perturbation experiments. [1] In the time-series 

experiments, the transcriptional profiles that are acquired under each of the examined sets 

of conditions correspond to different, sequential in time snapshots of the biological 
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process/system under investigation. In this case, it is of interest to identify the genes 

whose expression profile over time changes drastically due to the applied perturbation. 

Moreover, it would be of interest to compare the various timepoints with respect to the 

change in their transcriptional profile due to the applied perturbation, with the 

consideration that they are components of the same time-series. [2; 3] Cell-specific and 

tissue-specific gene expression is a fundamental aspect of multicellular biology, 

underlying the development, function, and maintenance of diverse cell types within an 

organism. Accounting for cell/tissue-specific expression is a precursor to any system-

level understanding of metazoan organismal development and function. Microarray 

experiments analyzing cell/tissue-specific expression are able to discover cell/tissue-

specific genes based on the difference in mRNA levels and generate networks of 

cell/tissue-specific functional interactions. [4] Different perturbation experiments can be 

designed depending on the techniques available and the system of interest, and include 

manipulations of environmental factors as well as interventions on the genetic, 

transcriptomic, proteomic or metabolic level. Environmental perturbation experiments 

include heat shock, chemical stresses, compound-treatments, and so on. [5; 6] DNA 

knock-out and over-expression experiments are two traditional genetic perturbation 

experiments. In addition, the RNAi knock-down experiment is one of the well-known 

perturbation experiments on the transcriptomic level. TF perturbation experiments 

(TFPEs) are one special class of microarrays, in which the only perturbation is deletion, 

mutation or over-expression of a TF. TFPEs including DNA knock-out or over-

expression experiments and RNAi knock-down experiments are very important for the 

GRNs reconstruction because they focus on a concerned TF and provide the competent 
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evidence in the influence of this TF over their target genes. The relatively gene 

expression alteration measured by genome-wide DNA microarrays represents the 

systematically functional reaction to the corresponding perturbation. [7] 

The analysis methods for microarray data are mainly divided into three categories: 

clusterings, model-based approaches and matrix decompositions. [8-14] Clustering 

approaches classify genes into distinct groups or organize them hierarchically according 

to their expression patterns across different time, treatments, and tissues. The genes in the 

same cluster with the similar gene expression pattern are assumed to be potentially 

functionally related or regulated by a common TF or a common set of TFs. This means 

that the genes sharing similar expression patterns tend to be the candidates of the target 

genes of a TF or TF complex. Most clustering methods do not attempt to model the 

underlying biology. A disadvantage of such methods is that they partition genes or 

experiments into mutually exclusive clusters, whereas in reality a gene or an experiment 

may belong to multiple biological processes. Clustering methods alone are imprecise, 

because they only indicate co-expression, but do not directly identify co-regulation. 

Model-based approaches first generate a probabilistic model that explains the interactions 

among biological entities participating in GRNs, and then train the parameters or latent 

variables of the model on the large microarray datasets. Because microarray data are not 

sufficient for inferring GRNs, model-based approaches usually integrate multiple sources 

of data with microarray data. Matrix decompositions consider the microarray data as a 

genes × arrays matrix and decompose it into components that have a desired property. 

Unlike clustering methods, matrix decompositions are able to assign each single gene 

different memberships in multiple groups. 
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1.2.2. Genome sequence data 

Genome sequence data have been the prime genomic data used to build GRNs 

when the availability of complete genome sequences for all genes creates the 

opportunities for identifying cis-regulatory elements that control gene expression. The 

analysis of sequence data mainly focuses on the investigation of TF binding sites 

(TFBSs), because TFBS motifs occur in many regions of non-coding DNA sequence 

such as promoters, enhancers and silencers. A widely used strategy first clusters genes 

based on their expression profile across multiple conditions and then searches for over-

represented DNA motifs in the regulatory regions of each gene cluster. [15] In addition, 

since cis-regulatory elements are functional and subjected to evolutionary selection, they 

evolve less rapidly than the surrounding non-coding regions within closely related 

organisms. Therefore evolutionarily conserved motifs of orthologous genes in related 

species are more likely to be true cis-regulatory elements. [16] However, the appearance 

of TFBSs doesn’t necessarily indicate the physical binding between the regulatory 

proteins and DNA, which depends on the secondary and teritary structure besides the 

primary structure of the DNA.  

 

1.2.3. Chromatin immunoprecipitation data 

The main technique for assaying the actual protein-DNA binding in vivo is 

chromatin immunoprecipitation (ChIP). A precise map of binding sites for TFs, core 

transcriptional machinery and other DNA-binding proteins is vital for deciphering the 
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GRNs that underlie various biological processes. The combination of nucleosome 

positioning and dynamic modification of DNA and histones is essential in gene 

regulation and guides a cell’s development and differentiation. Chromatin states can 

influence transcription directly by altering the packaging of DNA to allow or prevent 

access to DNA-binding proteins, or they can modify the nucleosome surface to enhance 

or impede recruitment of effecter protein complexes. ChIP experiments have become the 

indispensable tool for studying these mechanisms. In ChIP, antibodies are used to select 

specific proteins or nucleosomes, enriching DNA fragments bounded to these proteins or 

nucleosomes. The introduction of microarrays allowed the fragments obtained from ChIP 

to be identified by hybridization to a microarray (ChIP-chip) [17; 18], therefore enabling 

a genome-scale view of DNA-protein interactions. Owing to the rapid technological 

developments in next-generation sequencing (NGS) [19], chromatin immunoprecipitation 

followed by sequencing (ChIP-seq), one of the early applications of NGS, has become 

the novel promising method. In ChIP-seq, the DNA fragments of interest are sequenced 

directly instead of being hybridized on an array. ChIP-seq offers many advantages over 

ChIP-chip and therefore provides substantially improved data. First, its base pair 

resolution is the greatest improvement over ChIP-chip. Generally, the maximum 

resolution is around 30-100bp in ChIP-chip, while it can be a single nucleotide in ChIP-

seq. Second, nucleic acid hybridization in ChIP-chip is complex and dependents on many 

factors, including the GC content, length, concentration and secondary structure of the 

target and probe sequences. Therefore, cross-hybridization between imperfectly matched 

sequences frequently occurs and contributes to the main noise in ChIP-chip. ChIP-seq 

does not suffer from the noise generated by the hybridization step in ChIP-chip. Third, 
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the intensity signal measured on arrays might not be linear over its entire range, and its 

dynamic range is limited below and above saturation points. In a recent study, distinct 

and biologically meaningful peaks seen in ChIP-seq were obscured when the same 

experiment was conducted with ChIP-chip. Fourth, in ChIP-seq the genome coverage is 

not limited by the repertoire of probe sequences fixed on the array. This is particularly 

important for the analysis of repetitive regions of the genome, which are typically masked 

out on arrays. Fifth, ChIP-seq needs less amount of ChIP DNA sample, requires less 

amplification than its array-based predecessor ChIP-chip. Finally, multiplexing is 

possible in ChIP-seq but not in ChIP-chip. [20] 

With the progress of genome-wide location analysis for DNA-binding proteins 

provided by ChIP-chip and ChIP-seq technology, direct experimental evidence of TFBSs 

in regulatory regions has become available. Therefore, a large number of computational 

programs have been developed to predict the TFBSs by applying the ChIP data. [21; 22] 

However, the physical bound presence of a regulator to a regulatory region doesn’t imply 

the functional happening, and, like expression data, is still noisy and limited to the 

particular physiological conditions of the experimental protocol used. 

 

1.2.4. Proteomic data 

Like the genomic and transcriptomic data, the proteomic data can also be used to 

reconstruct GRNs.  Mass spectrometric protein identification and the yeast two-hybrid 

system have greatly promoted the study of protein-protein interactions. [23; 24] Proteins 

often form complexes with other proteins to achieve specific function and activity. The 
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regulatory proteins, which consist of TFs, coactivators, chromatin remodelers, histone 

acetylases, deacetylases, kinases, methylases, and so on, interact with each other and with 

DNA to form the transcription initiation complex, and stimulate or repress transcription 

according to the external environment. Therefore, protein-protein interactions provide 

valuable information about the combinatorial regulation, which is essential and important 

in GRNs. Increasing knowledge on the molecular mechanisms underlying gene 

regulation will eventually allow regulatory systems to be modeled on a fine level of 

granularity. However, the application of proteomic data in GRN research is usually 

difficult, because the structural variety of proteins and their functional interactions cause 

a high degree of complexity.  

 

1.2.5. Genome Annotation data 

Gene functional annotations have been recently used to promote the study of 

genes and their regulatory interactions. The Gene Ontology (GO) project [25] is a major 

bioinformatics initiative with the aim of standardizing the representation of gene and 

gene product attributes across species and databases. This project has developed three 

structurally controlled vocabularies (ontologies) that describe gene products in terms of 

their associated biological processes, cellular components and molecular functions in a 

species-independent manner. The functional annotations in the GO database are 

organized in a hierarchical way defining subsets of gene that share common biological 

functions in a GRN. But the fact that many annotations in Gene Ontology are quite 

incomplete limits the application of the annotation information.  
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1.2.6. Literature resource 

A novel data resource of wealthy biological information found in the scientific 

literature has increasingly attracted eyeballs from the researchers. Many text mining tools 

have been developed to automatically extract interrelations between genes and proteins 

from literature with sufficient reliability and thus provide valuable information for GRN 

modeling. [26] Nevertheless, these tools have not yet been brought into wide use because 

of the complication and immaturity of the text mining algorithm.  

 

1.3. Computational approaches for identifying gene modules 

Various omics experimental technologies, like microarray, ChIP, next generation 

sequencing, and so on, provide massive valuable high-throughput data for elucidating 

how genes interact with each other and how a cell’s regulatory network controls vast 

batteries of genes simultaneously according to different external environments. However, 

none of these omics data is perfect and sufficient to be utilized alone in the construction 

of GRNs. Firstly, each individual omics data resource is noisy and incomplete due to the 

inevitable measurement errors. For example, the main painful errors in most microarray 

and ChIP-chip experiments are caused by the hybridization, a necessary step in these 

experiments. Secondly, A GRN has a large and complex network structure. Therefore, a 

single experiment is usually unable to provide the thorough and direct evidence of what 

reactions (the edges) really happen among the genes (the nodes) in this network. For 
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instance, the ChIP data can only indicate the physical binding between a TF and its 

potential binding site, but cannot imply the functional binding that triggers the 

transcriptional regulation. On the other hand, the microarray experiments provide the 

proof of a TF’s functional effect on both direct targets, whose regulatory regions are 

bound by the TF, and indirect targets, which is regulated by the targets of the TF. In other 

words, microarrays cannot distinguish direct and indirect targets of the TF. 

To overcome imperfection and inaccuracy caused by an individual omics data set, 

the computational biologists have developed a lot of statistical algorithms to reliably infer 

GRNs by integrating the diverse and complementary biological resources. Since the 

information provided by each individual omics data set is incomplete, computational 

models utilizing single data set inevitably suffer from the trade-off between specificity 

and sensitivity. The primary benefit of integrating the complementary data sets is the 

improvement of both the specificity and sensitivity. For instance, in regard to 

identification of the direct targets of a TF, the traditional methods utilize expression and 

binding data separately. The methods using only expression data are unable to isolate the 

direct targets from the indirect ones because the change of expression level of indirect 

targets is insignificant and these methods filter erroneously the true direct targets with 

relatively small expression change due to the arbitrary cut-off. Similarly, the methods 

using only the binding information usually predict false targets, which have the binding 

sites only by chance, and miss the true targets because of their relatively weak binding to 

the TF. In contrast, the advanced methods integrate both expression and binding 

information to successfully identify the true direct targets, whose expression alters 

affected by the TF and whose binding sites exist. These methods are able to filter out 
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both the indirect targets without binding sites and the false targets with stochastic binding 

sites and non-expression. Furthermore, the real targets with either small expression or 

weak binding can be recognized with the help of the strong complementary binding and 

expression signals, respectively. Thereby, the algorithms integrating multiple types of 

omics data have been rapidly developed over recent years to address the inference of the 

GRNs. The early stage of their application is to identify the gene modules, the major 

approaches of which will be summarized in this section. The advanced stage is to infer 

the GRNs, which will be discussed in the next section. 

A gene module is defined as a set of co-regulated genes, to which the same set of 

TFs binds directly. Most of the approaches to identify the gene modules focus on the 

discovery of the binding sites, the direct targets, the activities and the dependence of a TF 

and/or a set of co-regulating TFs. An incomplete list of these approaches includes k-

means, self-organizing map (SOM), hierarchical clustering, linear regression, Gibbs 

sampling, expectation-maximization algorithm, singular value decomposition (SVD), 

independent components analysis (ICA).  

 

1.3.1. Hierarchical Clustering 

The primitive hierarchical clustering methods are unsupervised and mainly 

employ the multiple microarray data to indentify the co-regulated gene targets. The 

whole genome genes are organized hierarchically into distinct clusters according to 

similarity in patterns of gene expression across time, cells, tissues, treatments, and so on. 

A mathematical measurement of similarity is described by the correlative relationships 
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between two genes, such as the Euclidean distance, Pearson correlation coefficient, or 

Spearman rank correlation coefficient of the two n-dimensional vectors (genes) 

representing a series of n measurements. The genes in the same cluster are assumed to be 

potentially functionally related with or influenced by a common TF or a common set of 

co-TFs. 

Eisen et al. [8] applied this method to the yeast and human microarray data and 

observed a strong tendency for the tightly clustered genes to share common roles in 

cellular processes. For example, they successfully discovered the extremely tight cluster 

containing eight histone genes, which were well known to be co-regulated and 

transcribed at a particular point in the cell cycle. Since the genes in the same cluster with 

the similar expression pattern have the similar biological function, the previously 

unannotated new genes can be assigned likely cellular functions based on the existing 

annotation of other co-group genes. Wu et al. [9] first assembled all genes in the entire 

yeast genome into functionally related groups by applying multiple clustering methods 

including hierarchical clustering. Then they predicted probable cellular functions for 

poorly characterized genes according to the annotation confidence values computed from 

the well characterized genes in the same cluster. And they were able to experimentally 

verify several of their predictions. Furthermore, the genes sharing the similar expression 

patterns and biological functions are likely to share the binding motif of a TF or a set of 

co-TFs, which can be identified by the motif discovery methods, such as MEME. 

Hierarchical clustering methods usually divide the genes into mutually exclusive 

clusters, but in reality a gene may possess multiple biological functions and thus multiple 

cluster membership. Moreover, the co-expressed genes in the same cluster are not 
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necessarily co-regulated because their correlated expression patterns may be caused by 

indirect regulation or experimental measurement error. As a result, these methods alone 

are not imprecise. 

 

1.3.2. Maximum likelihood estimation 

Maximum likelihood estimation (MLE) fits a predefined model to observed data 

to determine the model’s parameters that maximize the probability (likelihood) of the 

sample data. MLE is probably the most widely used estimation method for the 

identification of transcriptional modules. As a well-studied iterative optimization 

algorithm, expectation maximization (EM) is one of the most popular and powerful 

techniques for MLE, when the data are incomplete or the likelihood function involves 

latent variables. EM algorithm iteratively computes the maximum-likelihood estimates 

between an expectation (E) step and a maximization (M) step. Specifically, EM algorithm 

initializes the parameters of the predefined model with a reasonable guess, calculates the 

expectation of the log-likelihood evaluated using the current estimate for the latent 

variables (E step), updates the parameters that maximize the expected log-likelihood 

found on the previous E step and that will be used in the next E step (M step), and then 

alternates between performing an E step and an M step until the likelihood converges, i.e., 

reaching a local maxima. EM has the advantage of being simple, robust and easy to 

implement. However, EM is a hill-climbing approach, thus it can only be guaranteed to 

reach a local maxima. Whether EM will actually reach the global maxima completely 

depends on the initialization. If it starts at the right “hill”, it will be able to find the global 
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maxima. When there are multiple local maximas, it is often hard to identify the right 

“hill”. The commonly used strategy to solving this problem is to try many different initial 

values and choose the solution that has the highest converged likelihood value. 

Beiley et al. [15] developed an algorithm called MEME, which extends the EM 

algorithm to identify the TF binding sites shared by a set of co-regulated genes. They 

successfully discovered both the CRP and Lex A binding sites from a set of sequences 

containing one or both sites. One of the best advantages of MEME is that it does not 

restrict exactly one appearance of a binding motif in each examined sequence. That is to 

say, every potential target gene may contain more than one copy of the binding motif or 

no copy. Another attractive advantage is its ability to discover multiple binding sites in 

the co-regulated genes. This is also satisfied with the biological reality that co-regulated 

genes are very likely under the combinatorial control of multiple TFs. Within a single 

motif, MEME, like most motif discovery methods, does not allow for insertions or 

deletions, which exist ubiquitously in biology. Therefore, MEME is limited to learning a 

restricted class of motifs. Furthermore, MEME is not suited to whole genome TFBS 

motif discovery because of the shortness and degeneracy of the motifs. That means the 

input sequences of MEME have to be carefully predefined with prior knowledge, which 

is usually little. 

Wang et al. endeavored to identify the direct target genes of a TF from an entire 

genome by developing three algorithms (i.e. MODEM [10], TRANSMODIS [11], and 

CompMODEM), all EM-based algorithms with different integration of multiple sources 

of data. Among them, MODEM, integrating both sequence and expression data, is the 

predecessor of the other two. The inputs to MODEM are a public TFBS, the whole 
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genome promoter sequences and a single genome-wide microarray measurement related 

to a TF of interest, such as ChIP-chip or TFPE. MODEM is able to identify the direct 

target genes of a TF and refine the input consensus motif by outputting a position-specific 

frequency matrix (PSFM) that presents extra precise information of the binding motif. 

However, the inevitable notable noise in each array may cause MODEM to be trapped in 

local optima and thus reduces the quality of its performance. To address this problem, we 

developed another program called TRANSMODIS based on MODEM. TRANSMODIS 

takes multiple TFPE arrays, instead of a single one, as the input and assumes that the true 

direct targets are the genes containing the consensus motif of the TF of interest as well as 

exhibiting consistent expression changes in most of the TFPEs. Compared with MODEM, 

TRANSMODIS is less sensitive to noise in an individual experiment because of the 

consistency requirement on gene expression level across multiple experiments. 

TRANSMODIS accurately identified the direct targets of PHO4 in yeast and the targets 

of DAF-16 in worm. Besides TRANSMODIS, CompMODEM is another attempt to 

enhance the accuracy of MODEM by integrating phylogenetic conservation, as well as 

sequences and expression. By adding phylogenetic conservation information into 

MODEM, CompMODEM simultaneously reduces both false positives and false 

negatives. 

The common purpose of the three methods above is to statically identify the direct 

true targets of a TF of interest. However, the activities of a TF are dynamic and thus the 

targets of the TF are alterable according to the activities of the TF under different 

experiment conditions. We developed another algorithm called ActivMiner to 

simultaneously infer the TF’s activity in each experiment and target genes of the TF 
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corresponding to its activity. The target genes of a TF contain the binding sites of the TF 

in their promoters and their gene expression levels are coherent with the activity of the 

TF. Meanwhile, the activity of the TF is defined by the activation or repression of its 

targets. Since neither the label of the target gene nor activity of the TF is observed, 

ActivMiner iteratively infers the activity and target genes of the TF using EM algorithm 

within every cursorily pre-grouped cluster. 

 

1.3.3. Matrix decomposing 

In the mathematical discipline of linear algebra, a matrix decomposition is a 

factorization of a matrix into some canonical form. There are many different matrix 

decompositions; each finds use among a particular class of problems. Matrix 

decomposition methods have been introduced for discovering transcriptional modules 

mainly from microarray data. This kind of methods takes microarray data as a matrix 

containing a mixture of unknown signals that may correspond to specific biological 

sources. Unlike conventional clustering methods, these methods classify the genes by 

similarity in the expression of any chosen subset with tight correlated experiments, rather 

than by overall similarity in the expression on all conditions. In biology, this is 

reasonable because of the different combinatorial regulations between a TF and other TFs. 

In addition, they can also partition genes into mutually inclusive modules to reflect the 

fact that genes may have multiple functions or are active in multiple biological processes. 

A variety of matrix decomposition methods have been proposed for microarray data 
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analysis, including singular value decomposition (SVD), independent components 

analysis (ICA) and non-negative matrix factorizations (NMF). 

SVD is known as a popular implement for principal component analysis (PCA) in 

statistics. When applying SVD to the microarrays, it is a linear transformation of the 

expression data from the genes × arrays space to the reduced eigengenes × eigenarrays 

space. In the latter space, the data are diagonalized such that each eigengene is expressed 

only in the corresponding eigenarray, with the corresponding eigenexpression level 

indicating its relative significance. The eigengenes and eigenarrays are unique, and 

therefore also data-driven, orthonormal superpositions of the genes and arrays, 

respectively. Alter et al. [12] presented the use of SVD in analyzing genome-wide 

expression data. They normalized the data by filtering out the eigengenes (and 

eigenarrays) that are inferred to represent noise or experimental artifacts, and thus made 

meaningful comparison of the expression of different genes across different arrays in 

different experiments. Additionally, they sorted the data according to the correlations of 

the gene (and arrays) with eigengenes (and eigenarrays) and gave a global picture of the 

dynamics of gene expression, in which individual gene or array appears to be classified 

into groups of similar regulation and function, or similar cellular state and biological 

phenotype, respectively. Afterwards, upon comparing similar experiments, where a 

regulator was activated or repressed, the expression pattern of one of the significant 

eigengenes may be correlated with those of this regulator and its targets. This eigengene, 

therefore, can be associated with the observed genome-wide effect of the regulator. The 

expression pattern of the corresponding eigenarray is correlated with those observed in 

samples, in which the regulator is activated or repressed. This eigenarray, therefore, can 
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be associated with these samples. Unlike the traditional clustering methods, the groups of 

genes (or arrays) are not defined by overall similarity in expression, but only by 

similarity in the expression of any chosen subset of eigengenes (or eigenarrays). 

ICA is a powerful statistical and computational technique for revealing 

independent hidden factors that underlie sets of random variables, measurements, or 

signals. For the large observed multivariate data, ICA defines a generative model, where 

the data variables are assumed to be linear mixtures of some unknown latent variables. 

These latent variables (i.e. the independent components), assumed to be non-Gaussian 

and as mutually statistically independent as possible, can be linearly decomposed by ICA. 

ICA is very similar to PCA in that both methods project a data matrix into components in 

a different space. However, the goals of the two methods are different. PCA finds the 

uncorrelated components of maximum variance, and is ideal for compressing data into a 

lower-dimensional space by removing the least significant components. On the other 

hand, ICA finds the statistically independent components, and is ideal for separating 

mixed signals. Lee et al. [13] proposed applying ICA to decompose microarray data into 

independent gene expression patterns corresponding to putative biological processes, 

which can be characterized by the predominant functional annotations of genes within the 

component. They also grouped genes into mutually non-exclusive clusters with 

statistically significant functional coherence. Finally, they demonstrated that ICA 

outperformed other leading methods, such as principal component analysis, k-means 

clustering and the Plaid model, in constructing functionally coherent clusters on 

microarray datasets from yeast, worm and human. 
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NMF is a group of algorithms in multivariate analysis and linear algebra 

involving the decomposition of a nonnegative matrix V into two nonnegative matrices, W 

and H, via a multiplicative updates algorithm. In the context of a p×n gene expression 

matrix V consisting of observations on p genes from n samples, each column of W 

defines a metagene, and each column of H represents the metagene expression pattern of 

the corresponding sample. One characteristic of NMF is that, using dimensionality 

reduction, it is capable of identifying patterns that exist in only a subset of the 

experimental conditions, in which smaller sets of genes behave in a strongly correlated 

fashion. Such an approach might be particularly useful in identifying biological subsets 

of genes that function in concert in a relatively tightly regulated manner. It might also be 

an especially sensitive means for detecting functional genetic relationships. The most 

common application of NMF in computational biology has been in the area of molecular 

pattern discovery, especially for gene and protein expression microarray studies. This is 

an exploratory area characterized by lack of priori knowledge of the expected expression 

patterns for a given set of genes or any phenotype. However, NMF has proved to be a 

successful method in the elucidation of biologically meaningful classes. For instance, 

Kim et al. [14] applied NMF to cluster genes and predicted functional cellular 

relationships in yeast using gene expression data. Brunet et al. [27] applied it to elucidate 

cancer subtypes by decomposing leukemia and brain cancer data sets. 
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1.4. Computational approaches for inferring gene regulatory 

networks 

Although identification of individual gene modules is the important but 

elementary step in studying GRNs, synthesis of GRNs is the ultimate goal in systems 

biology. To understand the nature of cellular function, it is necessary to study the 

behavior of genes in a holistic, rather than individual, manner because the expressions 

and activities of genes are not isolated or independent of each other. Inferring GRNs 

involves the selection of a network model and the inference of topology and functions of 

the network from data. A lot of computational approaches have been developed to build 

models for mimicking GRNs, covering from continuous modeling to discrete modeling. 

By treating concentrations of gene products as time-dependent variables, three kinds of 

computational models are proposed so far, namely continuous-time and continuous-

variable models (e.g. differential equations), discrete-time and continuous-variable 

models (e.g. Bayesian networks) and discrete-time and discrete-variable models (e.g. 

Boolean networks).  

 

1.4.1. Differential equation models 

In systems biology, differential equations can relate changes in gene transcript 

concentration to each other and to an external perturbation. Thus, they have been widely 

used to model the dynamic behavior of GRNs in a more quantitative manner. Their 

flexibility allows describing complex relations among genes and their regulators. A 

modeling of the gene expression dynamics may apply ordinary differential equations 
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(ODEs): ( , , , )
dx

f x p u t
dt

 , where  1( ) ( ), , ( )nx t x t x t   is the gene expression vector of 

the genes 1, ,n  at time t, f is the function that describes the rate of change of the state 

variables ix  in dependence on the model parameter set p, and the externally given 

perturbation signals u. To reverse-engineer a GRN using ODEs means to choose a 

functional form for f and then to estimate the unknown parameters p from the gene 

expression data and other measured signals x, u and t, using some optimization technique. 

In general, without constraints, an ODE has multiple solutions and is not uniquely 

identifiable from data. Thus, the identification of model structure and model parameters 

requires specifications of the function f and constraints representing prior knowledge, 

simplifications or approximations. Specifically, the function f can be linear or non-linear. 

In reality, regulatory processes are usually characterized by complex non-linear dynamics. 

However, many GRN inference approaches based on differential equations only consider 

linear models or very specific types of non-linear functions in order to solve the ODEs 

numerically, because many differential equations cannot be solved analytically. 

Bansal et al. [28] developed TSNI algorithm to identify the gene network as well 

as the direct targets of the perturbations. Based on linear ODEs, TSNI is applied when 

gene expression data are dynamically (time-series) measured after a perturbation. For 

small networks (tens of genes), it is able to correctly infer the network structure. For large 

networks (hundreds of genes), its performance is best for predicting the direct targets of a 

perturbation. 

It is known that transcriptional regulation cannot be explained by simple linear 

systems. The identification of non-linear models is not only limited by mathematical 



 

 

24

difficulties in and computational efforts for solving ODE numerically and identifying 

parameters, but also mainly by the small sample size, which is usually insufficient to 

reliably identify non-linear interactions. Thus, the search space for non-linear model 

structure identification has to be stringently restricted. For this reason, inference of non-

linear systems employ predefined functions that reflect prior knowledge available. 

Sakamoto et al. [29] developed an evolutionary method for identifying small-scale GRNs 

from the observed time series microarray data by defining the non-linear polynomial 

ODEs as a model of the network. They applied the method only to three target networks 

and successfully inferred the systems of differential equations. 

 

1.4.2. Bayesian Networks 

A Bayesian networks is a graphical way to represent a particular factorization of 

the joint probability distribution (JPD) of a set of random variables in a probabilistic 

model. They have been a popular choice as computational approaches applied to the 

problem of reverse-engineering GRNs from various data, especially microarrays. A 

Bayesian network is a representation of a joint probability distribution over a set of 

random variables. It consists of two components: a directed acyclic graph (DAG) and a 

family of conditional distributions for each variable in the graph. Together, these two 

components determine a unique JPD. The structure of a DAG is defined by two sets: 

nodes and directed edges. The nodes represent random variables in the Bayesian sense, 

which may be observable quantities, latent variables, unknown parameters or hypotheses 

and are drawn as circles labeled by the variables’ names. If the variable represented by a 

node is observed, then the node is said to be an evidence node, otherwise it is said to be 
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hidden or latent. The edges represent direct causal dependencies between variables and 

are drawn by arrows between nodes. So a benefit of Bayesian networks is that they may 

be interpreted as a causal model that generated the data. In the model, an arrow from 

node A to node B indicates that a value taken by variable B depends on the value taken 

by variable A. Node A is then referred to as a parent of B and, similarly, B is referred to 

as the child of A. An extension of these genealogical terms is often used to define the sets 

of “descendants” -- the set of nodes that can be reached on a direct path from the node, or 

“ancestor” nodes -- the set of nodes from which the node can be reached on a direct path. 

The structure of the acyclic graph guarantees that there is no node that can be its own 

ancestor or its own descendent. Such a condition is of vital importance to the 

factorization of the joint probability of a collection of nodes. Although the arrows 

represent direct causal connection between the variables, the reasoning process can 

operate on Bayesian networks by propagating information in any direction. A Bayesian 

network reflects a simple conditional independence statement. Namely, each variable is 

conditional independent of its nondescendents in the graph given the state of its parents. 

More specifically, if a node has no ancestor, its local probability distribution is said to be 

unconditional, otherwise it is conditional. This property is used to significantly reduce the 

number of parameters that are required to characterize the JPD of the variables. This 

reduction provides an efficient way to compute the posterior probabilities given the 

evidence. 

Bayesian networks reflect the stochastic nature of gene regulation and assume that 

gene expression values can be described by random variables, which follow probability 

distributions. As they represent regulatory relations by probability, Bayesian networks are 
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thought to model randomness and noise as inherent features of gene regulatory processes. 

This ability to handle incomplete noisy data as well as hidden variables and to avoid 

over-fitting a model to training data makes Bayesian networks attractive candidates for 

GRN modeling. Most importantly, Bayesian networks provide a very flexible framework 

for integrating various types of data and prior knowledge in the process of GRN inference 

to derive a suitable network structure. Methods for learning Bayesian networks usually 

contain three essential progresses, namely model selection, parameter fitting and fitness 

rating. Model selection is to define a DAG as candidate graph of relationships. Parameter 

fitting is to find the best conditional probabilities (CPs) for each node given a graph and 

experimental data. Fitness rating is to score each candidate model. The higher the score, 

the better the network model (the DAG and the learned CP distribution) fits to the data. 

The model with the highest score represents the GRN inference result. Thereby, the 

critical step is model selection. The naive approach is to simply enumerate all possible 

DAGs for the given number of nodes. Unfortunately, the number of DAGs grows super-

exponentially as the number of nodes increases. Thus, the problem of finding an optimal 

network is NP-hard. Consequently, one has to choose between restricting to small gene 

networks and inferring suboptimal networks by heuristic search methods. Therefore, 

heuristics are always needed to efficiently learn a Bayesian network. 

Bayesian networks are widely used for GRN reconstruction. Friedman et al. [30] 

applied this method to the S. cerevisiae cell-cycle measurements of Spellman et al. [2]. 

They demonstrated that Bayesian network has the advantage over the clustering approach 

in that it attempts to discover causal relationships and interactions between genes other 

than positive correlation, and finer intracluster structure from data. Hartemink et al. [31] 
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also proposed a technique for scoring models of genetic regulatory networks based on 

Bayesian networks to analyze yeast expression data. In their approach, Bayesian 

networks are used to describe relationships between variables in a GRN. Unlike other 

clustering approaches, a Bayesian network can describe arbitrary combinatorial control of 

gene expression and thus is not limited to pair-wise interactions between genes. Due to 

their probabilistic nature, Bayesian networks are robust in the face of both imperfect data 

and imperfect models. Moreover, Bayesian networks permit latent variables capturing 

unobserved factors and allow relationships at varying levels of refinement to be specified. 

Most importantly, the models are biologically interpretable and can be scored rigorously 

against observational data. 

However, the conventional Bayesian network has some major limitations. First, 

several networks with the same undirected graph structure but different directions of 

some edges may represent the same JPD. Hence, relying on expression levels only, the 

origin and the target of an interaction become indistinguishable. Second, the acyclicity 

constraint eliminates feedback loops that are essential in GRNs. Third, it does not 

account for the dynamics of a gene regulatory system. Fortunately, these limitations may 

be overcome through generalizations like dynamical Bayesian networks (DBNs), which 

model the stochastic evolution of a set of random variables over time. In comparison with 

general Bayesian networks, discrete time is introduced and conditional distributions are 

related to the values of parent variables in the previous time point. DBNs separate input 

nodes from output nodes, i.e. each molecular entity is represented by a regulator node 

(representing the expression level at time t) as well as by a target node (representing the 
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expression level at time t t  ). Therefore, DBNs are able to describe regulatory 

feedback mechanisms, because a feedback loop will not create a cycle in a DBN. 

Perrin et al. [32] applied DBN to the experimental data relative to the S.O.S. DNA 

Repair network of the Escherichia coli bacterium. DBN appears to be able to extract the 

main regulations between the genes involved in this network. Dojer et al. [33] applied 

DBN to the realistic simulations data to infer a relative large scale GRN (10 genes) and 

showed that the quality of inferred networks dramatically improves when integrating 

perturbation experiments into time series microarrays. 

Shen et al. [34] presented a Bayesian network approach called GBNet to infer 

GRNs, which focused on the combinatorial regulation of TFs by searching the 

cooperative DNA motifs in transcriptional regulation and the sequence constraints that 

these motifs may satisfy. We showed that GBNet outperformed the other available 

methods in the simulated and the yeast data. We also demonstrated the usefulness of 

GBNet on learning regulatory rules between YY1, a human TF, and its cofactors. Most of 

the rules learned by GBNet on YY1 and cofactors were supported by literature. In 

addition, a spacing constraint between YY1 and E2F was also supported by independent 

TF binding experiments. 

 

1.4.3. Boolean Networks 

The first Boolean networks were proposed by Stuart A. Kauffman in 1969 [35] to 

model GRNs at the coarse level. In a Boolean network, each gene, each input, and each 

output is represented by a node in a directed graph, where there is an arrow from one 
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node to another if and only if there is a causal link between the two nodes. The state of 

each node in the graph can be characterized as either ON (one) or OFF (zero). For a gene, 

ON corresponds to the gene being expressed; for inputs and outputs, ON corresponds to 

the substance being present. Time is viewed as proceeding in discrete steps. At each step, 

the new state of a node is a Boolean function of the prior states of the nodes with arrows 

pointing towards it. As a discrete dynamical network, continuous gene expression signals 

have to be transformed to binary data before inferring a Boolean network. The 

discretization can be performed by clustering and thresholding, using support vector 

regression. We can view Boolean networks as coarse simplifications of the differential 

equation models. 

Although the continuous approaches, such as ODEs and Bayesian networks, have 

a more accurate physical representation of the system, Boolean networks may represent 

the only practical alternative for modeling large-scale genetic regulatory systems. One of 

the main objectives of Boolean network modeling is to study generic coarse-grained 

properties of large genetic networks and the logical interactions of genes, without 

knowing specific quantitative details. The biological basis for the development of 

Boolean networks as models of genetic regulatory networks lies in the fact that during 

regulation of functional states, the cell exhibits switch-like behavior, which is important 

for cells to move from one state to another in a normal cell growth process or in 

situations, when cells need to respond to external signals, many of which are detrimental. 

Recent study indicates that many realistic biological questions may be answered within 

the seemingly simplistic Boolean networks, which emphasizes fundamental, generic 

principles rather than quantitative biochemical details. Moreover, Boolean networks is 
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the only model system that is able to yield insights into the overall behavior of large 

genetic networks and allow the study of large high-throughout data in a global fashion. 

Shmulevich et al. [36] addressed the problem of inferring the structure of GRNs 

using the Boolean network model with so-called Best-Fit Extension method. They 

showed that the problem of identifying the network structure using Boolean networks is 

polynomial-time solvable, implying its practical applicability to real data analysis. 

Nevertheless, the most salient limitation of standard Boolean networks is their 

inherent two-state determinism in the complicated genetic network of higher-order 

eukaryotes. In higher organisms, it is more likely that the regularity of genetic function 

and interaction known to exist is not due to switch-like logical rules, but rather to the 

intrinsic self-organizing stability of the dynamical system, despite the existence of 

stochastic components in the cell. Therefore, the assumption of only one logical rule per 

gene may lead to incorrect conclusions when inferring these rules from gene expression 

measurements, as experimental data are typically noisy and the number of samples is 

small relative to that of parameters to be inferred. Probabilistic Boolean Networks (PBNs) 

is introduced to overcome the deterministic rigidity of Boolean networks. The basic idea 

of PBNs is to extend the Boolean network to accommodate more than one possible 

function for each node. PBNs share the appealing properties of Boolean networks, but are 

able to cope with uncertainty, in both the data and the model selection. In a PBN, just one 

Boolean function giving the next state of a variable is likely to be only partially accurate. 

In most situations, different Boolean functions may actually describe the transition, but 

these are outside the scope of the conventional Boolean model. Consequently, if we are 

uncertain which transition rule should be used, a PBN involving a set of possible Boolean 
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functions for each variable may be more suitable than a network, in which there is only a 

single function for each variable. PBN represents an interface between the absolute 

determinism of Boolean networks and the probabilistic nature of Bayesian networks, in 

that it incorporates rule-based uncertainty. This compromise is important because rule-

based dependencies between genes are biologically meaningful, while mechanisms for 

handling uncertainty are conceptually and empirically necessary [37]. 

Shmulevich et al. [38] developed a PBN model for random gene perturbations to 

assess the effect of gene perturbations on long-run network behavior and to derive an 

explicit formula for the perturbation probabilities. Their result demonstrated that states of 

the network that are more 'easily reachable' from other states are more stable in the 

presence of gene perturbations. 

 

1.5. Network Validation 

Network validation after reconstruction of GRNs is necessary. However, the 

validation of GRNs may be a very difficult task because the presumptions that underlie 

the chosen modeling architecture and modeled components may oversimplify the true 

complexity in GRNs [39]. In addition, the available data is noisy and inadequate with 

respect to the data requirements for large-scale models. Furthermore, the inference result 

is not always unique, i.e. some model elements cannot be identified. As a general rule, 

the predicted models should be validated by data, information and observations that are 

not used for modeling. Usually, there are two main ways to validate GRNs, i.e. 

experimentally or computationally. 
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1.5.1. Experimental Validation 

Scientific discovery is an iterative process of building models to explain 

experimental observations and validating models with new experiments. Therefore, 

experimental validation is the direct and reliable method to investigate the authenticity of 

biological meanings of inferred GRNs. Usually, experimental validation includes 

analyzing the network, choosing the best new experiments to test the GRN, conducting 

the experiments, and integrating the resulting data. The problem of choosing the best 

experiments to estimate a model has been a significant area of research in validation. 

Yeang et al. [40] describe an experimental validation and refinement method by utilizing 

the inferred GRNs as a criterion for choosing optimal knockout microarray experiments. 

If an intermediate gene knockout fails to affect downstream genes in a pathway, that 

pathway is removed from the model. Using this procedure, they evaluated 38 candidate 

regulatory networks in yeast and perform four high-priority gene knockout experiments. 

The refined networks supported previously unknown regulatory mechanisms downstream 

of SOK2 and SWI4. 

 

1.5.2. Computational Validation 

However, in most cases, the experimental validation is either unaffordable or 

infeasible, for instance, the knockout experiments of fatal TFs. Furthermore, besides the 

data already used for GRN modeling, there are still lots of other data sources not utilized 

and available for the validation, such as other type experiment data, annotations and 
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literatures. Therefore, computational validation has become the important and efficient 

validation method. Chaturvedi et al. [41] developed a technique to validate large-scale 

GRNs by comparing with corresponding protein-protein interaction (PPI) networks. The 

GRN were obtained with Bayesian networks while PPI networks were obtained from 

database of known PPI interactions. They looked for exact matches and then reduced 

networks by skipping one or more genes in GRN. They demonstrated their technique on 

expression profiles of differentially expressed genes in the S. cerevisiae cell cycle. They 

validated GRNs against a merged database of 53235 genes. The precisions of GRN 

obtained over all genes were from 0.82 to 0.95 in all the phases. Batt et al. [42] presented 

an approach for the validation of models of GRNs, which combines a method for 

qualitative modeling and simulation with techniques for model checking. The 

applicability of this model-validation approach was illustrated by the analysis of the 

complex regulatory network underlying the nutritional stress response of E.coli. They 

constructed a model of a part of this network, consisting of key proteins and their 

interactions involved in the carbon starvation response, and validated this model by the 

available experimental data in the literature. 

 

1.6. Discussion 

Figure 1 illustrates an overall flow diagram for inferring GRNs. Experimental 

biologists have designed high-throughput technologies of increasingly higher quality and 

provided more and more various valuable omics data. Meanwhile, these data have greatly 

facilitated the implementation of numerous sophisticated algorithms, which have been 
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proposed for reverse engineering of GRNs. The GRN, a functional network in living 

organisms at the gene level, involves a lot of extremely complicated biochemical 

progresses, which includes not just DNAs but other components such as proteins, 

metabolites, etc. The purpose of GRN is to represent the transcriptional cascades and the 

regulation rules underlying the gene expression. Understanding GRNs can provide new 

ideas for treating complex diseases and breakthroughs for designing new drugs. The first 

step to infer GRNs is to identify gene modules of a TF, including discovery of TFBS, 

prediction of TF targets and determination of TF activities. These gene modules have 

been further utilized to build the networks between TFs or TF and other co-regulatory 

proteins. Sometimes, this network reconstruction also employs the raw experiments data 

directly. All predicted networks required the validation from either experimental or 

computational evidence. The proved networks can be used in turn as the data resource to 

identify gene modules or establish GRNs. Moreover, the demand for high quality 

experimental data from the computational methodology drives speedy development of the 

high-throughput technologies, while the massive data sets have raised the need for 

effective and efficient analysis algorithms. Therefore, the whole process of inferring 

GRNs is an iterative benign cycle. 
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Figure 1. Flow chart for inferring GRNs. 
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Chapter 2. TRANSMODIS: Identification of Direct Target 

Genes Using Joint Sequence and Expression Likelihood with 

Application to DAF-16 

2.1. Introduction 

One of the major goals in the post-genome era is to establish a connectivity 

diagram of transcription network, which requires identification of direct targets of TFs. 

One commonly used approach to detect regulatory interactions between TFs and genes is 

ChIP-chip [17; 18], which is a binding assay. However binding of a TF to regulatory 

sequences does not necessarily imply regulation of gene expression. Furthermore, the 

applicability of ChIP-chip analysis is limited by the availability of antibody against a TF 

of interest. Therefore, ChIP-chip experiment is often complemented by functional assays 

using gene microarray. 

To determine genes that are regulated by a specific TF, the TF is constitutively 

activated or inhibited such that the target genes of the TF should have significant 

expression changes in most of these experiments, which we call TFPEs [43]. In TFPEs, a 

combination of thresholds, e.g. the least amount of fold change considered to be 

significant and the minimum number of experiments in which the gene expression 

changes are required to be significant, need to be pre-specified. However the choice of 

threshold values tends to be arbitrary. Thresholds are usually hand-picked on a case-by-

case basis, depending on the data set. More importantly, direct and indirect targets of the 

TF cannot be discriminated by expression alone. 
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In this paper, we present a probabilistic model called TRANSMODIS 

(TRANScription MOdule DIScovery) which integrates sequence and expression 

information in target identification. The parametric model can remove the arbitrariness 

commonly associated with the selection of thresholds for gene expression change. 

Consideration about the presence or absence of a binding motif in promoters can help 

distinguish direct from indirect targets. Many motif finding algorithms have been 

developed and the performance of motif finding algorithms has been steadily improving. 

We thus assume that the core binding motif of a TF of interest has been determined a 

priori and is provided as an input to TRANSMODIS. TRANSMODIS is not a motif 

finding algorithm, rather it focuses on determining direct targets of a TF. 

Several computational methods had been developed previously to identify direct 

targets of TFs. MARSMotif [44; 45] fits splines to gene expressions and determines 

motifs and genes regulated by the motif simultaneously. Beyer et al. [46] applied a 

Bayesian method to integrate various types of information to generate a list of putative 

targets of TFs in yeast. Their approach was not designed to identify targets of a TF in 

multiple microarray experiments. ARACNe [47] is an approach for reconstructing 

regulatory Target Gene Identification networks from a large number of expression 

profiles. It first identifies statistically significant gene-gene coregulations, and then 

eliminates indirect relationships, which are thought to be the weakest interactions within 

three-gene loops. The idea is that the remaining edges in the network should have a high 

probability of representing either direct regulatory interactions or interactions realized by 

post-transcriptional modifications. ARACNe is a novel approach; however it does not 

make use of any sequence data and its inferred gene-gene interactions are non-directional. 



 

 

38

Segal et al. [48; 49] built probabilistic models to search for genes showing similar 

expression patterns and also sharing common motif profiles. Their models were complex 

and the parameters of their models were learned iteratively via greedy search. Compared 

with the general scenario that Segal et al. were dealing with, TRANSMODIS handles a 

much simpler situation. As the core motif is given and the target genes of the TF of 

interest should show significant expression changes in most of the experiments, the 

search for optimal parameter values in TRANSMODIS is less likely to be trapped in local 

optima. 

The intuition behind TRANSMODIS is that genes containing the consensus core 

motif of the TF as well as exhibiting consistent expression changes in all TFPEs are 

likely to be true direct targets. In TRANSMODIS, gene expressions are modeled by a 

two-component Gaussian mixture model and the binding site sequences are assumed to 

be generated from a multinomial distribution which is represented by a PSWM. By 

maximizing the joint likelihood of sequence and expression, TRANSMODIS identifies a 

set of genes that have consistent and highly elevated expressions and high scoring 

putative binding sites. 

TRANSMODIS is a generalization of MODEM [10], a model we developed 

previously that is applicable only to a single gene expression microarray or ChIP-chip 

experiment. Compared with MODEM, TRANSMODIS is less sensitive to noise in 

individual experiments because of the consistency requirement on gene expression level 

across multiple experiments. TRANSMODIS also adds an additional step to score genes 

that do not contain a copy of the consensus binding motif in their promoter regions. 
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Because consensus binding motif is not known for every TF and sets of TFPEs are 

limited, a true genome-wide verification of TRANSMODIS is not yet practical. Thus we 

validated the performance of TRANSMODIS on Pho4p, a TF in budding yeast 

Saccharomyces cerevisiae. A comparison with previously reported target genes and the 

target genes selected by the original authors who did the perturbation experiments 

showed that TRANSMODIS is a promising method for direct target identification and is 

expected to yield a low false discovery rate (FDR) in general. On a larger scale, 

TRANSMODIS was applied to a set of ChIP-chip data [8] and evaluated against two 

other methods. Since no complete list of targets of any TF is known, the comparison was 

based on positive prediction value (PPV), which is the portion of true positives in all 

findings. TRANSMODIS demonstrated better performance than the two other methods 

on a majority of the 81 TFs tested. We then applied TRANSMODIS to identify 

immediate targets of DAF-16, which is a critical TF influencing the lifespan of nematode 

Caenorhabditis elegans. 

 

2.2. Results 

2.2.1. Validation of TRANSMODIS by simulation 

We first validated TRANSMODIS on simulated data where the true targets were 

known. Each simulated data set consisted of 1000 genes and ten experiments. Out of the 

1000 genes, ten were targets and the other 990 genes were non-targets. The expression 

values of non-target genes were identically and independently sampled from the standard 

normal distribution N(0,1). And those of targets were simulated from the normal 
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distribution with a mean of three and a variance of one N(3,1). To make the problem 

more challenging, within each experiment, ten non-target genes were randomly selected 

to have their expressions drawn from the N(3,1) distribution of target genes and five 

target genes were randomly selected to have their expressions reduced by half. 

The consensus binding motif was chosen to be TGTTTAC. All target genes had 

this core binding motif present in their upstream sequences except for two of the ten 

target genes, which had binding motifs that differed from the consensus binding motif in 

two nucleotides, namely, TTTTAAC and AGTTTCC. The upstream sequences of all 

non-targets were simply generated from the uniform background. Each upstream 

sequence was 600-nucleotide long. 

A total of ten simulated data sets were generated and analyzed. The results are 

listed in Table 1. TRANMODIS showed a clear advantage over MODEM on the 

simulated data sets. With most Target Gene Identification data sets (9 out of 10), 

TRANSMODIS identified the complete set of true targets except for the fifth simulated 

data set, where TRANSMODIS missed one true target. TRANSMODIS had no false 

positives in all cases. MODEM, on the other hand, failed to find any target genes by the 

majority voting rule. Note that when MODEM was applied to an individual array, it did 

identify a list of targets; however since most of the genes on the lists were false positives, 

no gene (including true targets) made half of the lists. The number of true targets on most 

lists was between zero and two. Thus the simulation study showed that the gain of using 

information from all arrays all at once by TRANSMODIS was substantial. 
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2.2.2. Validation of TRANSMODIS in Saccharomyces cerevisiae  

To further validate the model, TRANSMODIS was applied to identify immediate 

targets of Pho4p, a TF in model organism Saccharomyces cerevisiae. Multiple 

perturbation microarray experiments were done for Pho4p. The PHO regulatory system is 

one of the most well studied pathways in Saccharomyces cerevisiae. In a low phosphate 

(Pi) concentration medium, the cyclin-dependent kinase (CDK) inhibitor Pho81p 

inactivates the Pho80p-Pho85p complex, leading to an accumulation of 

hypophosphorylated form of Pho4p in the nucleus and subsequent activation of 

phosphate responsive genes. In order to identify all genes involved in the phosphate 

response, Ogawa et al. [7] carried out eight microarray experiments, namely, low Pi vs. 

high Pi in WT (NBW7) exp 1, low Pi vs. high Pi in WT (NBW7) exp 2, low Pi vs. high 

Pi in WT (DBY7286), PHO4c vs. WT, pho80Δ vs. WT, pho85Δ vs. WT, PHO81c vs. WT 

exp 1 and PHO81c vs. WT exp 2. Pho4p was active in each of these experiments and up-

regulated expressions of its target genes. Ogawa et al. considered a set of 20 genes that 

showed at least a two-fold increase of expression in at least five out of the eight 

experiments as Pho4p targets. In contrast to the somewhat arbitrary criterion used by 

Ogawa et al., TRANSMODIS provides a parametric model to remove this arbitrariness. 

Using the known binding motif CACGTGG of Pho4p and the eight microarray 

experiments of Ogawa et al. as inputs, TRANSMODIS found 19 genes from the entire 

Saccharomyces cerevisiae genome (about 6000 genes) as Pho4p targets (Table 2 and 

Table 8). The 19-gene TRANSMODIS target list was nearly identical to the 20 genes 

identified by Ogawa et al. except for YER038C, which was dropped by TRANSMODIS. 
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The YER038C gene is unlikely to be PHO-regulated because it does not contain the 

consensus Pho4-binding motif or variants in its promoter. 

There were nine genes reported to be PHO-regulated prior to the study of Ogawa 

et al. These nine genes were PHO11, PHO5, PHO89, PHO8, SPL2, PHO12, PHO86, 

PHO84 and PHO81 [7]. All of them except PHO81 were correctly identified as targets by 

both Ogawa et al. and TRANSMODIS. A heatmap of the expression profiles of PHO81 

and its two homologs YPL110C and SPL2 is shown in Figure 2. The heatmap reveals that 

SPL2 had a consistently higher differential expression in all experiments (an average 

increase of 16-fold) than PHO81 and YPL110C (an average increase of 1.6-fold and 2-

fold respectively) (p-value = 0.015 from two-sample t-test) (Figure 2). Indeed, both 

Ogawa et al. and TRANSMODIS identified SPL2 as a Pho4p target. Based on the gene 

expression data, the selection of SPL2 and the omission of PHO81 and YPL110C by 

TRANSMODIS are consistent with one’s intuition. 

TRANSMODIS is an extension to MODEM, which was developed for analyzing 

a single microarray experiment. To compare the performance of TRANSMODIS with 

that of MODEM, we applied MODEM in two different ways on this data set. The first 

approach was to calculate the average expression of each gene in all experiments and 

apply MODEM to this ‘‘single’’ array of averaged expressions. The second approach was 

to apply MODEM on all eight expression data separately and then select target genes 

using majority voting (Table 2). We have also listed the MODEM result on a single 

PHO4 mutation experiment PHO4c vs. WT, in which the Pho4p was constitutively active 

in Table 2. 
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One of the known targets, PHO81, was missed by all approaches because of the 

weak evidence in the expression data (Figure 2). The eight other earlier known targets 

were successfully identified by all approaches. Only PHO86 was missed when MODEM 

was run on the averaged expression profile of all arrays. It is not surprising that 

TRANSMODIS was more stringent than MODEM, identifying fewer targets than 

MODEM. The average number of target genes found by MODEM from an individual 

experiment of Ogawa et al. was 32. By requiring consistent up-regulation in all 

experiments, TRANSMODIS can filter out non-targets that would otherwise be 

erroneously identified from a single array analysis. At the same time, being less sensitive 

to random noise in individual experiments, TRANSMODIS can recover some of the true 

targets that would otherwise be missed by MODEM. 

Different from MODEM, TRANSMODIS has an additional step of scoring 

promoter sequences that do not contain the consensus core motif (up to a certain number 

of allowed mismatches). Upon evaluation of such a gene without the core motif, if the 

probability of being a true target using the learned model parameters is greater than 0.5, 

TRANSMODIS will tag this gene as a target as well. For example, TRANSMODIS 

identified PHM7 as a Pho4p target; the putative binding site in PHM7 was found to be 

CAAGTGC, which differs from the consensus binding motif in two nucleotides and 

therefore was not evaluated by MODEM. 
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2.2.3. Comparative assessment of TRANSMODIS 

There are only a limited number of multiple perturbation experiments publicly 

available for the same TFs. In order to assess the performance of TRANSMODIS on a 

genomic data set, we applied it to the ChIP-chip data of 204 TFs [50]. The ChIP-chip 

experiments were done under different conditions for a portion of the 204 TFs. There are 

26 and 15 TFs for which ChIP-chip experiments were done under 3 and .3 conditions 

respectively. Since the TFs were not necessarily active under each of these conditions and 

the number of experiments was small, we could not blindly apply TRANSMODIS to 

experiments available for a TF. We therefore analyzed each ChIP-chip experiment 

separately and manually selected the experiment that satisfied the following two criteria: 

there is a significant motif identified by REDUCE [51] in the experiment and the 

enriched functions of the identified target genes are consistent with those of the TFs. 

We compared the performance of TRANSMODIS with two other methods for 

identifying TF binding. The first one is a Bayesian method that integrates diverse 

information to predict TF binding in yeast [46] and the second one is an error model 

developed by Young and colleagues [17]. Since no complete list of targets for any TF is 

available, sensitivity and specificity cannot be calculated for any of these methods. 

Therefore, we computed PPV, the portion of true positives in the total predictions. The 

true positives were taken from three databases: TRANSFAC, SCPD and YPD. We 

compared the results of the three methods on 81 TFs that had at least one target gene 

known in the literature and on which the Bayesian method made predictions (Table 3). 

On average, the Bayesian method had the most predictions while the error model 

had the least. The average PPV for the TRANSMODIS, the Bayesian method and the 
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error model were 8.58%, 6.57% and 6.32%. More specifically, TRANSMODIS 

performed better than the Bayesian method and the error model on 44 and 46 TFs 

respectively, and TRANSMODIS performed worse than the other two methods on 22 and 

13 TFs respectively. The PPVs are small for all three methods, which is probably due to 

the fact that only a small set of conditions was tested in the ChIP-chip experiments. It 

also highlights the need to continuously improve target identification methods. 

 

2.2.4. Identification of genes involved in ageing 

Encouraged by the success of TRANSMODIS on finding direct targets of TFs in 

Saccharomyces cerevisiae, we applied it to tackle a more challenging problem, namely 

the identification of direct targets of DAF-16 in nematode Caenorhabditis elegans. DAF-

16 is a TF playing critical roles in worm ageing. The mechanism of ageing remains to be 

an important and unsolved mystery. Whereas the normal lifespan of an adult worm is 

only two to three weeks, individuals carrying mutations that decrease insulin/insulin-like 

growth factor 1 (IGF-1) signaling can live twice as long [52]. Mutations in gene daf-2, 

which is predicted to encode an insulin/IGF receptor ortholog, together with a 

downstream TF, DAF-16, can increase lifespan significantly. DAF-2 negatively regulates 

the activity of DAF-16, a FOXO-family TF. 

Identifying direct targets of DAF-16 can shed light on the functional mechanism 

of DAF-16 at influencing lifespan. Lee et al. [53] took a comparative genomics approach 

to identify orthologous genes containing the conserved DAF-16 binding sites in their 

promoter sequences and Oh et al. [54] used ChIP followed by cloning to search for direct 
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downstream targets of DAF-16. Lee et al. found that the expression of 7 genes were 

controlled by DAF-16 while Oh et al. chose to study 33 genes out of 103 candidates and 

18 genes showed significant (either up or down) expression changes in a DAF-16 

dependent manner. The results of these studies were useful but the number of direct 

targets identified was limited. To identify genes that are regulated by the DAF-2 pathway 

and investigate their roles in the ageing process, Murphy et al. [55] deduced the daf-2 and 

DAF-16 activity using RNAi and analyzed the resultant gene expression profiles using 

cDNA microarrays. First, genes with a minimum of fourfold expression change were 

selected by hierarchical clustering of 60 arrays (5 mutant arrays plus 55 time course 

arrays); in addition, genes showing highly consistent expressions, regardless of the 

amount of fold change, were also included. Then based upon the p-values obtained from 

SAM [56] and a visual inspection of genes for genes that were more overly expressed 

than the others, a top group of 58 genes was chosen to be further validated for their 

influence on lifespan. 

The gene expression microarray experiments conducted by Murphy et al. were 

functional assays and had multiple time points. We re-analyzed the data using 

TRANSMODIS to automatically identify the direct targets of DAF-16 without arbitrary 

thresholds and human involvement. We pooled together the time course data, which 

consisted of an early adult time course (ten time points from 0-48 h of adulthood) and a 

longer time course (ten time points from 0-192 h of adulthood), on worms exposed to 

daf-2 RNAi and worms exposed to daf-16 and daf-2 RNAi. Arrays at 0h time point were 

left out of the analyses and we also discarded eight arrays with a high percentage of 

missing data. It left us with a set of twenty eight arrays. The numbers of daf-2(RNAi) 
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treatments and daf-2(RNAi);daf-16(RNAi) treatments were approximately equal (15 

versus 13). We retrieved 1kb upstream sequence of the translational start site of each 

ORF from WormBase [57]. 

Using the twenty eight time course gene expression arrays, the upstream sequence 

data, and the binding motif TRTTTAC defined by Murphy et al., TRANSMODIS was 

run twice to the same data set with signs inverted in the second run, giving two classes of 

genes. Following the nomenclature defined in Murphy et al., class 1 genes are genes that 

were induced in daf-2(RNAi) animals but repressed in daf-2(RNAi);daf-16(RNAi) 

animals, and class 2 genes are the opposite genes which were repressed in daf-2(RNAi) 

animals but induced in daf-2(RNAi);daf-16(RNAi) animals. Class 1 and class 2 genes are 

candidate genes that extend and shorten worm lifespan respectively. 

TRANSMODIS identified 39 class 1 genes and 150 class 2 genes (Figure 3 Table 

9 and Table 10), compared with 263 class 1 genes and 251 class 2 genes that were found 

by Murphy et al. using hierarchical clustering. Twenty of the TRANSMODIS predictions 

are in common with the 58 genes in Murphy et al. Furthermore the two lists of class 1 

genes share 34 genes and the two class 2 gene lists overlap with 44 genes. The amount of 

overlap is statistically significant. Hierarchical clustering by itself cannot distinguish 

between direct and indirect targets. That was why Murphy et al. used other criteria to 

prioritize their target list. TRANSMODIS provided a systematic and automatic target 

selection procedure that can be used in place of the original authors’ method which 

needed human involvement. 

There was no significant overlap between the targets found by TRANSMODIS 

and the two previous studies of Lee et al. and Oh et al.. The target genes identified by Lee 
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et al. and Oh et al. did not have consistent significant expression changes in the time 

course experiments of Murphy et al. It could be that those genes are regulated by DAF-16 

transiently or only at a specific temporal stage. For example, the expression of ZK593.4 

was significantly upregulated in the short time course experiments of daf-2 RNAi at 1, 3, 

4, 6, 8 and 12 hour time points, but showed almost no change in the long time course 

experiments of daf-2 RNAi. In the double daf-2;daf-16 RNAi knock-down experiments, 

ZK593.4 had significant down-regulation only at the first three time points. Such a 

pattern was not unique to ZK593.4 and was observed for thousands of genes and hence it 

is hard, if not impossible, to pick out direct targets of DAF-16 exhibiting this particular 

pattern. The targets identified by TRANSMODIS could be complementary to the 

previous studies of Lee et al. and Oh et al.. 

The extended motifs (the core motif plus immediate flanking regions) of the 

TRANSMODIS targets are shown in Figure 4 and the extended motifs of the two classes 

differ significantly at the flanking regions. The class 1 genes seem to prefer 

GSGAGNNTRTTTACTBCANCG (the core motif is underlined) while the class 2 genes 

seem to prefer STCGACRTRTTTACAGNTSGS. It was suggested that DAF-16 can 

function both as an activator and a repressor [53; 55]. The direction of regulation by 

DAF-16 may depend on cooperation between DAF-16 and other TFs binding to the same 

promoter [53; 55]. Our finding suggests the possibility that the binding sites of the other 

TFs may partially overlap with that of DAF-16. We therefore hypothesize that the 

extended motifs of the two target classes are recognized by TFs that function side by side 

with DAF-16 in a competitive or cooperative manner. This hypothesis can be tested 

experimentally by using immobilized DNA segments to pull down the cofactors. 
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We searched for enriched motifs in the 1 kb upstream sequences of 

TRANSMODIS targets using MobyDick [58], a dictionary motif finding algorithm. The 

MobyDick algorithm found approximately 300 motifs in each class of targets. We 

clustered these motifs based on their similarities and evaluated the significance of their 

occurrences using bootstrap. Among the class 1 targets, AGTTCC, CTCCACC, 

CTGATAAG and CTTATCA were significantly enriched (p-values<0.01, unadjusted for 

multiple testing). The p-value of a motif was computed as the probability of observing 

the same or larger number of occurrences of that motif in a random set of genes, which 

was a bootstrap sample without replacement from the entire Caenorhabditis elegans 

genome. We took 10,000 bootstrap samples to compute the p-values. The motif 

CTTACTA matched the binding motif of GATA family of TFs documented in 

WormBase and was also identified as an enriched motif by Murphy et al.. Murphy et al. 

pointed out in their paper that the motif CTTATCA might be bound by a TF that 

cooperates with DAF-16. Among the TRANSMODIS class 2 genes, the following motifs 

were significantly enriched: AGATKAGR, CTGATAAG and CTTATCA. We then 

scanned the 2000 bp upstream region of translational start site of TRANSMODIS class 1 

and class 2 homolog genes (the best BLAST matches) in human. The motif CTGATAAG 

was found to be enriched in the class 1 human genes as well (bootstrap p-value = 0.0061), 

which suggested that this motif may have functional roles. The other motifs had failed to 

make the 0.01 p-value cutoff. It is not clear at this point whether CTGATAAG is an 

extended reverse variant of the canonical GATA motif TGATAAG or a binding site for 

another TF. There are 11 GATA factors encoded in the Caenorhabditis elegans genome. 

The deviation of CTGATAAG from the canonical GATA motif implies that, if it is 
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indeed bound by a GATA factor, then only a subset of GATA factors specifically bind to 

this motif and cooperate with DAF-16 to regulate the class 1 genes. Since 

oxidoreductases are enriched in the class 1 genes (see below) and GATA factors MED-1 

and MED-2 are known to be involved in oxidative stress response mediated by SKN-1 

[59], MED-1 and MED-2 should be the first TFs to be investigated. 

To understand the mechanism of DAF-16 at affecting lifespan, we examined 

enriched molecular functions for the two classes of target genes. On the Murphy et al. 

class 1 and class 2 genes, the GO term analysis showed that the class 1 genes were 

enriched for oxidoreductase activities and the class 2 genes were enriched for peptidase 

activities. The target genes selected by TRANSMODIS had significant overlap with the 

Muphy et al. genes for both classes. However while there were still many 

oxidoreductases among the TRANSMODIS class 1 genes, the TRANSMODIS class 2 

genes were no longer enriched for peptidase activities. Therefore there were slight 

changes in the GO term analysis results between the two sets of class 2 genes. 

Among the twenty TRANSMODIS class 1 genes that had gene ontology 

annotations, nearly half of them (9 out of 20) were oxidoreductases (the Bonferroni 

corrected p-value was about 10-4). Numerous correlations between oxidative stress 

resistance and longevity have been described [60], consistent with the observation that 

daf-2 RNAi worms lived significantly longer than wild types. This observation also 

highlights the regulatory role of DAF-16 on oxidoreductases to extend lifespan. The nine 

oxidoreductases are C30G12.2, R09B5.6, C06B3.4, W06D12.3, C06B3.5, B0213.15, 

K12G11.3, F11A5.12 and K07C6.4. Murphy et al. had examined five of them, namely 

C06B3.4, B0213.15, K12G11.3, F11A5.12 and K07C6.4, on affecting animal lifespan 
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using RNAi. Knocking down the activities of all but B0213.15 extended lifespan, though 

not significantly. No significant biological processes or compartments were found, 

implying that the oxidoreductases are involved in many different processes. Combined 

with the functional study in, the GO term analysis suggested that the effects of 

oxidoreductases on ageing might be cooperative/collective and this is why mutations of 

their upstream regulators, e.g. DAF-2 and DAF-16, can significantly extend lifespan. 

TRANSMODIS identified 150 class 2 genes, involved in a diverse array of biological 

processes and functions. A significant portion of the genes (12 out of 63 annotated genes) 

are involved in macromolecule metabolism but the p-value was not significant at all. The 

most enriched biological processes were phosphate transport (13 out of 63 genes, p-value 

= 10-10) and ion transport (15 out of 63 genes, p-value = 10-9). The molecular functions of 

the class 2 genes with a p-value<0.01 were being structural constituents of cuticle (12 

genes, p-value = 10-10) and structural molecules (14 genes, p-value = 10-5). These 

observations suggest possible functional roles of DAF-16 on affecting lifespan that have 

not yet been well studied. 

 

2.3. Discussion 

TRANSMODIS is a probabilistic model for predicting direct targets from binding 

motif, sequence data, expression data and ChIP-chip experiments. The probabilistic 

framework removes arbitrary cutoffs in target selection procedures and allows integration 

of data coming from various sources. Compared with other criteria for identifying targets, 
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TRANSMODIS is usually more stringent by requiring consistent and significant 

expression fold changes across all experiments. 

The methodology was validated on a set of TFPEs perturbing the activity of 

Pho4p in Saccharomyces cerevisiae. TRANSMODIS had successfully recovered a 

majority of previously known direct targets, i.e. the nine genes that were reported to be 

PHO-regulated prior to the study of Ogawa et al. Because we do not know the total 

number of true targets of Pho4p, it is difficult at the current stage to give sensitivity and 

specificity analyses of TRANSMODIS. To assess the performance of TRANSMODIS, 

we applied TRANSMODIS and two other methods (a Bayesian method [46] and an error 

model [17]) on a set of 81 TFs in Saccharomyces cerevisiae. Using PPV as a measure of 

efficiency and accuracy, TRANSMODIS performed better than the Bayesian method and 

the error model on 44 and 46 TFs, and performed worse than the other two methods on 

22 and 13 TFs, respectively. 

Using simulated data sets, it was shown that TRANSMODIS could recover nearly 

every target gene every time and had few false positives; whereas MODEM, a previously 

developed method which is applicable to a single experiment, failed to find any target 

genes on the same data sets. Therefore, TRANSMODIS, though an extension of 

MODEM, was much more effective at identifying targets than MODEM when multiple 

arrays were available. If TRANSMODIS is fed a random motif, it can still make target 

predictions provided that the expression data is unaltered. This is due to the fact that true 

consensus binding motifs are usually short and degenerate, hence contributing less 

information than genomic expression data, especially when that data is combined from 

several experiments. 
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Some true targets can be missed by TRANSMODIS if the true targets had 

inconsistent induction in all experiments. The reason can be biological (e.g., transient 

regulation by the TF or combinatorial regulation of several TFs) or technical (e.g., 

systematic error or noise of microarray experiments). Nevertheless, the result of 

TRANSMODIS would be consistent with one’s intuition given the data. 

The usefulness of TRANSMODIS was demonstrated in the identification of 

immediate targets of DAF-16, a critical TF in Caenorhabditis elegans that regulates 

ageing. TFPE experiments are functional assays and are commonly used by researchers 

to identify targets of a TF, particularly in higher organisms. TRANSMODIS identified 

target genes that showed DAF-16 dependent expression changes, and expanded the list of 

known DAF-16 targets. An interesting finding of our analysis is that the flanking 

sequences of the core motif recognized by DAF-16 differ dramatically in the two classes 

of targets with opposite effects on lifespan. The observation may provide a clue to the 

TFs that cooperate with DAF-16 to specifically regulate the two classes of genes. We 

also found several putative binding motifs for the cofactors of DAF-16 in regulating 

lifespan. In particular, GATA factors may play important roles in regulating class 1 genes. 

It is possible to obtain comparable results to TRANSMODIS by raising the 

cutoffs sometimes. However it is not clear how high the cutoffs should be set to in the 

absence of a guideline. If we require the induction ratio of target gene expression to be at 

least two-fold in at least six out of the eight Pho4p experiments done by Ogawa et al., the 

target list will then shorten to fewer than 17 genes. So in order to yield a comparable 

target list, we probably would like to stick with the selection rule of requiring a marked 

up-regulation in five experiments for targets. Depending on the specific choice of the 
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threshold, the final Pho4p target list is going to be of different length. For example, the 

target gene list consists of 20, 19 and 18 genes if the required cutoff is set to 2.1-fold, 2.2-

fold, and 2.3-fold respectively. When the cutoff is raised from two-fold (the original 

threshold used by Ogawa et al.) to 2.1-fold, there is no change to the target list. When the 

cutoff is raised from 2.1-fold to 2.2-fold, gene YER038C/KRE29 gets dropped and the 

target list becomes identical to the TRANSMODIS target list. Further increasing the 

cutoff to 2.3-fold drops gene YOL084W/PHM7, which is likely to be a true Pho4p target. 

Therefore even though it is possible to produce comparable results to TRANSMODIS by 

changing the thresholds, it is unclear how to find these thresholds and any choice would 

be arbitrary without an appropriate justification. 

TRANSMODIS assumes that (1) the TF of interest has activities in all 

experiments; and hence the true immediate targets of a TF of interest ought to have 

consistent and significant expression changes in most if not all microarray experiments, 

and (2) the promoters of direct targets contain good matches to the consensus binding 

motif. These assumptions do not always hold. For example, the promoters of targets may 

contain motifs that could be bound by the TF but are not because of a lack of cofactors or 

an inaccessible chromatin structure. Or there can be a situation where only a subset of 

direct targets was upregulated because the TF recognizes different motifs under different 

conditions. In these situations, TRANSMODIS is not able to recover the full set of targets 

but only a subset of them. 

In order to use TRANSMODIS, one has to supply a consensus binding motif, 

which is not always known in advance, especially in higher eukaryotic organisms. 

However as more biological knowledge is accumulated and deposited into databases such 
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as TRANSFAC [61] and JASPAR [62], we believe that TRANSMODIS will find more 

applications in the future. A Java implementation of TRANSMODIS is available upon 

request. Or the users may choose to upload and analyze their microarray data at 

http://haedi.ucsd.edu/. 

 

2.4. Materials and Methods 

2.4.1. The parametric model and the EM algorithm 

The parametric model of TRANSMODIS contains an expression and a sequence 

component. Target genes are assumed to differ from non-targets in both expression levels 

and patterns of extended motifs (i.e., the core motif along with immediate flanking 

regions). The expression of targets and non-targets is modeled by a two-component 

Gaussian mixture distribution, and the nucleotide frequencies at each position of the 

extended binding motif are assumed to be multinomial which is represented by a PSWM. 

Presumably, non-targets do not have binding sites and their sequences are drawn from a 

background PSWM. 

The model is fitted to the sequence and expression data by maximizing the 

observed log-likelihood function, );,(log ESPLLo  , where S and E denote the 

sequence and expression data respectively, and θ denotes the collection of all model 

parameters. After expansion into a sum, 
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 where λ is the proportion of true targets among all genes; 1  and 1  denote the mean 

and the standard deviation of the target expression distribution; N and M denote the total 

number of genes and experiments respectively; jkf  and 0
jkf  denote the (j,k)th entries of 

target and non-target PSWMs, or the probabilities of observing the jth alphabet at position 

k in the target and non-target sequence; A is the size of the sequence alphabet (e.g., A=4 

for DNA sequences); W is the length of extended motifs; and )(iak  returns the alphabet 

of the ith sequence at position k. When M=1, i.e. there is a single expression profile, 

TRANSMODIS reduces to MODEM and the observed log-likelihood function shown 

above becomes that of the mixture model in MODEM. 

Direct maximization of 0LL  is a formidable task. Therefore an EM algorithm was 

derived to compute MLEs. The EM algorithm is a generic iterative algorithm for 

parameter estimation by maximum likelihood principle. Each iteration of an EM 

algorithm involves two steps: an E-step where the latent variables are imputed by their 

expectations and an M-step where the complete log-likelihood function is maximized. In 

our model, the latent variables are the membership variables. Define ),,( 1 NZZZ  , 

where 
1,  if gene  is a true target

0,  otherwise.i

i
Z
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The complete log-likelihood cLL  is given by 



N

i
iii ZESPZESP

1

);,,(log);,,(log  , 

where iE  denotes the expression profile of gene i, i.e., the ith row of expression matrix E. 

Because iZ  is a binary random variable, we have 

)];();|,(log[);,,(log  iiiiiii ZPZESPZESP    

The M-step involves the maximization of function ˆ( , )Q   , which is, by definition, 

ˆ| , ;
( )cZ S E

E LL
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   where ˆ| , ;
ˆ ( )
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r E Z


 . In words, ir̂  is the probability of gene i 

being a target given the observed data, iS  and iE , under the current estimate ̂ . 

The function )ˆ,( Q  can be re-written as a sum of three parts: 

ˆ( , )Q     

The three addends are the log-likelihoods from the mixing proportion, the sequence data 

and the expression data respectively. After taking the partial derivatives of )ˆ,( Q  with 

respect to each unknown model parameter and setting them to zero, we obtain the 

following updating formulas: 
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where )(I  is the indicator function. 

 

Computation of ri’s 

By definition, ˆ| , ;
ˆˆ ( ) Pr( 1| , ; )
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   . Using Bayes’ theorem, we 

have 
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 (6) 

Even though the formula in (6) is correct analytically, ˆ( , | 1; )i i iP S E Z    and 

ˆ( , | 0; )i i iP S E Z    are typically very small quantities such that a direct computation 

would cause numerical underflow. Therefore, TRANSMODIS computes the probabilities 

îr s, by the following equivalent equation to avoid underflow: 

ˆ
ˆ

ˆ ˆ ˆ ˆ(1 )exp[log ( , | 0; ) log ( , | 1; )]
i

i i i i i i

r
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Initialization of parameters 

Each experiment profile is standardized to have mean zero and standard deviation 

one. This is a necessary data-adjustment step to correct array bias that arises from 

variation in the technology rather than variation in the biology. The parameters for the 

baseline Gaussian component, 0  and 0 , are set to zero and one respectively 

throughout the iterations. 

Initially, nucleotide frequencies at each position (i.e., entries in the PSWMs) for 

targets and non-targets are both set to the overall observed frequencies in all sequences. 

The PSWMs start to diverge during subsequent iterations once they are updated. 

The default initial values for the other parameters in the model,    and 1 , are 

chosen to be 0.2, 2 and 0.5 respectively. 

 

Convergence criterion 

Convergence is considered to be achieved if the difference between two 

consecutive iterations of each parameter is less than a prescribed threshold. In particular, 

the set of convergence criteria used was: 01.0|| )1()(  kk   and 02.0|| )1(0)(0  k
jk

k
jk ff  

for all Aj 1  and Wk 1 . 

 

Safe-guarding 

When fitting a two component Gaussian mixture model to expression data, one 

needs to be cautious not to misinterpret conditional likelihood ratios. Denote fitted target 
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and non-target distributions by 2
1 1( , )N    and 2

0 0( , )N    respectively. Without loss of 

generality, suppose that 1 0  , then there are two scenarios where a direct 

interpretation of the conditional likelihood ratios can be misleading: When 01   , for a 

very negative expression value e, the ratio of probabilities of observing e from the non-

target distribution over the target distribution (i.e. 

2 2
0 0 1 1Pr( | ~ ( , )) / Pr( | ~ ( , ))e e N e e N    ) can be less than one, implying that the gene 

with an expression level of e is more likely to be a target than a non-target. However 

intuition tells us that actually the opposite is true, that is, negative expressions are more 

likely to be observed from non-target genes than from target genes (Figure 5). Similarly, 

when 01   , for a very positive expression e, the probability ratio 

2 2
0 0 1 1Pr( | ~ ( , )) / Pr( | ~ ( , ))e e N e e N     can be much greater than one, leading to the 

wrong interpretation that the gene is a non-target (Figure 5). 

The underlying cause in both cases is an unequal variance between the target and 

non-target distributions. The implication is that using a two-component Gaussian mixture 

model to describe real expression data is inadequate. Nonetheless the normal mixture 

model is an analytically simple yet powerful parametric model to summarize expression 

data, under which MLEs can be computed via an EM algorithm. One simple remedy for 

the problem is to constrain the two variances to be equal, i.e., 1 0  . However we opted 

for a second solution: whenever an expression 0e  is observed, we required the ratio 

2 2
0 0 1 1Pr( | ~ ( , )) / Pr( | ~ ( , ))e e N e e N     to be bounded below by 

2 2
0 0 1 0Pr( | ~ ( , )) / Pr( | ~ ( , ))e e N e e N     (i.e. the probability ratio after substituting 1  
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for 0  as if the target distribution has variance 2
0 ). And similarly when 1e  , the 

conditional likelihood ratio 2 2
0 0 1 1Pr( | ~ ( , )) / Pr( | ~ ( , ))e e N e e N     is restrained from 

exceeding 2 2
0 0 1 0Pr( | ~ ( , )) / Pr( | ~ ( , ))e e N e e N    . We call our approach safe-guarding 

because it guards against a conditional likelihood ratio falling into an undesirable range.  

 

Outlier detection and removal 

The EM algorithm is sensitive to outliers. For example, imagine a non-target gene 

having all expression values close to 0  except for one value which is very large ( 1 ) 

due to some experimental error. This single spurious measurement can cause a large 

deviation in the computed probability and thus make the non-target gene falsely 

identified as a target gene by the EM algorithm. Because such outliers are detrimental to 

the analysis, they are searched for by TRANSMODIS and removed once found.  

Under our expression model, the distribution of expression measurements of any 

given gene, whether a target or not, is Gaussian. Therefore the largest expression value of 

each gene is examined by comparing it with the rest of the gene’s expression 

measurements to see if it is probable to obtain an extreme value as large as the observed 

maximum. More precisely, let ij
Mj

iJ EE
1

max


  be the maximal expression value observed 

for gene i. A Gaussian density function is then fitted to the remaining ( 1M  ) values: 

)1/(ˆ  


ME
Jj

ij  and 



Jj

ij ME )2/()ˆ(ˆ 22   (if 3M ). Assuming that all of the 

M expression values were drawn from this fitted Gaussian distribution, )ˆ,ˆ( 2N , then 

the probability of observing a maximum order statistics as large as iJE  is given by  
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M
iJE )]ˆ/)ˆ(([1  ,         (8) 

where function   is the cumulative distribution function (CDF) of a standard normal. 

The entry iJE  is removed (i.e., treated as if it were missing) if the probability in (8) is 

less than  , a user-specified threshold (by default, 05.0 ). 

The outlier detection and removal scheme described above is consistent with our 

parametric expression model and can remove up to one outlier per gene.  

 

A robust updating formula for 1  

Under our expression model, all target genes have the same average expression 

level. However in reality, this expression model is too simple to hold up. More likely, 

target genes have different baseline levels of expression. In other words, some target 

genes might be consistently more over-expressed than others even though all target genes 

are over-expressed in all experiments. Therefore it is sensible to subtract the baseline 

expression level of each gene when estimating 1 , the standard deviation of gene 

expressions of a target, 

,
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where 


 
M

j
iji MEE

1

/  is the average expression of gene i. If the true underlying 

generative model is genuinely a two-component Gaussian mixture model, then replacing 

Equation (3) by Equation (9) has a negligible effect on the EM algorithm as both 
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formulas give unbiased estimates of 1 . However when the true underlying model 

deviates away from a two-component Gaussian mixture model, e.g., target genes do 

display different baseline levels of expression, then Equation (9) produces a smaller 

estimate of 1  than Equation (3). This downward bias has a beneficiary effect in 

controlling false positive rate because the probability of mistaking a non-target gene 

(assuming whose expression is below μ1) as a target steadily decreases as σ1
2 shrinks. 

Consequently, by having fewer non-target genes falsely classified as targets, the 

estimated value of μ1 is less likely to shift unduly downward during subsequent iterations. 

To verify that the substitution of Equation (3) by Equation (9) has minimal effect 

on target gene selection when the true generative model is indeed a two-component 

Gaussian mixture model, we carried out a simulation study, in which the targets’ 

expression distribution was one of the nine normal distributions (μ1 = 1, 2 or 5, and σ1
2 = 

0.5, 1 or 2, a total of nine combinations) while the non-targets’ expressions were all 

simulated from (0,1)N . For each target distribution, a total of 100 data sets were 

generated. Each simulated data set consists of 100 target genes and 900 non-target genes. 

To remove information from sequence data, all simulated genes had identical promoter 

sequences. Simulation results showed that by using either formula to update 1 , the 

resultant target lists were always nearly identical (Table 4). We also compared the 

sensitivity and specificity of two target lists and found that using Equation (3) resulted in 

a higher sensitivity while using Equation (9) resulted in a higher specificity, but the 

differences were small and negligible (Figure 6 and Figure 7). Because robustness was 
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given a higher priority over sensitivity, TRANSMODIS updates its 1  estimate by using 

Equation (9). 

 

Dealing with missing expression values 

It is common for microarray data to have missing entries. Many methods would 

require the missing entries to be imputed first; however imputation is optional with 

TRANSMODIS. In the presence of missing data, TRANSMODIS derives an EM 

algorithm that maximizes the likelihood on the available expression data entries only.  

 

2.4.2. The program 

The inputs to TRANSMODIS are: (1) the 59 upstream sequences of all genes in 

the genome; (2) multiple genome-wide microarray measurements, such as TFPEs or 

ChIP-chip experiments or a combination of both. The parametric framework allows 

ChIP-chip experiments to be incorporated into the model just as any other microarray 

experiments as long as the TF is activated under the ChIP-chip experimental conditions; 

and (3) the core DNA motif recognized by the TF, typically six to eight bases long. The 

core motif could have been known a priori or be identified by a motif finding algorithm. 

The TRANSMODIS program consists of two steps. In the first step, the parametric model 

of TRANSMODIS is fitted to genes containing matches to the input core motif in their 

promoters to obtain MLEs via an EM algorithm. The matches do not have to be perfect 

matches; it is still considered a match if the nucleotide subsequence differs from the core 

motif in only one base pair. The reverse complement of the input core motif is also 
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scanned for. If a promoter has multiple matched copies of the input core motif, all copies 

are extracted and aligned to create an initialization of the PSWM of the target genes. 

Then during iterations of the EM algorithm, the copy with the highest score according to 

the current estimate of the target PSWM is chosen as the putative TF binding site. 

In the second step of the TRANSMODIS analysis, genes that do not contain 

copies of the core motif (i.e. genes that were not used for the estimation of model 

parameters in the first step) have their promoters scanned for the core motif on both 

strands. If the probability of being a target is computed to be greater than that of being a 

non-target, the gene will be brought into the target list. No model parameters are 

estimated or modified during this step. The sole purpose of this second step is to catch 

potential true targets that lack a copy of the consensus binding motif and therefore would 

otherwise be overlooked if this step was not taken. 

The output of TRANSMODIS are (1) two PSWMs, one for target genes and the 

other for non-targets. The weight matrices go beyond the core motif and cover the 

immediate flanking regions beside the core motif; and (2) the probability of being a true 

target for each gene. By default, genes are identified as targets if the probabilities are 

greater than 0.5. 

TRANSMODIS is computationally efficient and converges fast. The running 

times on the Pho4p and Daf16p data sets were 2 minutes and 31 seconds and 8 minutes 

and 53 seconds respectively on a 2.4 GHz single processor computer with 512 KB of 

cache memory. 
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2.4.3. GO term analysis 

GO Term Finder [25] was used for the gene ontology analyses. The analyses were 

run on the annotation file submitted on March 21, 2006 for Saccharomyces cerevisiae and 

the annotation file submitted on March 20, 2006 for Caenorhabditis elegans. Bonferroni 

correction was used to adjust p-values for multiple testing. 
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Figure 2. Comparison between the expression profiles of PHO81 and its two homologs SPL2 and 
YPL110C in the eight TFPE experiments of Pho4p. 
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Figure 3. Expression profiles of class 1 and class 2 direct targets of DAF-16 in Caenorhabditis elegans 
identified by TRANSMODIS. 
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Figure 4. Enriched motifs in the class 1 and class 2 target genes of DAF-16. 
The x axis is the position and the y axis is the log2 ratio between the target and non-target weight matrices. 
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Figure 5. Illustration of drawing invalid conclusions due to unequal variances. 
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Figure 6. Comparison of sensitivity between the two updating formulas for the standard deviation of 
target distribution. 
 
 

 
 
Figure 7. Comparison of specificity between the two updating formulas for the standard deviation of 
target distribution. 
Even though the one standard error bar is drawn above one, no actual specificity was ever greater than one. 
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Table 1. TRANSMODIS and MODEM results on ten simulated data sets. 
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Table 2. Target genes selected using different approaches. 
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Table 3. Comparison between TRANSMODIS and two other methods for target gene identification 
one the set of ChIP-chip data by Harbison et al. 
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Table 4. Overall agreement between the two strategies of updating sigma-1. 
(calculated in terms of Cohen’s kappa) 
 

 μ1 = 1 2 5 
σ1

2 = 0.5 0.9221±0.0940 0.9970±0.0046 1.000±0.0000 
1 0.9118±0.1010 0.9917±0.0095 0.9999±0.0008 
2 0.9559±0.0636 0.9876±0.0137 0.9998±0.0010 
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Chapter 3. CompMODEM: Prediction of regulatory 

interactions between transcription factors and their targets 

3.1. Introduction 

Identification of target genes directly regulated by a TF is essential for 

deciphering gene regulatory networks and understanding cooperative mechanisms 

between TFs. Extensive experimental and computational methods have been developed 

to tackle this problem. Traditionally, the targets of a TF have been determined by 

experimental technologies in vivo. 

For example, chromatin immunoprecipitation with microarray hybridization 

(ChIP-chip) [17; 50; 63] or sequencing (ChIP-seq) [64] is a widely used technology for 

detection of TF’s binding locations in the genome. Briefly for this method, a protein of 

interest with chromatin in a cell lysate is temporarily bonded, the chromatin-protein 

complexes are then sheared and DNA fragments associated with the protein are 

selectively immunoprecipitated, then the associated DNA fragments are purified and 

sequence are determined. These enriched DNA sequences are supposed to be the binding 

sites of the protein in vivo. However, observed DNA binding in the regulatory region 

alone is not always sufficient to indicate the occurrence of true interaction between a TF 

and a potential target gene. Even if binding physically happens, the event may not be 

biologically relevant, or the observed binding may relate to some cellular function other 

than gene regulation. Moreover, interaction mapping projects, like ChIP or microarray 

experiments, are difficult to complete because a cell's pattern of interactions is strongly 
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dependent on variables such as the cell type, secondary structures of protein and DNA, 

combination of cofactors, genetic background, stage of development, time after stimulus, 

or specific environmental or biological condition. On the other hand, many true binding 

events may be missed by ChIP because the relevant conditions have not yet been 

examined. 

Another widely used experiment for this purpose is the TFPE [65]. In a TFPE, the 

activity of a particular TF is perturbed by mutating, deleting or overexpressing the TF 

itself or other TFs that regulate this TF, and thus the TF’s target genes should have 

significant expression changes compared with the reference state in the microarray 

experiment. However, TFPEs only demonstrate the functional character of a TF, while 

DNA-protein location experiments only display the binding character. In addition, TFPEs 

are unable to distinguish direct targets from indirect targets, which might be controlled by 

the targets of the TF and also present expression variance. Furthermore, the cellular 

conditions, under which TFPEs are performed, may not exhaust all scenarios for the 

regulatory interactions between a TF and its target genes. Namely, different cooperative 

cofactors of the TF may be activated under the cellular conditions and therefore the 

targets of the TF may vary upon conditions. Therefore, neither DNA-protein location 

experiment nor TFPE is sufficient to identify the direct targets of a TF of interest. 

Computational methods have been developed to infer regulatory interactions 

between TFs and target genes by integrating information from multiple data resources [10; 

11; 46; 66]. Among these studies, Beyer et al. [46] focused on identifying targets of TFs 

by combining various data, such as ChIP-chip and protein interaction data, into a 

probabilistic model. They showed that the performance of their method is better than the 
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error model used to determine target genes only from ChIP-chip experiments. Wang et al. 

[10] developed an EM-based method MODEM to identify the target genes from ChIP-

chip/TFPE, genome promoter sequences and predefined core binding motifs. 

I have implemented a novel method called CompMODEM (Comparative 

MODEM) by extending the MODEM method to incorporate additional phylogenetic 

conservation information. The intuition of this method is the following: (1) a true direct 

target of a TF is likely to contain the binding motif recognized by the TF, which is the 

special short consensus DNA segment with several mismatches and can be detected by 

ChIP-chip experiments or by examining the promoter sequence of each gene; (2) the gene 

expression of the true target should have significant either increase or decrease if the TF 

is mutated/deleted/overexpressed in a TFPE; (3) functional segments, such as TF binding 

sites, are likely to be conserved during evolution and the level of conservation of 

orthologous DNA sequences across species is thus informative in identification of TF 

targets. CompMODEM has been developed as a probabilistic model to integrate these 

available data resources. 

I have applied the algorithm to analyze 514 ChIP-chip [50; 63; 67] and 221 

TFPEs [1; 6; 7] for 150 TFs [68-70] of the budding yeast Saccharomyces cerevisiae. 

 

3.2. Methods 

CompMODEM is the extension of the MODEM algorithm. The intuition of 

CompMODEM is the following: a target gene of a TF should contain the binding motif 

recognized by the TF; the motif should be conserved across species; the gene should have 
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significant gene expression in TFPE or show strong ratio in ChIP-chip experiments. 

CompMODEM uses a probabilistic model to integrate the information to identify direct 

targets of TFs. The inputs to CompMODEM include the following. (A) The gene 

expression from TFPE or fluorescence ratio from ChIP-chip experiments. I use log2(ratio) 

in the calculations. (B) The core motif recognized by a TF. The core motif usually is 6 to 

8 bp long and can be obtained from literature or computational predictions. (C) The 

promoter sequences. I take up to 600bp of the 5’ UTR regions in the Saccharomyces 

cerevisiae genome. To reduce the searching space, I only consider promoters that 

contained the binding motif (with mismatches allowed) of the TF under consideration. In 

this study, I allow up to one mismatch to the consensus motif. I also include 7bps at both 

ends of the consensus motif, called the extended motif, to consider the preferred 

nucleotides in the flanking regions. (D) The multiple alignments of promoter sequences 

across four Saccharomyces sensu stricto species, e.g., S. cerevisiae, S. paradoxus, S. 

mikatae, and S. bayanus. The outputs of the algorithms are: (A) A refined PSFM that 

includes both the core motif and the flanking regions (the extended motif). (B) The 

probability of being a true target for each gene. (C) Classification of each gene to be a 

target or non-target. 

The goal of CompMODEM is to maximize the joint likelihood  ; | , ,L Z S E C  

of the observed data: the DNA segments (extended motifs) in the promoter regions 

 : 1, , ; 1, ,nmS S n N m M    , where N is the total number of the extended motifs in 

S. cerevisiae and M is the number of the fungal genomes under consideration (M=4 in 

this study) and nmS  is the extended motif of the n-th gene in the m-th species; 
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 : 1, ,nE E n N   , where nE  is the n-th gene’s log(ratio) value in a TFPE or ChIP-

chip experiment;  : 1, ,nC C n N   , where nC  is the conservation score for the n-th 

gene;  : 1, ,nZ Z n N    is a hidden variable and the value of Zn reflects whether the 

nth extended motif is a target or not: 

1,  if gene  is a target gene

0,  otherwise
n

n
Z


 


 represents all the parameters of the probabilistic model 

(see below for details). 

I assume (A) the distributions of S, E and C are independent given   and Z; (B) 

the sequences (extended motifs) are independent from each other. Using Bayes rule, the 

joint likelihood can be expanded as: 

   

 

1

1
{1,0}

; | , , , , | ;

, , | ; ( ; )
n

n n n n
n

n n n n n
n Z

L Z S E C P S E C Z

P S E C Z P Z

 

  








 
 

where 1nS is the n-th extended motif in the template species S. cerevisiae and   is a 

constant that can be ignored when maximizing the likelihood. 

 
,     if 1

;
1 , if 0

n
n

n

Z
P Z

Z







   
, where   is a prior parameter of the percentage of true 

targets among all the extended motifs under consideration. 
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where 1f  and 0f  are the PSFMs for the targets and non-targets, respectively. , ( )nll S lf  or 

0
, ( )nll S lf denotes the occurrence frequency of nucleotide ( )nlS l  at position l ( 1, ,l L  ) in 

the corresponding matrix. L is the total length of the extended motifs. I use the 

occurrence frequency of each nucleotide in the S. cerevisiae genome as pseudocounts in 

calculating , ( )nll S lf and 0
, ( )nll S lf . The distributions of expression and conservation scores are 

assumed to be Gaussian distributions.   and   are the mean and standard deviation of 

the Gaussian distributions, respectively. The superscripts of 1 and 0 represent targets and 

non-targets, respectively, and the subscripts of E and C indicate expression and 

conservation values, respectively. When considering conservation, the alphabet includes 

a, c, g, and t as well as gap in the multiple sequence alignments, denoted as “-“. The 

length of the extended motifs in all species is the same as that in S. cerevisiae. If there is 
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no alignment for n-th gene of m-th species, nmS  is allowed to be a missing value. The 

conservation score for the n-th extended motif nC  is computed as 

 1
, ( )

2 {core motif }

2

(  not missing) log

(  not missing)

nm

M

nm l S l
m l

n M

nm
m

I S f

C
I S

 






 
 


, where ( )I   is indicator function. 

If
2

(  not missing) 0
M

nm
m

I S


  is assigned to be a missing value. The conservation score 

measures how similar the aligned sequences in the other fungal species are to the core 

motif in S. cerevisiae. If all the aligned sequences are exactly same, the conservation 

score is zero; otherwise, it is a negative value. If a substantial amount of conservation 

data was missing, the likelihood function has considerable local maxima, which would 

cause bad performance of EM algorithm. For the purpose of overcoming this problem, 

CompMODEM is performed without conservation information first to achieve a more 

accurate initial parameter (0)  and then integrates conservation to refine the target gene 

list. 

The log-likelihood is    1log ; | , , log , , | ; .n n n n n
n

L Z S E C P S E C Z  An EM 

algorithm was used to estimate the model parameters iteratively. In the E step, the 

expected log-likelihood was computed using the current parameters ( )k . In the M step, 

the parameters are updated as following by maximizing the expected log-likelihood 

calculated in the E step. 
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The EM stopped when the convergence criterion ( 1) ( ) 610k k    was satisfied. The 

expression data are normalized such that 0 0E   and 0 1E  , which are fixed as the non-

target parameters. The initial value (0)  was set to 0. 

The probability of being a target is: 
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1 1
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All the extended motifs are then classified into target or non-target category: 

target,        if 0.5
.

non-target, otherwise
nr 
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3.3. Results 

To establish a comprehensive list of direct targets of TFs in Saccharomyces 

cerevisiae, I have applied CompMODEM to 514 ChIP-chip [50; 63; 67] and 221 TFPEs 

[1; 6; 7] for 150 TFs, among which 89 TFs have known target lists from the databases 

SCPD [68], YPD [69] and TRANSFAC [70]. I have also collected 279 possible binding 

motifs of the 150 TFs from databases and literatures and refined them using 

CompMODEM. 

GO analysis [25] has been performed to output the significant biological 

processes among the targets of each TF. The top 10 enriched biological processes of the 

target genes have been manually examined, and then the best binding site and target list 

for each TF have been chosen. The TFs and their targets in the majority of transcription 

modules are consistent in terms of the biological processes. 

The purpose of CompMODEM is to improve the accuracy of MODEM by 

accounting for conservation information as well as binding and expression. Another set 

of 148 modules with the same 148 TFs has been again constructed using MODEM. 

Among the 148 constructed modules, only 89 have known target lists. The comparison 

between the two sets of these 89 modules shows that CompMODEM has the advantage 

of reducing both false positive and false negative rates as expected. First, many non-

target genes, which are mistakenly identified by MODEM because of their binding sites 

and/or expression levels, are filtered out due to their bad conservation across multiple 

species, resulting in a remarkable reduction of the false positive rates. 58 out of 89 

transcription modules constructed using CompMODEM have fewer false positives than 

their counterparts constructed using MODEM. Moreover, a considerable number of true 
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target genes, which are unable to be recognized by MODEM because of their weak 

binding and/or small expression ratio, are identified successfully by CompMODEM only 

because their strong conservation information can compensate for their poor binding 

and/or expression information. 48 out of the 89 modules have higher positive predictive 

values (PPVs) in CompMODEM than in MODEM, while only 19 out of the 89 modules 

show the opposite trend. This indicates that CompMODEM has the capability of 

augmenting true positives while not increasing false positives. Furthermore, because of 

the informative conservation, CompMODEM exhibits higher specificity, sensitivity, 

negative predictive values (NPVs) and accuracy than MODEM does (Table 5). 

In addition, CompMODEM also performs more accurately than another 

traditional approach, ChIP-chip [17]. The ChIP-chip targets are only determined by p-

values of enrichment ratios with an arbitrary threshold 0.001 [17]. A comparison has 

been drawn between 68 modules constructed using CompMODEM and ChIP-chip, 

respectively. 40 out of these 68 ChIP-chip transcription modules determine fewer target 

genes than the corresponding CompMODEM modules due to the stringent p-value cutoff 

of the ChIP-chip approach. Consequently, CompMODEM identifies more true positives 

as well as more false positives than ChIP-chip approach. This explains why 

CompMODEM achieves higher sensitivity and NPVs while lower specificity and 

accuracy than ChIP-chip method does. But beyond our expectation, CompMODEM 

acquires higher PPVs than ChIP-chip approach, revealing that, in CompMODEM, the 

increase in the number of false positives is not as fast as that in the number of true 

positives (Table 5). 
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Furthermore, I have compared the overall performance of these three 

classification methods using ROC curve. Figure 8 shows that the ROC curve of 

CompMODEM is closer to the upper left corner than the ones of MODEM and ChIP, 

indicating that CompMODEM has better overall performance than the other two methods 

have. 

 

3.4. Discussion 

Although the various data resources for constructing transcription modules have 

been dramatically accumulated and well applied recently, none of them is capable of 

identifying alone a TF’s target genes with high sensitivity and specificity. Thus, a joint 

probabilistic model for transcription module discovery, CompMODEM, has been 

developed with integration of a variety of information such as the sequence, expression 

and conservation. 

Compared with the traditional clustering methods based on multiple microarray 

experiments, CompMODEM requires only one single experimental array such as ChIP-

chip or TFPE. This makes CompMODEM promising in that numerous single 

experimental data are available. Moreover, the correlation of the gene expressions within 

each cluster does not imply the genes are under the control of a specific TF due to the 

complex combinatory regulations. CompMODEM takes the advantage of binding 

information to distinguish the direct targets from the indirect ones. Another advantage of 

CompMODEM is that it reduces false positives at no expense of increasing false 

negatives, which is favorable for biologists to test the predictions at least cost. This 
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desirable performance benefits from the sufficient resources, which provide the evidences 

of both binding activity and functional activity. Also worth noting, the conservation 

information, as an extra constrain, results in the less sensitivity to experimental noise. 

The first of the two limitations of CompMODEM is that the prior knowledge of 

the TF binding site is necessary. However, the consensus binding motifs of all TFs are 

not completely known. This problem could be solved using the approaches for motif 

finding like REDUCE [71], MDscan [72]. Though the putative binding motifs from the 

motif finding methods are not as accurate as the canonical ones, CompMODEM is able to 

refine the input binding motifs. The second limitation is that CompMODEM encounters 

serious local-maximum problems when dealing with many missing conservation data. 

This can be overcome when the ortholog sequence database become complete. 

 

Acknowledgements 

Chapter 3, in full, is currently being prepared for submission for publication of the 

material. Liu, Jie; Wang, Wei. The dissertation author was the primary investigator and 

author of this material. 



 

 

88

 
Figure 8. ROC curve. 
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Table 5. Compare CompMODEM with MODEM and ChIP-chip. 
 

Method Sensitivity Specificity PPV NPV Accuracy 
 Worse Better Worse Better Worse Better Worse Better Worse Better

MODEM (89) 14 26 26 58 19 48 14 26 26 59 
ChIP-chip (68) 11 27 45 21 11 36 11 27 45 21 
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Chapter 4. ActivMiner: Simultaneous Inference of 

Transcription Factor Activity and Target Genes 

4.1. Introduction 

Accurate reconstruction of GRN is necessary to understand how organisms, 

especially for metazoans, have the capability of controlling the highly specific expression 

of an individual gene while utilizing only a limited number of the TFs. Most recent 

studies have built the GRN statically by integrating various types of information. [10; 11; 

46; 66] However, GRN is dynamic in the sense that it has different realization at different 

stages of development or in response to different environmental cues. Namely, TFs are 

activated or inactivated under a particular cellular condition. Consequently the regulatory 

links between the TFs and their target genes are present or absent and the transcriptional 

network undergoes condition-specific rewiring. Therefore, inference of the dynamic 

realization of biological networks still remains a challenge. [73-76]  

Efforts have been made recently to identify activities of TFs by comparing the 

gene expression profiles between the condition of interest and a TF perturbation 

(mutation, overexpression or deletion of a TF) or chromatin immunoprecipitation with 

microarray (ChIP-chip) experiment. [43; 77; 78] These methods either were not designed 

to identify target genes under a particular condition [43; 78] or took target genes of a TF 

directly from ChIP-chip experiments[77]. Linear regression methods were also developed 

to identify active DNA motifs recognized by TFs in a single gene expression experiment 

[51; 79], which implies the activation of the TF. Given the motifs, to identify their direct 
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targets is not trivial. Das et al. [44; 45] fit a multivariate adaptive regression splines 

(MARS) model of known binding motifs to gene expression and the gene activation 

threshold in the model was used to determine direct targets of the active motifs. 

All methods mentioned above have been applied to microarray experiments 

individually. They did not use any information of the coherent gene expression patterns 

for co-regulated genes in a time series or multiple cellular condition experiments. Segal et 

al. [49] simultaneously inferred the regulatory motifs and genes in a module using a 

graphical model. This model is hard to use in practice and the greedy searching algorithm 

is prone to be trapped in local optima. We present here a probabilistic model called 

ActivMiner that simultaneously infers the activity and target genes of a TF in an 

individual experiment while also considering the co-expression of genes across multiple 

experiments. The target genes of a TF are those containing the binding sites of the TF in 

their promoters and the gene expression levels being coherent with the activity of the TF. 

The activity of the TF is defined by the activation or repression of its targets. Since 

neither the label of the target gene nor the activity of the TF is observed, ActivMiner 

iteratively infers the activity and target genes of the TF using EM. Currently, this model 

considers only TFs individually and its output can be used to learn constraints of 

combinatorial regulation between TFs in the future. 

In this study, ActivMiner is applied to temporal expression profiling of cell cycle 

[2] and dilution [5] experiments for Saccharomyces cerevisiae and identified active TFs. 

Some of the results reinforced prior biological knowledge and others were new 

hypotheses that provide new insights and await experimental validation. 
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4.2. Methods 

4.2.1 The ActivMiner model 

The computational task is to simultaneously infer the activities of TFs and their 

target genes. It is reasonable to assume that, when a TF is active, the majority of its target 

genes are either induced or repressed, and when the TF is inactive, the expression levels 

of the majority of its target genes are indistinguishable from the non-targets. Therefore, 

there are two sets of latent variables: 1, , NZ Z , where N is the total number of genes, 

and 1, , MX X , where M is the number of experiments:  

1,  if gene  is a target gene

0,  otherwise                      i

i
Z


 


 

The observed data are promoter sequences and expression profiles, denoted by S 

and E respectively. Our model assumption is that targets and non-targets differ in their 

patterns of extended motifs and the distributions of their expressions, where the extended 

motif is defined as the core consensus binding motif plus flanking regions on both sides. 

More explicitly, the distribution of nucleotides at each position of the extended motif is 

assumed to be multinomial and the positions are independent from each other. The 

resultant product multinomial distribution is represented by a position specific weight 

matrix (PSWM). There are two PSWMs in our model, one for targets and the other for 

non-targets. Expressions of targets and non-targets in the jth experiment are considered to 

be drawn from two Gaussian distributions, 2( , )j jN    and 2
0 0( , )N    if the TF is active in 

the experiment. If the TF is inactive in experiment j, targets’ expressions are assumed to 

be drawn from the background distribution, i.e., 2
0 0( , )N   , as well. Without loss of 
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generality, we assume that 0j   because if the mean of target expressions is in fact 

below the background mean, we could simply negate the logarithm of expression ratios. 

Parameters 0  and 0  for the background expression distribution are fixed to the values 

calculated from all genes in the genome. 

 

Notations 

S ---Sequence data 

E ---Expression data 

iS ---Promoter sequence of gene i 

ijE ---Gene i's expression in microarray experiment j 

Z ---Hidden variables. 1iZ   if gene i is a target gene, and 0  otherwise 

X ---Hidden variables. 1jX   if the TF is active in experiment j, and 0  otherwise 

 ---Collection of all model parameters 

̂ ---Current estimate of  ---Proportion of target genes in the entire genome 

 ---Proportion of experiments in which the TF is active 

pi ---3.14159 

j ---Mean expression level of target genes in the jth experiment 

2
j ---Variance of target gene expressions in the jth experiment 

jkf ---Frequency of observing nucleotide j at the kth position in the binding motif PSWM 

0
jkf ---The ( , )j k  entry in the background PSWM  

N ---Total number of genes 
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M ---Total number of experiments 

W ---Length of extended motif 

A ---Size of sequence alphabet ( 4  for DNA sequences) 

( )k ia S ---Nucleotide at the kth position in sequence iS ---Indicator function 

 

The observed log-likelihood of our model is 
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Direct optimization of the observed log-likelihood is difficult; therefore the maximization 

is carried out iteratively via the EM algorithm that maximizes a conditional expectation 

of the complete log-likelihood at each iteration. Assuming the independence between S 

and E, we can write the complete log-likelihood as: 

log ( , , , ; ) log ( | ; ) ( | , ; ) ( ; ) ( ; )cl P S E Z X P S Z P E Z X P Z P X       
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M-step: 

new ˆargmax ( ; )Q


   . 

By taking partial derivatives of ˆ( ; )Q    with respect to unknown parameters in   and 

setting the partial derivatives to zero, we obtain a set of formulas for updating the model 

parameters: 
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where ˆ, | , ;
ˆ ( )i iZ X S E
r E Z  is the probability of gene i being a true target under current 

parameter estimates; ˆ, | , ;
ˆ ( )j jZ X S E
q E X  is the probability of the TF being active in 
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experiment j under ̂ . Then we have: 
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4.2.2. Flow of the algorithm 

Given a TF and its DNA sequence consensus binding motif, genes that contain the 

consensus binding motif are input into tightClust [80], a clustering algorithm for 

identifying tightly co-expressed genes. The program can find up to a pre-specified 

number of clusters, 20 in this study. The tight clusters are then scanned for enrichment of 

known targets. The known targets were taken from the SCPD [68], YPD [69] and 

TRANSFAC [70] databases as well as the targets identified using CompMODEM 

algorithm. Enriched clusters are fitted by a parametric model using the ActivMiner 

algorithm described above. Upon convergence, non-targets are removed from the clusters 

and targets are retained. To decide which genes are targets and which genes are non-

targets, the following rule is used: if ˆ( 1; ) 0.5mle
iP Z   where ˆmle  denotes the MLE, then 

gene i is classified as a target; otherwise, gene i is considered as a non-target. Similarly, 

for a TF to be regarded as being active in experiment j, the probability ˆ( 1; )mle
jP X   is 

required to be greater than 0.5. 

Since tight clusters were formed from genes with the consensus binding motif 

only, each resultant enriched tight cluster is then relaxed to incorporate genes lacking the 

consensus binding site but exhibiting highly similar expression patterns with genes 
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already in the cluster. The relaxed clusters of genes are input to the EM algorithm once 

again to finalize the lists of target genes and the profile of activities. 

Each TF may correspond with multiple clusters that capture the various subgroups 

of the TF’s target genes. Two clusters are merged together if and only if the amount of 

overlap is over eighty percent. 

 

4.2.3. Tight clustering 

tightClust [80] is a resampling-based method for finding tight and stable clusters. 

The intuition is that the tightest and most stable cluster of genes will be grouped together 

under repeated sampling. The method proceeds in a sequential manner where the most 

stable and the tightest cluster is removed first. Unlike most other clustering algorithm, 

e.g., K-means or hierarchical clustering, tightClust does not have to assign all genes into 

clusters. This feature of tightClust suits our purpose well, because we are not interested in 

forming clusters of all genes in the genome, but rather subsets of genes which are co-

regulated by the same set of TFs. 

To find more meaningful seed clusters that are more likely to be mediated by a 

given TF, only genes that contain the putative binding motif (consensus motif with one 

motif in this study) of the TF in their promoters were input to tightClust. In addition, if 

there were more than 2500 genes having a putative binding site, top 2500 genes with the 

most variance of gene expression or the largest ChIP-chip ratios were selected. A 

favorable by-product was a sizable reduction in the execution time of the tightClust 

procedure. 
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4.2.4. Relaxation of tight clusters 

When tightClust was run, we have only considered genes with putative binding 

sites. To consider the degeneracy of TF binding motifs, we relaxed each enriched tight 

cluster to include genes containing no binding motif but exhibiting similar expression 

patterns. Four criteria were used to select additional genes: 
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, 

where iE   denotes the expression profile of the ith gene within the cluster; E  is the 

average expression profile of the cluster; and G  represents the expression profile of the 

new gene under investigation. The first and second order derivatives of gene expression 

profiles are denoted by 'E  (or 'G ) and ''E (or ''G ), respectively. The first three criteria are 

based on the correlation, and the last criterion imposes constraint on the Euclidean 

distance. 

The first criterion requires that the correlation between the expression profiles of 

the new gene and the cluster average should be at least as large as the smallest correlation 

between the expression profile of a gene already in the cluster and the cluster average. 

The second and third criteria are analogous to the first criterion but impose requirements 

on the first and second order derivatives. Because the expression signatures were 
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measured at discrete time points, the derivatives were estimated by using the finite 

difference formulas. 

 

4.2.5. Mergence of clusters 

For each TF, multiple target gene clusters could be found presumably 

representing distinct subgroups under combinatorial regulation. If there exist two clusters 

of the same TF sharing more than eighty percent of the target genes, these two clusters 

are merged. And if a target gene appears in more than one clusters regulated by the same 

TF, that gene is assigned to the cluster in which it has the highest probability of being a 

true target. (Figure 9) 

 

4.3. Results 

4.3.1. Cell cycle 

First, ActivMiner was applied to detect both the targets and activities of the yeast 

TFs， which play important roles in the cell cycle using the microarray timecourse data 

sets [2]. These cell cycle microarray data are taken from wild-type Saccharomyces 

cerevisiae cultures synchronized by α-factor arrest, and arrest of a cdc15 temperature-

sensitive mutant and elutriation, respectively. The reason to use these data as input is that 

many of these TFs have been well studied, making it easy to examine the accuracy of our 

new method. Recent studies [81; 82] have clearly recovered the interaction of the ten 

yeast cell cycle transcriptional regulators that can be classified into three groups. In brief, 
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Group I, including Mbp1, Swi4, Swi6 and Stb1, regulates the late G1 genes. Group II 

contains four TFs (i.e. Mcm1, Fkh1, Fkh2, and Ndd1), which control the G2/M genes’ 

regulation. Group III consists of Mcm1, Swi5 and Ace3 and regulates the M/G1 genes’ 

regulation. 

The results I obtained (Figure 10 and Table 6) are well consistent with the 

previous literature. In Saccharomyces cerevisiae, gene expression in the late G1 phase is 

activated by two transcription regulatory complex, SBF and MBF. SBF contains Swi4 

and Swi6 proteins and activates the transcription of G1 cyclin genes, cell wall 

biosynthesis genes, and the HO gene. MBF is composed of Mbp1 and Swi6 and activates 

the transcription of genes required for DNA synthesis. In addition, Stb1 is another late G1 

gene regulator in cell cycle with a role in regulation of MBF-specific transcription at Start 

[83; 84]. ActivMiner shows that Mbp1, Swi4 and Swi6 share most targets genes as well 

as the activity pattern. For example, one of Mbp1 subgroups, which consists of 32 targets 

in total (Mbp1 group1 in Table 6), shares 18 targets with STB1, 19 targets with Swi4_1 

(Swi4 group1) and 26 targets with Swi6_1 (Swi6 group1). Mbp1 shares the most 

common target with Swi6 because they form the MBF complex. As the G2/M activators, 

Mcm1, Ndd1, Fkh1 and Fkh2 work together, resulting in the same activity pattern and the 

statistically significant overlaps between Mcm1 (group1 and group2) and the other Group 

II factors. Similarly, in Group III, Mcm1, Ace2 and Swi5 also share activity pattern and 

target genes because all these three TFs are M/G1 transcriptional regulators. 

Since the TFs in Group I, II and III activate their targets in different cell cycle 

phases, the activations of these three groups vary in sequential time points. Compared 

with TFs in Group I, those in Group II shift their activations afterwards and those in 
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Group III shift the activations slightly forwards. This is well consistent with the known 

knowledge. One interesting but unexpected result is that the TFs in Group III have both 

common target genes and activity patterns with Group I TFs. Table 6 shows two 

significant overlaps. One is between Mbp1 group2 genes and the genes of Mcm1 and 

Swi5. The other is between Mcm1 group3 genes and the genes of Mbp1, Swi4 and Swi6. 

It can be understood that there is no clearly boundary between M/G1 and late G1 phases. 

The unexpected results suggest that Group I TFs may have redundant function with 

Group III TFs in G1 stage. 

Furthermore, ActivMiner is able to detect three different expression patterns for 

Mcm1, two identical to the other Group II TFs and the third one identical to the other 

Group III TFs. This observation is consistent with our knowledge that Mcm1 is the 

common TF in Group II and III. Unlike traditional gene regulatory module identification 

methods, ActivMiner allows one single TF to have multiple modules, because a TF can 

have multiple functions through the combinatorial regulations with different TFs 

according to various conditions. This character makes ActivMiner promising and helpful 

for further GRNs reconstruction. The results of Cell cycle prove that ActivMiner is able 

to discover most well known TFs and build the correct relationship among them. 

The results also display the obvious advantage of ActivMiner over the traditional 

clustering methods. Although the latter methods can simply assign the genes to 5 stage 

groups (i.e. M/G1, G1, S, G2, M) [2], they are unable to discover which TF(s) regulate 

the genes in each group. ActivMiner also classifies the whole genome genes into groups 

and identifies simultaneously the TF for each group. In addition, it is known that a gene 

can be the direct target of different TFs with combinatorial interactions. The traditional 
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clustering methods usually assign each gene one single membership of a group 

exclusively, but ActivMiner allows each gene to own multiple memberships, which is 

biologically meaningful. 

 

4.3.2. Dilution 

ActivMiner is also applied to the dilution data [5]. In this dilution experiment, 

yeast cultures grew in chemostats under 36 different continuous culture conditions, 

namely, six different limiting nutrients each at six different dilution rates. This chemostat 

growth was limited by one of the following nutrients: glucose (G), ammonium (N), 

phosphate (P), sulfate (S), leucine (L), or uracil (U). The authors of the experiment 

applied traditional hierarchical clustering method to analyze the mRNA abundance data 

obtained from the 36 chemostat cultures and identified different nutrient-specific groups 

(e.g., G1-G4, P, S, and N). ActivMiner identifies the targets of the well known TFs that 

play roles in these nutrient-specific groups. 

The Nitrogen catabolite repression (NCR) system is used by the cell to control the 

synthesis of proteins capable of handling poor sources of nitrogen. NCR-sensitive genes 

are not activated when rich sources are available; whereas they get expressed when only 

poor sources are left. Gln3, Gat1, Deh1 and Dal80 are four of the GATA gene family and 

are known TFs regulating NCR via their binding to the GATA sequences upstream of 

NCR-sensitive genes. In the presence of rich nitrogen sources, Gln3p and Gat1p are 

sequestered in the cytoplasm and can activate neither NCR-sensitive genes nor Deh1 and 

Dal80. The consequence of the low concentration of Gln3p in the nucleus is a low-level 



 

 

103

expression of Deh1, Dal80 and NCR-sensitive genes. However, when only poor nitrogen 

sources are available, Gln3p and Gat1p are released into the nucleus. The former 

activates Gat1 and the two proteins together activate NCR-sensitive genes. After a delay 

(due to the time taken for transcription and translation), Dal80p and Deh1p are expressed 

and competitively inhibit these same genes. [85-89] In ActivMiner, I study only Gln3, 

Gat1 and Dal80 because Deh1 has no known target list. The target genes of Gln3 and 

Gat1 represent high expression levels in the condition of ammonium dilution, while the 

expressions of targets of Dal80 are not activated. These two results are agreeable with 

literature study. 

Met4 is one of the transcriptional activators controlling the sulfur metabolic 

network in Saccharomyces cerevisiae. The Met4 transcriptional system is a simple model 

system to study the combinatorial control of transcriptional regulation. [90-93] Met4 is 

recruited to promoter DNA by one of two distinct sets of cofactors that bind different 

elements in methionine biosynthetic (MET) gene regulatory regions, either Met28-Cbf1 

complex or Met28-Met31/32 complex. ActivMiner results display that Cbf1, Met4, 

Met28, Met31 and Met32 share most of their targets, proving the combinatorial 

regulation among the five TFs. In addition, the activity patterns of these TFs are very 

similar and display the activities in the sulfur dilution conditions. Furthermore, Met4 

activates the transcription of a battery of MET genes when methionine levels are low, but 

it is not active when abundant methionine is available. High methionine leads to 

increased intracellular S-adenosylmethionine (SAM), which triggers the inactivation of 

Met4 by stimulating its polyubiquitination. [94-96] My results show that all the targets of 
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Cbf1, Met4, Met28, Met31 and Met32 found by ActivMiner are highly expressed in the 

six cultures with the limiting sulfate, consistent with our knowledge. 

Adr1 controls expression of genes involved in ethanol utilization only after the 

diauxic transition. During the diauxic shift, when yeast cells deplete the glucose in the 

medium, the flow of metabolites changes dramatically to adapt to the use of alternative 

energy and carbon sources, primarily ethanol produced during fermentation. Mig1 is 

another TF involved in glucose repression. The yeast homolog of the AMP-activated 

protein kinase, Snf1, promotes Adr1 and Mig1’s chromatin binding in the absence of 

glucose, and the protein phosphatase complex, Glc7/Reg1, represses their binding in the 

presence of glucose. [97-99] ActivMiner has correctly identified the positive activity of 

Adr1 and Mig1 in the six cultures all limited by glucose. 

Pho4 is a well known TF controlling phosphate metabolic process. When the Pi 

concentration in the medium is low, the Pho81 protein inhibits the Pho80-Pho85 kinase 

activity, which in its active state catalyzes a hyperphosphorylation of Pho4. The 

hypophosphorylated form of Pho4 is preferentially localized to the nucleus, where 

together with Pho2, it activates target gene transcription. Alternatively, when the Pi 

concentrations are high, the Pho80-Pho85 kinase phosphorylates Pho4. In addition to 

having a lower affinity for Pho2 and the nuclear import protein Pse1/Kap121, 

phosphorylated Pho4 is a preferred substrate of the nuclear export protein Msn5, resulting 

in extranuclear localization. Phosphorylated Pho4 is thus unable to activate target gene 

expression [7]. The targets of Pho4 identified by ActivMiner show the high expression 

level in the six cultures all limited by phosphate. Interestingly, tightClust could not 

classify any well known target of Pho4 into any cluster at the beginning, but 10 out of 24 

http://db.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=6796�
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Pho4 known targets [11] were identified successfully by applying ActivMiner to these 

clusters created by tightClust. This makes ActivMiner promising in that it is capable of 

retrieving the true targets missed by the traditional clustering method. 

In summary, ActivMiner can successfully identify the activity of most TFs in 

different dilution conditions and indirectly displays the combinatorial relations between 

co-regulators (Figure 11). 

 

4.4. Discussion 

ActivMiner is a probabilistic framework for the simultaneous inference of the 

activity profile and target genes of a TF, making it promising for reconstruction of the 

whole dynamic GRN in metazoans. For this simultaneous inference, tightClust is used to 

produce initial clusters of co-expressed genes and then ActivMiner is applied to refine 

these co-expressed clusters using EM algorithm. As a new approach, ActivMiner is able 

to give more accurate prediction on transcriptional regulation than the traditional methods, 

such as ChIP-chip experiments and clustering methods, because this approach integrates 

direct and indirect evidences of transcriptional regulation, namely the binding 

information and expression information, respectively, while the traditional methods 

usually used them separately. For instance, ChIP-chip experiments only take the binding 

information into consideration, making many non-targets with the binding sites be 

identified falsely. However, ActivMiner examined the expression lever of all candidate 

genes with the consensus binding motif to exclude those non-target genes only physically 

bound but not regulated by the TF. And this is why the ChIP-chip method always 
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identifies more targets and thus more false positive than ActivMiner does. In addition, 

ActivMiner scans all genes without the consensus binding sites to successfully retrieve 

the missing target genes containing weak binding sites by the aid of the significant 

similarity of expression changing pattern between the missing targets and the pre-

identified targets. Therefore, ActivMiner has significant higher specificity than the ChIP-

chip method does, but is only slightly less sensitivity than ChIP-chip method, which 

actually sacrifices its specificity to gain a good sensitivity. Especially in some cases, 

ActivMiner have both higher specificity and higher sensitivity than ChIP-chip method, 

indicating that ActivMiner has the capability of removing false positives without losing 

too many true targets by integrating expression information into binding information. 

Furthermore, ActivMiner also gains better performance than traditional clustering 

method for the same reason. As far as we know, although the genes regulated by the same 

TF have the similar expression patterns under specific conditions, the genes with the 

similar expression patterns do not necessarily infer that they are expressed directly by the 

same TF. Generally, most previous clustering methods, such as hierarchical clustering 

and tightClust, are unable to explicitly present which TFs directly control the 

transcriptional regulation in each set of co-expressed genes. And the members in each co-

expression set created by a clustering method can be controlled by a single TF or multiple 

co-regulated TFs. By integrating binding information, ActivMiner not only filters out 

some indirect targets without binding sites, but also identifies which TF regulates the set 

of co-expressed genes. Table 7 displays the comparison results, showing that ActivMiner 

outperforms ChIP-chip and tightClust. ChIP-chip method only gives higher sensitivity 
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and NPV but lower specificity, PPV and accuracy than ActivMiner does. In addition, 

tightClust has both lower sensitivity and lower specificity than ActivMiner has. 

In ActivMiner, I combine two traditional methods, clustering and EM, commonly 

used to identify the gene modules. On one hand, Clustering methods only group the genes 

co-expressed but not co-regulated. EM algorithm is able to integrate binding information 

that can distinguish co-regulation from co-expression. Moreover, clustering methods are 

always faced with the selection of a cutoff, which cannot be too loose or too stringent. 

But in ActivMiner, there is no need to be very careful about the cutoff in tightClust, 

because EM algorithm will refine each cluster. On the other hand, EM algorithm can be 

easily trapped in a local optima because of an arbitrary initialization. The performance of 

clustering before EM provides a reasonable initialization and avoids the local optima. 

In addition to identification of targets and activities of a TF, ActivMiner is able to 

demonstrate the combinatorial interactions between co-regulation TFs. By sharing the 

target genes and similar activity patterns, some well-known TFs represent the 

combinatorial regulations which are consistent with our knowledge. Furthermore, 

ActivMiner allows a single TF to have multiple modules, which is biologically 

reasonable. Some TFs have different target lists because of their distinct combinatorial 

regulation with other TFs. However, ActivMiner is not designed to discover the 

mechanisms of combinatorial regulation; the rules of regulatory interactions between co-

TFs remain unclean. The problem might be solved using another program called GBNet 

[34] which our group has developed to reveal the combinatorial regulation rules. 
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Run tightClust on genes with putative binding sites
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Any enriched clusters? stop

Apply EM algorithm to enriched clusters

Any target genes? stop

Add genes without putative binding sites

Apply EM algorithm to relaxed clusters

Merge clusters that are significantly overlapped

Report target genes and activities
 

 
Figure 9. Flow chart for ActivMiner. 
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Figure 10. The activities of ten well known TFs in cell cycle. 
Red and green colors represent up-and down-regulation, respectively. The brightness of the color is 
proportional to the ratio. 
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Figure 11. The activities of well known TFs in dilution experiments. 
 



 

 

112

Table 6. The overlap between subgroups in alpha-factor arrest experiment. 
 

Mbp1 Subgroup Overlap Mcm1 Subgroup Overlap 

  Group1 Group2   Group1 Group2 Group3 

  32 32   21 11 29 

STB1 22 18 1 FKH1 24 8 8 0 

SWI4_1 30 19 3 FKH2 30 11 9 0 

SWI6_1 32 26 1 NDD1 18 8 8 0 

SWI4_2 24 0 19 SWI5 16 0 0 13 

SWI6_2 38 0 30 MBP1 32 0 0 23 

MCM1 29 0 23 SWI4 24 0 0 21 

SWI5 16 0 13 SWI6 38 0 0 28 
 
 
Table 7. Compare ActivMiner with ChIP-chip and tightClust. 
 

Method Sensitivity Specificity PPV NPV Accuracy 
 Worse Better Worse Better Worse Better Worse Better Worse Better

ChIP-chip (32) 17 9 6 26 7 20 16 9 5 27 
tightClust (96) 4 40 6 69 1 49 4 40 3 74 
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Chapter 5. Connections between our methods 

Our group has endeavored to identify the direct target genes of a TF from an 

entire genome. I have developed three algorithms (i.e. MODEM [10], TRANSMODIS 

[11], and CompMODEM), which are all EM-based algorithms with different integration 

of multiple sources of data. Among them, MODEM, integrating both sequence and 

expression data, is the predecessor of the other two. The inputs to MODEM are a public 

TFBS, the whole genome promoter sequences and a single genome-wide microarray 

measurement related to an interested TF, such as ChIP-chip or TFPE. The underlying 

idea of MODEM is that the true direct targets of a TF not only contain the binding sites 

of the TF in its promoter sequence, but also change the level of enrichment in a ChIP-

chip experiment or expression in a TFPE. MODEM utilizes diverse types of data, which 

results in higher sensitivity and specificity than the previous traditional methods based 

merely on one of the binding site, enrichment and expression information. Besides 

accurately identifying the direct target genes of a TF, MODEM refines the input 

consensus motif by outputting a position-specific frequency matrix (PSFM) that presents 

extra precise information of the binding motif. In addition, MODEM broadens its usage 

by inputting one single ChIP-chip or TFPE array instead of a large set of experimental 

arrays, because the ChIP-chip experiments or TFPEs related with a special TF provide 

small number of arrays, usually replicates, which failed to be used in the old pattern 

recognition method. However, the inevitable notable noise in each array may trap 

MODEM in local optima and thus reduce the quality of its performance.  
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To address this problem, I developed another program named TRANSMODIS 

based on MODEM. Firstly, TRANSMODIS takes multiple TFPE arrays instead of a 

single array as the input and assumes that the true direct targets are the genes containing 

the consensus motif of the TF of interest as well as exhibiting consistent expression 

changes in most of the TFPEs. Compared with MODEM, TRANSMODIS is less 

sensitive to noise in individual experiments because of the consistency requirement on 

gene expression level across multiple experiments. Secondly, TRANSMODIS performs 

the search for optimal initial parameter values, which makes EM algorithm avoid being 

trapped in local optima. Finally, using the refined PSFM, the by-product of EM algorithm, 

TRANSMODIS scored the genes that do not contain a copy of the consensus binding 

motif in their promoter sequences and retrieve the omitted true targets due to the absence 

of the consensus binding motif. These three improvements increase the performance of 

TRANSMODIS to accurately identify the direct targets of PHO4 in yeast and the targets 

of DAF-16 in worm. 

Like TRANSMODIS, CompMODEM is another attempt to enhance the accuracy 

of MODEM by integrating phylogenetic conservation, as well as sequences and 

expression. By joining phylogenetic conservation information into MODEM, 

CompMODEM simultaneously reduces both false positives and false negatives. On one 

hand, some false positives chosen by MODEM with random binding motifs and casual 

enrichment or expression changes can be filtered by CompMODEM due to the poor 

conservation across the close phylogenetic specials. On the other hand, the missing true 

targets having weak binding sites and small enrichment or expression changes are 
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retrieved with the help of the complement of strong conservation information in 

CompMODEM. 

The common purpose of the above three methods is to statically identify the direct 

true targets of a TF of interest. However, the activities of a TF are dynamic and thus the 

targets of the TF are alterable according to the activities of the TF under different 

experiment conditions. I developed another algorithm called ActivMiner to 

simultaneously infer the TF’s activity in each experiment and target genes of the TF 

corresponding to its activity. The target genes of a TF are those containing the binding 

sites of the TF in their promoters and the gene expression levels, coherent with the TF’s 

activity. Meanwhile, the activity of the TF is defined by the activation or repression of its 

targets. Since neither the label of the target gene nor activity of the TF is observed, 

ActivMiner iteratively infers the activity and target genes of the TF using EM within 

every cursorily pre-grouped cluster. 

Theoretically, ActivMiner has the capability to give more accurate prediction on 

transcriptional regulation than the traditional methods, such as ChIP-chip experiments 

and clustering methods, because this approach integrates direct and indirect evidences of 

transcriptional regulation, namely the binding information and expression information, 

respectively, which are usually used separately by previous methods. Moreover, 

ActivMiner combined two traditional methods, clustering and EM, which are usually 

individually used to identify gene modules. The combination of these two methods 

overcomes the limits of each method. Traditional clustering method is quite dependent on 

the cutoff/threshold, which cannot be too loose or too stringent.  A loose cutoff results in 

low specificity, while a tight one results in low sensitivity. By combining EM algorithm, 
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clustering method may start with a stringent cutoff and then automatically loosen it by 

maximizing the likelihood. On the other hand, EM algorithm usually is sensitive to the 

initialization, which is always pre-defined based on an unknowledgeable guess. The 

benefit of performing clustering before EM is to provide a better starting point and to 

avoid being trapped in local optima. Thus, the results are more accurate by combining 

two methods than utilizing one single method. 

The most promising benefit of ActivMiner is that it successfully identifies the 

subgroups of targets of a TF corresponding to different activities of the TF. The 

subgroups imply this single TF is able to play multiples roles through combinatorial 

regulation with other cofactors under various conditions. Combinatorial transcriptional 

regulation is an important means of achieving highly specific expression of individual 

genes using small groups of TFs. These groups of TFs integrate signals from different 

pathways to fine-tune the cellular response at the transcriptional level. The complexity of 

transcriptional regulation in higher species suggests that combinatorial regulation is of 

particular importance for metazoans. Therefore, ActivMiner provides the valuable 

information for creating the relations between TFs, which is one of the main purposes in 

GRNs inferring. 

The connection of the above programs I developed is shown in Figure 12. Which 

program is suitable to use depends on the accessible data sets. For example, if multiple 

TFPEs are available, TRANSMODIS is more favorable than MODEM. If reliable 

phylogenetic information is obtainable, CompMODEM is the first choice. However, 

MODEM is still useful because of its least dependence of experimental data. On the other 

hand, ActivMiner is most promising due to its powerful and multiple abilities.
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Figure 12. The connections between our methods. 
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Chapter 6. Further work 

Heterogeneous large-scale datasets capturing diverse aspects of the biology of a 

cell are accumulating at a rapid pace, and efforts to integrate them into a coherent view of 

cell regulation are intensifying. Over the past few decades, the rapid development of 

high-throughput genomic technologies (i.e., next-generation sequencing, microarrays, 

ChIP) has catalyzed the accumulation of various wealthy genome-wide omics data 

(genomics, transcriptomics, and proteomics). These omics data provide the multi-angle 

views of the complicate GRNs on a genome-wide scale. For instance, genome sequence 

data represent the phylogenetic conservation, one of the characters of a TF binding motif, 

in both “single species, multiple genes” and “single gene, multiple species” investigations 

[100]. Transcriptome data measured by genome-wide DNA microarrays indicate the 

direct and indirect biological influence over target genes when a TF is perturbed. ChIP-

chip and ChIP-seq data, which belong to proteome data representing protein-DNA 

interactions, proves the physical binding between a TF and its targets. Another proteome 

data about the protein-protein interaction aid the discovery of combinatorial regulation 

between TFs and their co-workers. Many computational methods and mathematical 

techniques have been proposed to infer GRNs by utilize and analyzing these massive data 

sets. For example, Lawrence et al. [101] developed a Gibbs sampling method to identify 

binding motif from genome sequence data. Bailey et al. [15] also found regulatory motifs 

from genome sequence data by using an EM algorithm. Blanchette et al. [102] 

implemented Phylogenetic Footprinting for the discovery of regulatory elements in a set 

of orthologous regulatory sequences from multiple species. Clustering, classification and 
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visualization methods are originally applied to gene expression data sets for 

reconstruction of GRNs mainly based on the similarity of expression patterns. To handle 

the noisy and latent variable in microarray data and to discover the interactions between 

genes in GRNs, many advanced approaches have been recently developed, such as 

Boolean networks [35; 103] and Bayesian networks [104; 105]. Johnson et al. [106] 

developed a method called MAT to identify the binding sites and regulatory targets of a 

TF from ChIP-chip data. Although individual omics data are beneficial for the 

reconstruction of GRNs, none is sufficient enough to accurately reverse engineer the 

complicated GRNs, because each omics datasets are routinely generated to study 

different aspects of biological systems. For example, even that a gene contains the 

binding motif of a TF doesn’t imply this TF is able to bind to the gene because the 

binding between a TF and its target genes requires special secondary structures of both 

the TF and targets and participation of other regulatory proteins. Even the occurrence of 

the binding between a TF and a DNA in ChIP experiments cannot guarantee the TF 

playing its regulatory role. On the other hand, the variances of gene expression in TFPEs 

can provide the evidence of the influence of a TF over its targets, but cannot prove 

whether this influence is the direct effect from the TF or the indirect effect from the TF’s 

targets. 

In the post-genome era, biological researchers have had  growing awareness of 

the need to move beyond the one gene or one protein approach and take a holistic view 

during all phases of research, including data collection, information processing, 

interpretation, knowledge acquisition, domain discovery, hypothesis generation and 

subsequent experimental design. [107] Furthermore, they have realized the necessity of 



 

 

120

integrating complementary information churned out by multiple omics technologies to 

obtain a coherent view of the underlying biology. Besides, different methods have been 

combined to infer the GRNs. For example, Narayanan et al. [108] developed an algorithm 

JointCluster that identified sets of genes clustered well in multiple networks of interest, 

such as coexpression networks summarizing correlations among the expression profiles 

of genes and physical networks describing protein-protein and protein-DNA interactions 

among genes or gene-products. These identified clusters, which were derived from 

multiple genomic datasets and diverse reference classes, agreed with known biology of 

yeast under the growth conditions, and enabled functional predictions for the 

uncharacterized genes. Seok et al. [109] developed an algorithm that provides improved 

performance in the prediction of transcriptional regulatory relationships by 

supplementing the analysis of microarray data with a new method of integrating 

information from an existing knowledge base, such as the Yeast Proteome Database. 

Similarly, Djebbari et al. [110] developed Seeded Bayesian Networks to infer 

biologically relevant pathways from microarray data as well as prior information of the 

literature and/or protein-protein interaction data. They demonstrated that the use of seeds 

derived from the biomedical literature or high-throughput protein-protein interaction data, 

or the combination, provided improvement over a standard Bayesian Network analysis, 

allowing networks involving dynamic processes to be deduced from the static snapshots 

of biological systems that represent the most common source of microarray data. The use 

of various data resources greatly improves the ability of Bayesian Network analysis to 

learn gene interaction networks from gene expression data. Furthermore, MacIsaac et al. 

[16] demonstrated an example of combining two complementary computational strategies, 
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PhyloCon and CONVERGE, for conservation-based motif discovery. PhyloCon and 

CONVERGE are both designed to find evolutionarily conserved motifs among a set of 

genes that are believed to be co-regulated. These two programs use different inputs, 

search algorithms and scoring statistics. PhyloCon [100] begins with unaligned sequences 

and generates many local alignments from each orthologous group. The local alignments 

are assembled using a greedy algorithm to identify patterns that are both conserved in 

orthologous genes and present in many of the co-regulated promoters. PhyloCon scores 

sequences by measuring the relative likelihood that a sequence would emerge from the 

motif model and the background sequence model. By contrast, CONVERGE [50] is an 

EM-based algorithm for searching over pre-computed, static alignments and discovering 

specificities. CONVERGE motifs are scored by comparing the frequency of matching 

sequences in the bound and not-bound genes using a hypergeometric distribution. The 

motifs discovered by PhyloCon and CONVERGE are often complementary. The authors 

combined these motifs and then expanded the map of yeast regulatory sites, which 

revealed an elaborate and complex view of the yeast genetic regulatory network. 

Knowing the tendency and advantage of utilizing different information resources 

instead of a single type of data, I have developed MODEM, TRANSMODIS and 

CompMODEM to identify the targets of a TF from multiple available data, including 

ChIP-chip or TFPE data, canonical or pre-identified core binding motifs, genome 

promoter sequence and phylogenetic conservation information. These complimentary 

data provide insights into different aspects of cell regulatory system and improve both 

specificity and sensitivity of gene module identification methods. In ActivMiner, we have 

combined clustering method and EM algorithm to identify a TF’s activities and targets 
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simultaneously. Either Clustering method or EM algorithm alone is able to identify the 

activities or/and targets of a TF, but the combination of these two methods can improve 

the identification performance. First, the main disadvantage of clustering method is the 

arbitrary choose of a cutoff/threshold, which might be too loose or too stringent. 

Combined with EM algorithm, clustering method may start with a stringent cutoff and 

then loosen it by maximizing the likelihood. On the other hand, EM algorithm usually is 

sensitive to the starting point, which is always initialized based on a guess. The benefit of 

performing clustering before EM is to provide a better starting point and to avoid being 

trapped in local optima. Thus, the combination of two methods yields more accurate 

results than one single method. 

Neither any of the experimental data is sufficient, nor is any of computational 

approaches perfect. However, it can be reasonably expected that at least some of the 

problems mentioned above will be considerably relieved in the near future. The 

emergence of new experimental techniques, along with the development of databases and 

other infrastructural provisions giving access to published and unpublished experimental 

data, is promising to relieve the data bottleneck. Together with the continuing increase of 

computer power, this might allow hitherto impractical approaches of modeling and 

simulation to be tried. [111] For example, with the development of the technology of 

NGS, ChIP-seq experiments already are able to reduce the noise and increase the 

resolution in comparison with ChIP-chip experiments. Also, two novel computational 

approaches for modeling gene regulatory networks, PBN and DBN, have drawn the most 

interest in the field of systems biology, [112] because these methods have several 

advantages over traditional clustering methods. Firstly, the methods are designed to 
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handle the missing values and latent variables. Secondly, they are capable of discovering 

causal relationships and interactions between genes other than positive correlation. 

Thirdly, they can be easily implemented to integrate multiple data resources.  Finally, 

these efforts might result in computer-supported modeling environments that integrate a 

variety of experimental and computational tools to assist the biologists in unraveling the 

structure and functioning of GRNs. 

In addition, GRN reconstruction has quickly generated a large number of 

hypotheses with regard to pathways and networks that remain speculative without 

experimental verification. This may be attributable to the many unrealistic assumptions 

and/or simplifications made in the methodological development.  Neither have the 

potential and values of reverse engineering t been well appreciated yet. Indeed, 

interdisciplinary and concerted studies are urgently needed in the area of reverse 

engineering of GRNs. Biologists, physicists, engineers, and mathematicians need  

collaborate closely together to develop novel reverse engineering approaches based on 

more biologically realistic assumptions and to generate more experimentally testable 

hypotheses for systems biology. Only through committed interdisciplinary cooperation 

can the promise of reverse engineering be realized; this could greatly facilitate a holistic 

and quantitative understanding of biological systems. [113] 
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APPENDIX 

Table 8. Pho4p target genes identified by TRANSMODIS. 
 

Gene ORF/Name p* Extended motif A† B† C† D† E† F† G† H† 

YAR071W/PHO11 1 gcgttcacacgtgggtttaaa 4.00 3.01 3.71 4.29 4.25 3.55 4.86 4.50 

YBR093C/PHO5 1 gcactcacacgtgggactagc 3.08 1.25 3.09 2.82 4.29 3.08 4.07 4.62 

YBR296C/PHO89 1 aatgcagcacgtgggagacaa 2.01 2.26 5.07 5.26 2.62 3.12 4.92 2.79 

YDR281C/PHM6 1 tcgctgacacgtgggaggtgg 1.37 0.87 3.40 3.00 3.04 -.29 3.62 0.97 

YDR452W/PPN1 1 aaattaggacgtggtttatag 2.60 1.25 0.78 1.76 1.95 1.14 2.29 1.98 

YDR481C/PHO8 1 atcgctgcacgtggcccgacg 1.71 0.87 1.80 1.55 1.90 1.32 2.17 2.01 

YER037W/PHM8 1 tgtgaagcacgttgctgcccc 0.54 0.16 1.97 0.33 1.53 1.31 2.20 1.97 

YER055C/HIS1 0.995 ggtgactcacttggaagcttt 1.35 0.57 0.75 1.28 1.66 0.79 1.55 1.32 

YER062C/HOR2 1 tttacgtcacgtgggaggccc 1.91 0.58 1.59 1.02 1.26 1.36 1.35 1.54 

YER072W/VTC1 1 tccgagacacgtgctaatatc 3.17 2.43 3.14 2.49 2.51 2.52 3.21 2.04 

YFL004W/VTC2 0.999 caagcagcacgtgggtttttt 1.28 0.77 1.39 1.60 2.03 0.23 1.71 1.58 

YHR136C/SPL2 1 agcggagcacgtgggaaaaga 2.45 3.72 4.65 4.61 1.52 3.01 5.25 3.09 

YHR215W/PHO12 1 gcgttcacacgtgggtttaaa 3.89 3.08 4.20 4.16 4.71 3.25 5.23 3.73 

YJL012C/VTC4 1 tcatccgcacgtggctgcaca 2.22 2.10 2.89 3.30 2.80 1.90 3.07 3.09 

YJL117W/PHO86 1 gcgcccgcacgtgctctttat 1.40 0.89 1.48 1.36 2.08 0.95 1.78 1.35 

YML123C/PHO84 1 acacgtccacgtggaactatt 3.30 5.09 5.34 5.49 3.72 3.53 5.37 2.78 

YPL018W/CTF19 1 gagggcccacgtggcttaata -.12 1.86 1.92 1.86 1.77 1.63 2.10 0.51 

YPL019C/VTC3 1 gagggcccacgtggcttaata 3.02 3.47 3.94 4.30 4.04 2.25 4.09 2.70 

YOL084W/PHM7 1 atgtgcgcaagtgcttagaaa 1.35 2.33 2.31 0.12 1.06 1.29 0.99 1.16 
 * p denotes the probability of being a target gene  

 † The set of microarray experiments are: A. Low-Pi vs High-Pi in WT (NBW7) exp1; B. Low-Pi vs High-Pi in WT (NBW7) exp2; C. 
Low-Pi vs High-Pi in WT (DBY7286); D. PHO4c vs WT; E. pho80 vs WT; F. pho85 vs WT; G. PHO81c vs WT exp1; and H. 
PHO81c vs WT exp2. 

 
Table 9. Class 1 ageing genes identified by TRANSMODIS. 
Table 9. Class 1 ageing genes identified by TRANSMODIS. (continued) 

Gene ORF Gene Name P* Extended motif 

Deviation contrast in log 
expression level comparing daf-
2(RNAi) experiments to mixed 

timecourse data 

Deviation contrast in log expression 
level comparing daf-16(RNAi):daf-

2(RNAi) experiments to mixed 
timecourse data 

T22G5.7 spp-12 1 actatcctgtttacttccaga 1.63 -1.66 

T20G5.7 dod-6 1 tgaaaaatatttacttaacat 2.13 -1.36 

C24B9.9 dod-3 1 gtgataatgtttaccccgcgg 1.16 -0.64 

F28D1.5 thn-2 1 aagatttttttttccaaaaaa 1.54 -0.54 

F48D6.4 f48d6.4 1 gttagtttattaacttagttt 1.12 -0.85 

F28D1.3 thn-1 1 gtgggtttgtttacagtcctt 1.42 -0.61 

Y40B10A.6 y40b10a.6 1 taattattatttactgagtaa 2.16 -1.95 
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Table 9. Class 1 ageing genes identified by TRANSMODIS. (continued) 

ZK384.1 zk384.1 1 tcaacaatgtttgcaactccg 1.06 -1.75 

T25C12.2 spp-9 1 aaaaaagtatttacccaaaag 0.45 -2.14 

PDB1.1 pdb1.1 1 ctttcattatttactctattc 1.30 -0.62 

ZK355.3 zk355.3 1 cacaaaaaatttacttcttgt 1.84 -1.06 

K12G11.3 sodh-1 1 cccaaaatgttttctgaacaa -0.02 -1.39 

C02A12.4 lys-7 1 tttatactgtttacttcagtg 1.72 -1.49 

R09B5.6 hacd-1 1 ccttttttgttaaccactttt 1.19 -0.80 

C55B7.4 acdh-1 1 ctgaaaatgtttatttcttga 0.05 -1.23 

K11G9.6 mtl-1 1 tgctggctgtttaccacttca 1.61 -2.82 

C54F6.14 ftn-1 1 gggttcttgtttacagaaaca 1.91 -0.96 

ZK384.2 zk384.2 1 ggtatgatattttctgaaatt 0.90 -0.69 

K07C6.4 cyp-35b1 1 acaaatttatttactaaaatc 1.32 -0.63 

B0213.15 cyp-34a9 1 tttataatttttacatttatt 1.24 -0.44 

C54D10.1 cdr-2 1 ttaaaactatttaaattcaaa 1.21 -0.53 

F11A5.12 stdh-2 1 cagatattattttcttcattc 1.28 -0.35 

W06D12.3 fat-5 1 ttttgtttatttacttaatta 1.32 -0.45 

T02B5.1 t02b5.1 1 tcatttttatttacatgtact 1.49 -0.12 

ZK384.3 zk384.3 1 gaaattatattttctattcca 1.16 -0.15 

C08E8.4 c08e8.4 1 gtgaccttgtttactgcctcc 1.34 -0.27 

C06B3.4 stdh-1 1 caaaatatatttacagacagt 1.27 -0.35 

B0286.3 b0286.3 1 atcattatattttcaaatttt 1.37 -0.19 

E01A2.8 e01a2.8 1 ggaaatatgtttactgtaaaa 0.91 -0.79 

C50F7.2 clx-1 1 cctcctttatttacattgacc 1.30 -0.16 

M02D8.4 m02d8.4 1 cgttgtgtgtttactttattg 1.21 -0.37 

C17G10.5 lys-8 1 atgataatgttttccgaaatt 1.07 -0.34 

F49A5.6 thn-4 1 atgttgatattttctttcttg 1.20 -0.24 

M01H9.3 m01h9.3 0.998 gtttgtctgtttccttcaaag 1.39 -0.06 

C52D10.1 c52d10.1 0.992 ataattttatttattgttttt 1.22 -0.26 

VZK822L.1 fat-6 0.975 tttatattattttctagaagc 1.20 -0.23 

C06B3.5 c06b3.5 0.97 gcgagaatatttactttttta 1.10 -0.22 

C05E4.9 gei-7 0.898 atgtaattgtttactcaactt 1.14 -0.36 

C30G12.2 c30g12.2 0.776 gaaaattcattaactgaaaca 0.91 -0.31 

 
Table 10. Class 2 ageing genes identified by TRANSMODIS. 
Table 10. Class 2 ageing genes identified by TRANSMODIS. (continued) 

Gene ORF Gene Name P* Extended motif 

Deviation contrast in log 
expression level comparing 
daf-2(RNAi) experiments to 

mixed timecourse data 

Deviation contrast in log expression 
level comparing daf-16(RNAi):daf-

2(RNAi) experiments to mixed 
timecourse data 

C32H11.9 c32h11.9 1 cttgtgatattcacaaagttt -1.35 0.47 
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Table 10. Class 2 ageing genes identified by TRANSMODIS. (continued) 

K04E7.2 opt-2 1 ctcgttatgtttactgtgtgt -0.63 0.82 

ZC513.11 str-138 1 ataaaaatatttcctaattta -0.42 0.30 

ZC404.5 srh-28 1 cttctggtatttacaacatta -0.71 -0.35 

ZK6.7 zk6.7 1 gtctgtatgtttacttttggt -0.40 -0.20 

Y38H6C.5 y38h6c.5 1 ttcattttatatactaaattc -0.71 0.49 

T02B11.5 srj-38 1 gtttttttgttttctgaaaat -0.96 -0.65 

C32H11.4 c32h11.4 1 agtcacatatttacaaagttc -0.97 0.76 

ZK6.11 zk6.11 1 tttgcgacatttacagtttta -1.56 0.82 

W05B2.6 col-92 1 tattgtttctttactatgttt -0.42 -0.62 

T25C12.3 t25c12.3 1 ttgggaatgtttacttgttgc -0.59 0.72 

K09D9.2 cyp-35a3 1 tatgatatatttacagccccc -0.95 0.33 

T10B5.4 t10b5.4 1 ttccaagtattgacattttcc -0.68 -0.45 

B0554.6 dod-20 1 tccaacttatgtacattaacg -0.55 0.91 

C46E10.2 c46e10.2 1 gtctgcctatttacaagccag -1.37 -0.45 

C32H11.10 dod-21 1 gtatgcttttttactgtcaat -1.99 0.18 

Y38H6C.20 y38h6c.20 1 ctttctttgttttctattttt -1.33 -0.62 

F55G11.7 f55g11.7 1 aatgacgaatttacaaatttt -0.94 0.52 

C32H11.12 dod-24 1 atttagatattaactaaagat -1.39 0.45 

K08D9.6 k08d9.6 1 ttcaaattattttcaagttac -1.95 -1.66 

F54B11.4 f54b11.4 1 tataaaatgtttagttaaaga 0.06 1.00 

F28B4.3 f28b4.3 1 tttacgatatttagttttttt -0.53 0.62 

W05B2.1 col-94 1 gcggaagtgtttacgatcggt -0.33 -0.72 

F35E12.5 f35e12.5 1 ctttatatttttattattggt -0.64 0.69 

B0207.10 b0207.10 1 ttgaatttatttataattttt -0.76 -0.37 

F55G11.5 dod-22 1 cttaaaatgtttacaggtgga -1.83 0.68 

C31A11.5 c31a11.5 1 tacgatatattttcaattatt -0.61 0.38 

F15E11.12 f15e11.12 1 ctaaaaatatttacttgcctg -0.51 -0.64 

T24B8.5 t24b8.5 1 tttaaattgttttcatacttt -0.67 0.20 

W05B2.5 col-93 1 ttatgcatgtttaaacatttc -0.51 -0.50 

F15E11.1 f15e11.1 1 tttaaaatggttaccgtatca -1.00 -0.31 

F56A4.2 f56a4.2 1 gataatatttttacataaata -1.39 0.32 

F11G11.11 col-20 1 attgaattgtatacttttttt -0.59 -1.05 

H28G03.3 h28g03.3 1 aattttttatttactaatctt -1.66 -0.95 

F57F4.4 f57f4.4 1 aataaaatttttactttactg -0.82 0.45 

T11F9.2 tag-140 1 cttcatatgtttaaaattttt -0.96 -0.76 

K10D11.1 dod-17 1 gcaaaattatttacacgtgtt -1.20 0.50 

F46C8.6 dpy-7 1 tctgaaatgtgtacagttgca -0.47 -0.14 

F28H7.3 f28h7.3 1 tttcccatatttacatctcga -0.87 0.28 
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Table 10. Class 2 ageing genes identified by TRANSMODIS. (continued) 

ZK1037.4 nhr-246 1 tcaataatgtttacaaaaatc -1.25 -0.93 

F22D6.10 col-60 1 tatcaagtttttacacaatca -0.65 -0.22 

F49E12.2 dod-23 1 caattcaaatttacagaaaat -0.90 0.89 

T28H11.2 srm-1 1 tctgaaatatttaaaggtatt -1.14 -1.20 

F55G11.8 f55g11.8 1 ttctacgtattttcactcttt -0.99 0.28 

T03D3.1 ugt-53 1 tactatgtgtttacacaaaaa -0.55 0.81 

F44C4.3 cpr-4 1 tattctttttttacaacttca -0.29 0.72 

T05E12.3 t05e12.3 1 cattttctttttacaaaaaat -0.23 1.00 

F56G4.3 f56g4.3 1 aaaaaaatattaaccgttttt -0.45 0.61 

F32A5.3 f32a5.3 1 ctttcatgatttacaggtttt -0.51 0.76 

F49F1.1 f49f1.1 1 gttactttatttaaaaaattt -0.29 0.66 

T20F10.4 t20f10.4 1 atcttggtatttacaattatt -0.73 0.13 

M18.1 col-129 1 ctttgaatatttacaatttga -0.26 -0.41 

C32H11.13 c32h11.13 1 atttagatattaactaaagat -0.23 0.66 

C15A11.5 col-7 1 ttatcaatatttattaattgc -0.41 -0.96 

C53B4.5 col-119 1 ttttttatatttgcttatcaa -0.33 -0.69 

F53A9.8 f53a9.8 1 tataaaatattaactgaagat -0.18 0.90 

F11H8.3 col-8 1 ttagttttatttatttgttga -0.15 -0.37 

C34F6.2 col-178 1 ttttcagtaattacggtagaa -0.14 -0.26 

R04E5.10 ifd-1 1 atataaatattttctattaaa -0.01 1.11 

C01H6.1 col-61 1 atctaaatatttacaaacaat -0.29 0.59 

F55D12.6 f55d12.6 1 ttcaatttatttatgctttct -0.52 0.11 

W02D3.7 lbp-5 1 tgtgtcctatttactatatat -0.24 0.80 

F55G11.2 f55g11.2 1 tttttcgtgttttcaatttct -0.30 0.78 

C31G12.4 c31g12.4 1 attaatttatttaacgtacta -0.84 -1.09 

C07B5.5 nuc-1 1 tttgctatgtttactaaaatg -0.30 0.57 

D2023.7 col-158 1 tttaaactgttcacagatatt -0.15 -0.29 

ZK757.1 zk757.1 1 tttaccatatttacctctttt -0.09 0.53 

R13H4.3 r13h4.3 1 ctagcattttttacaaagtta -0.09 0.88 

F07C3.1 ptd-2 1 gatttcctgtttaaaattgtt -0.54 -0.53 

F29C12.1 pqn-32 1 gttctagtatctacaaaatta 0.15 1.01 

F15H10.1 col-12 1 ttttcagtatttgctattgac -0.15 -0.42 

F10G8.3 npp-17 1 gttataatatttataatcaaa -0.53 -0.20 

F08G5.6 f08g5.6 1 atataaatatttaccatgtca -0.15 1.17 

F40F4.6 f40f4.6 1 attttcttatttaacgacttt -0.25 0.69 

C25D7.12 c25d7.12 1 cttgttttatttataatcggt -0.28 0.19 

C17F3.3 c17f3.3 1 tttaaaaaatttacacaccaa -0.17 0.65 

T10B9.2 cyp-13a5 1 accgacatatttaccaaggcc -0.63 -0.93 
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Table 10. Class 2 ageing genes identified by TRANSMODIS. (continued) 

F23B2.12 pcp-2 1 tgataactgtttagagatgtt -0.01 0.78 

F35E12.9 f35e12.9 1 tgtgtaatattgacaaaaatt -0.11 0.83 

C05E11.5 amt-4 1 ctttaagaatttacacctcac -0.09 0.80 

F57B1.4 col-160 1 acggaactatttactgaaaac -0.11 -0.67 

K06H6.5 k06h6.5 1 ttctgtatatttaagattttt -0.29 -0.20 

F54F11.2 f54f11.2 1 ctaaaaatatttgccaaatac -0.03 0.80 

Y62H9A.4 y62h9a.4 1 ttctgattgtttaaactttta -0.14 0.60 

T11F9.9 col-157 1 ttggatatgtttcctataaaa -0.08 -0.39 

C08F11.8 ugt-22 1 gtgaaaatttttactgtttct -0.04 0.59 

F11D11.8 f11d11.8 1 tttagaatgtttaaggaaaat -0.29 0.09 

C54G4.2 c54g4.2 1 cttctcatatttataaaatga -1.02 -1.52 

W01A11.4 lec-10 1 ctttttgtatttccaaaatga -0.24 0.38 

T25B9.7 ugt-54 1 ataaaattatttacagaaata -0.46 -0.34 

C14A6.1 clec-48 1 atttaattttttacacgatta -0.03 0.35 

F55C7.2 f55c7.2 1 attttcatattttcagacgaa 0.29 1.24 

Y106G6D.3 y106g6d.3 1 aactacctgtttactgtagtc -0.11 0.75 

C43D7.5 sdz-6 1 gaaagcctgtttacggatgga 0.32 1.14 

ZC416.6 zc416.6 1 agaaaagtatatacaaatcca -0.14 0.87 

F59B2.13 f59b2.13 1 ctctttttatttacatttaaa -0.31 0.04 

F10D11.6 f10d11.6 1 atcatcatatttccattgtcc -0.33 0.17 

T09F5.7 t09f5.7 1 atccaattctttacatttggt -0.10 0.05 

DY3.5 pqn-26 1 tctaaaatgtttaaaatttgt 0.10 0.99 

C55B6.5 c55b6.5 1 ataagcatatttattgataga 0.20 1.33 

W05E10.4 tre-3 1 tatgaaatatttattgatatc -0.03 0.60 

C15A11.6 col-62 0.999 attaaagtatttaaaaaattt -0.29 -0.70 

B0379.2 b0379.2 0.999 ttataaatatttacgcaatat -0.26 0.45 

Y41E3.2 dpy-4 0.999 ataaaaaaatttactgtttct -0.40 -1.05 

F56H9.1 srx-113 0.999 attccaatatttatttctgtt 0.25 1.13 

F16C3.1 f16c3.1 0.999 ttttcggtgtttacacgtctt -0.50 0.04 

F22A3.6 f22a3.6 0.999 gtttgattgtttactgttttg -0.23 0.04 

F38B6.5 col-172 0.999 cctcacttatttacatttctt 0.15 0.97 

C46H11.6 c46h11.6 0.999 ttttatatgtttatactttta 0.03 0.77 

F56F4.7 f56f4.7 0.999 ataaaaacgtttacaaacctt 0.04 1.04 

B0495.4 nhx-2 0.999 attaatatatatacttttttc 0.01 0.80 

F33D11.6 f33d11.6 0.998 ttctagttatttacactttgg -0.41 -0.16 

C52D10.9 skr-8 0.998 aaaaaactgtttaaaatttat -0.15 0.52 

F26B1.4 col-58 0.997 tttcagatatctactttttga -0.37 -0.65 

C24H10.3 c24h10.3 0.996 attagaatatttattgaactc -0.29 0.18 
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Table 10. Class 2 ageing genes identified by TRANSMODIS. (continued) 

F52C9.5 f52c9.5 0.996 ttattcgtttttacttttgtg -0.35 -0.21 

K12G11.4 sodh-2 0.996 cttgaaatgtttagaattctc -0.31 -0.34 

D1007.2 col-52 0.996 ttttaagtgtttcaagttttt -0.25 0.30 

C31H2.2 dpy-8 0.994 ttctgtatgtttattattttt 0.01 0.25 

ZK1290.6 zk1290.6 0.993 tttaatctattttctcaagga -0.03 0.67 

R09A8.4 col-182 0.989 tcttttttgtttaaattttta -0.03 0.39 

C15A11.1 col-35 0.988 atttacatatttaatcttttc -0.27 -0.71 

F56G4.2 pes-2 0.987 atcattgtatttaccgtatcg -0.31 0.44 

C24G7.1 c24g7.1 0.98 acttacttacttacagtagtt 0.05 0.85 

K12H4.7 k12h4.7 0.97 gtttaattgtttactggaact -0.15 0.25 

T22G5.2 lbp-7 0.97 ctgcaattttttacaaaaaat -0.07 0.62 

E03A3.8 e03a3.8 0.968 tcgtaaatatttacttatttt -0.26 0.21 

Y39D8A.1 y39d8a.1 0.965 gatattttatttacagtaccc -0.01 0.81 

F56D5.1 col-121 0.957 aataaaatttttactatttta 0.11 0.86 

C08B11.4 nrf-6 0.946 aattatataattacagtactc 0.19 0.96 

C09G5.8 c09g5.8 0.944 aattttatatttccttttttc -0.13 0.43 

B0393.7 b0393.7 0.941 attcaattaattacaattcat -0.12 0.50 

C05A9.1 pgp-5 0.94 tttaccgtgtttacttaataa 0.46 1.23 

C46H11.1 c46h11.1 0.938 ttagttatgtatacaaatact 0.06 0.73 

C55B7.4 acdh-1 0.914 ctgaaaatgtttatttcttga 0.05 -1.23 

R09B5.2 cnc-1 0.912 tatgatttgttttcatttaat 0.16 0.82 

R10E11.7 srxa-10 0.91 caagagctatttacacttctg -0.39 0.12 

W01B11.2 sulp-6 0.832 atttacatattttcaaataaa 0.12 0.75 

C10A4.7 c10a4.7 0.801 actcaactatttagttttgac -0.02 0.69 

W06D4.2 w06d4.2 0.763 ttccatgtgttaacaataaat 0.17 0.72 

C25A1.15 c25a1.15 0.754 ctgaaattatttaaaatttaa -0.03 0.40 

F55F8.7 f55f8.7 0.736 tttcaaatatttccaaaaatt 0.20 1.00 

F55D12.4 unc-55 0.724 ctgatcataattacaatattt -0.12 0.50 

B0379.6 b0379.6 0.677 tattttttgtttaccacacac -0.22 0.41 

F46B3.7 f46b3.7 0.661 aatgatcaatttacagatgca 0.03 0.60 

C46H11.7 c46h11.7 0.647 ctaaaactgtatacatttttt -0.31 0.21 

T28F2.4 t28f2.4 0.617 ttttttttattaacataagta 0.05 0.93 

C42C1.7 c42c1.7 0.534 ttttaaatgtttaaaaatttt 0.07 0.72 

M04C9.4 m04c9.4 0.528 gtttaaatattttcaattcga 0.17 0.96 

T16G12.1 t16g12.1 0.507 ataataatatttaattaatta 0.00 0.56 

 
 
 
Table 11. Compare CompMODEM with MODEM. 
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Table 11. Compare CompMODEM with MODEM. 

TF Sensitivity Specificity PPV NPV Accuracy 

 Old New Old New Old New Old New Old New 

ABF1 0.1667 0.3333 0.9449 0.9395 0.0135 0.0243 0.996 0.9968 0.9414 0.9368 

ACE2 0.25 0.25 0.9875 0.9913 0.0235 0.0333 0.9991 0.9991 0.9866 0.9904 

ADR1 0.4 0.4 0.9907 0.9926 0.0606 0.0755 0.9991 0.9991 0.9898 0.9917 

ARG80 0.5 0.5 0.9983 0.9965 0.2667 0.1481 0.9994 0.9994 0.9977 0.9959 

ARG81 0.375 0.375 0.9979 0.9982 0.1765 0.2 0.9992 0.9992 0.9971 0.9974 

ARO80 1 1 0.9983 0.9974 0.1538 0.1053 1 1 0.9983 0.9974 

ASH1 0 0 0.9842 0.9881 0 0 0.9998 0.9998 0.9841 0.988 

AZF1 1 1 0.9042 0.9365 0.0016 0.0024 1 1 0.9042 0.9365 

BAS1 0.5385 0.5385 0.9955 0.9967 0.1892 0.2414 0.9991 0.9991 0.9946 0.9958 

CBF1 0.1818 0.0909 0.9902 0.9959 0.0299 0.0357 0.9986 0.9985 0.9889 0.9944 

CHA4 0 1 0.9956 0.9949 0 0.0286 0.9998 1 0.9955 0.9949 

CIN5 0 0 0.9743 0.9782 0 0 0.9998 0.9998 0.9742 0.9781 

CRZ1 0 0 0.9959 0.9982 0 0 0.9994 0.9994 0.9953 0.9976 

DAL80 0 0 0.9876 0.9917 0 0 0.9967 0.9967 0.9844 0.9884 

DAL81 0.7 0.6 0.9839 0.986 0.0614 0.0606 0.9995 0.9994 0.9835 0.9854 

DAL82 0.75 0.75 0.9914 0.9907 0.0952 0.0882 0.9997 0.9997 0.9911 0.9904 

ECM22 0.5 0.5 0.9884 0.9911 0.0128 0.0167 0.9998 0.9998 0.9883 0.991 

FKH1 0 1 0.9749 0.9775 0 0.0066 0.9998 1 0.9748 0.9775 

FKH2 1 1 0.9758 0.9775 0.0123 0.0132 1 1 0.9758 0.9775 

GAT1 0.75 0.25 0.9818 0.9872 0.0242 0.0116 0.9998 0.9995 0.9817 0.9868 

GCN4 0.4035 0.4737 0.9932 0.9912 0.3382 0.3176 0.9948 0.9954 0.9881 0.9868 

GCR1 0.15 0.15 0.9958 0.9959 0.0968 0.1 0.9974 0.9974 0.9932 0.9934 

GCR2 0.4444 0.4444 0.9935 0.9949 0.0851 0.1053 0.9992 0.9992 0.9928 0.9941 

GLN3 0.5161 0.4516 0.9846 0.9891 0.1356 0.1628 0.9977 0.9974 0.9824 0.9866 

GZF3 0 0 0.9863 0.9896 0 0 0.9998 0.9998 0.9862 0.9895 

HAC1 0 0.4 0.9989 0.9922 0 0.037 0.9992 0.9995 0.9982 0.9917 

HAL9 0 0 0.995 0.9941 0 0 0.9998 0.9998 0.9949 0.994 

HAP1 0.7143 0.7143 0.9791 0.9821 0.0671 0.0775 0.9994 0.9994 0.9785 0.9815 

HAP2 0.0667 0.1333 0.9943 0.9931 0.05 0.08 0.9958 0.9961 0.9901 0.9892 

HAP3 0.037 0.037 0.9973 0.9968 0.0526 0.0455 0.9961 0.9961 0.9934 0.9929 

HAP4 0.2593 0.2963 0.9899 0.991 0.0946 0.1176 0.997 0.9971 0.9869 0.9881 

HAP5 0.08 0.12 0.9931 0.9935 0.0417 0.0652 0.9965 0.9967 0.9896 0.9902 

HSF1 0.75 0.75 0.9911 0.9919 0.169 0.1818 0.9994 0.9994 0.9905 0.9913 

IME1 0 0 0.9979 0.9994 0 0 0.9977 0.9977 0.9956 0.9971 

INO2 0.4 0.5 0.9932 0.9932 0.1509 0.1818 0.9982 0.9985 0.9914 0.9917 

INO4 0.5556 0.5556 0.9868 0.9907 0.102 0.1389 0.9988 0.9988 0.9856 0.9895 

IXR1 0 0 0.9901 0.9901 0 0 0.9998 0.9998 0.9899 0.9899 

LEU3 0.8571 0.8571 0.9961 0.9961 0.1875 0.1875 0.9998 0.9998 0.9959 0.9959 

MAC1 0.375 0.375 0.9992 0.9992 0.375 0.375 0.9992 0.9992 0.9985 0.9985 

MATA1 0 0 0.9977 0.9977 0 0 0.9998 0.9998 0.9976 0.9976 
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Table 11. Compare CompMODEM with MODEM. (continued) 

MBP1 0.3684 0.3158 0.9772 0.986 0.0848 0.1143 0.9963 0.996 0.9737 0.9821 

MCM1 0.5625 0.625 0.9857 0.9787 0.1593 0.1242 0.9979 0.9982 0.9836 0.977 

MET28 0 1 0.8636 0.9632 0 0.0041 0.9998 1 0.8635 0.9632 

MET4 0.4444 0.6667 0.9968 0.9949 0.16 0.15 0.9992 0.9995 0.9961 0.9944 

MIG1 0.069 0.1379 0.9916 0.9796 0.0345 0.0288 0.9959 0.9962 0.9875 0.976 

MOT3 0 0 0.9884 0.9949 0 0 0.9994 0.9994 0.9878 0.9943 

MSN1 0 0 0.9922 0.9947 0 0 0.9998 0.9998 0.992 0.9946 

MSN2 0.3056 0.2778 0.986 0.9881 0.1058 0.1124 0.9962 0.996 0.9823 0.9842 

MSN4 0.3636 0.3939 0.9858 0.9888 0.1132 0.1494 0.9968 0.997 0.9827 0.9859 

NDT80 0 1 0.9243 0.986 0 0.0211 0.9997 1 0.924 0.986 

OAF1 0 0 0.9958 0.9953 0 0 0.9964 0.9964 0.9922 0.9917 

PDR1 0 0.2667 0.9932 0.991 0 0.0625 0.9977 0.9983 0.991 0.9893 

PDR3 0.1111 0.1111 0.9989 0.9968 0.125 0.0455 0.9988 0.9988 0.9977 0.9956 

PHO2 0.0526 0 0.9708 0.9973 0.0051 0 0.9972 0.9971 0.9682 0.9944 

PHO4 0.5833 0.625 0.9971 0.9976 0.4242 0.4839 0.9985 0.9986 0.9956 0.9962 

PPR1 0 0.5 0.8998 0.9985 0 0.1667 0.9993 0.9997 0.8992 0.9982 

PUT3 0 1 0.9757 0.9979 0 0.125 0.9997 1 0.9754 0.9979 

RAP1 0.4857 0.5143 0.9586 0.9647 0.0584 0.0714 0.9972 0.9973 0.9562 0.9623 

RCS1 0.6364 0.5455 0.9952 0.9973 0.1795 0.25 0.9994 0.9992 0.9946 0.9965 

REB1 0.1905 0.3333 0.9309 0.9068 0.0086 0.0112 0.9973 0.9977 0.9285 0.905 

RFX1 0.4 0.4 0.9949 0.994 0.0556 0.0476 0.9995 0.9995 0.9944 0.9935 

RGT1 0.1667 0.5 0.9988 0.995 0.1111 0.0833 0.9992 0.9995 0.998 0.9946 

RIM101 0 0 0.9914 0.9932 0 0 0.9994 0.9994 0.9908 0.9926 

RME1 0.5 0.5 0.9958 0.9892 0.0345 0.0137 0.9998 0.9998 0.9956 0.989 

ROX1 0.0769 0.0769 0.9845 0.9893 0.0096 0.0139 0.9982 0.9982 0.9827 0.9875 

RPH1 0 0 0.9854 0.9908 0 0 0.9998 0.9998 0.9853 0.9907 

RPN4 0.5714 0.5714 0.979 0.9806 0.0278 0.0301 0.9995 0.9995 0.9785 0.9802 

RTG1 0.6667 0.6667 0.992 0.9934 0.0702 0.0833 0.9997 0.9997 0.9917 0.9931 

RTG3 0.8 0.8 0.9856 0.9896 0.04 0.0548 0.9998 0.9998 0.9854 0.9895 

SIP4 0.5 0.5 0.9988 0.997 0.1111 0.0476 0.9998 0.9998 0.9986 0.9968 

SKN7 0.381 0.2381 0.973 0.9801 0.0428 0.0365 0.998 0.9975 0.9712 0.9778 

SKO1 0 0 0.9934 0.9979 0 0 0.9994 0.9994 0.9928 0.9973 

STE12 0.4487 0.4231 0.9878 0.9892 0.3043 0.3173 0.9934 0.9931 0.9815 0.9826 

STP1 0 1 0.9979 0.9964 0 0.04 0.9998 1 0.9977 0.9964 

SUM1 0.5 1 0.9863 0.9836 0.0109 0.018 0.9998 1 0.9862 0.9836 

SUT1 0 0 0.9814 0.9883 0 0 0.9998 0.9998 0.9812 0.9881 

SWI4 0.3571 0.2857 0.985 0.9874 0.0476 0.0455 0.9986 0.9985 0.9836 0.9859 

SWI5 0.3636 0.2727 0.9919 0.9946 0.069 0.0769 0.9989 0.9988 0.9908 0.9934 

SWI6 0.3409 0.3182 0.9775 0.9825 0.0915 0.1077 0.9955 0.9954 0.9733 0.9781 

TEC1 0.0682 0.0909 0.9872 0.9894 0.0341 0.0541 0.9938 0.9939 0.9811 0.9835 

THI2 0.625 0.625 0.9956 0.9958 0.1471 0.1515 0.9995 0.9995 0.9952 0.9953 

UGA3 0 0 0.9967 0.9826 0 0 0.9995 0.9995 0.9962 0.9821 
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Table 11. Compare CompMODEM with MODEM. (continued) 

UME6 0.45 0.35 0.9595 0.9752 0.0629 0.0787 0.9965 0.996 0.9565 0.9715 

XBP1 0 0 0.9839 0.9821 0 0 0.9992 0.9992 0.9832 0.9814 

YAP1 0.1538 0.2564 0.9941 0.995 0.1333 0.2326 0.995 0.9956 0.9892 0.9907 

YAP6 1 1 0.9979 0.9976 0.0667 0.0588 1 1 0.9979 0.9976 

YHP1 0 0 0.9901 0.9931 0 0 0.9998 0.9998 0.9899 0.9929 

YRR1 0 0 0.9901 0.9928 0 0 0.9994 0.9994 0.9895 0.9922 

ZAP1 0.3333 0.3333 0.995 0.9967 0.1081 0.1538 0.9988 0.9988 0.9938 0.9955 

 14 26 26 58 19 48 14 26 26 59 

 
Table 12. Compare CompMODEM with ChIP-chip. 
Table 12. Compare CompMODEM with ChIP-chip. (continued) 

TF Sensitivity Specificity PPV NPV Accuracy 

 Old New Old New Old New Old New Old New 

ABF1 0.1667 0.3333 0.9605 0.9395 0.0187 0.0243 0.9961 0.9968 0.9569 0.9368 

ACE2 0.25 0.25 0.9865 0.9913 0.0217 0.0333 0.9991 0.9991 0.9856 0.9904 

ARG81 0.5 0.375 0.9964 0.9982 0.1429 0.2 0.9994 0.9992 0.9958 0.9974 

ARO80 1 1 0.9953 0.9974 0.0606 0.1053 1 1 0.9953 0.9974 

ASH1 0 0 0.9923 0.9881 0 0 0.9998 0.9998 0.9922 0.988 

AZF1 0 1 0.9988 0.9365 0 0.0024 0.9998 1 0.9986 0.9365 

BAS1 0.6154 0.5385 0.9946 0.9967 0.1818 0.2414 0.9992 0.9991 0.9938 0.9958 

CBF1 0.0909 0.0909 0.9934 0.9959 0.0222 0.0357 0.9985 0.9985 0.9919 0.9944 

CHA4 0 1 0.9989 0.9949 0 0.0286 0.9998 1 0.9988 0.9949 

CIN5 0 0 0.9805 0.9782 0 0 0.9998 0.9998 0.9803 0.9781 

DAL80 0 0 0.994 0.9917 0 0 0.9967 0.9967 0.9907 0.9884 

DAL81 0.7 0.6 0.9866 0.986 0.0729 0.0606 0.9995 0.9994 0.9862 0.9854 

DAL82 0.75 0.75 0.9925 0.9907 0.1071 0.0882 0.9997 0.9997 0.9922 0.9904 

FKH1 0 1 0.9787 0.9775 0 0.0066 0.9998 1 0.9785 0.9775 

GAT1 0.25 0.25 0.9961 0.9872 0.037 0.0116 0.9995 0.9995 0.9956 0.9868 

GCN4 0.386 0.4737 0.992 0.9912 0.2933 0.3176 0.9947 0.9954 0.9868 0.9868 

GCR2 0.4444 0.4444 0.9922 0.9949 0.0714 0.1053 0.9992 0.9992 0.9914 0.9941 

GLN3 0.3548 0.4516 0.9914 0.9891 0.1618 0.1628 0.997 0.9974 0.9884 0.9866 

GZF3 0 0 0.998 0.9896 0 0 0.9998 0.9998 0.9979 0.9895 

HAL9 0 0 0.9958 0.9941 0 0 0.9998 0.9998 0.9956 0.994 

HAP1 0.7143 0.7143 0.9788 0.9821 0.0662 0.0775 0.9994 0.9994 0.9782 0.9815 

HAP2 0.1 0.1333 0.9941 0.9931 0.0714 0.08 0.9959 0.9961 0.9901 0.9892 

HAP3 0.0741 0.037 0.9968 0.9968 0.087 0.0455 0.9962 0.9961 0.9931 0.9929 

HAP4 0.2593 0.2963 0.9894 0.991 0.0909 0.1176 0.997 0.9971 0.9865 0.9881 

HSF1 0.8125 0.75 0.9866 0.9919 0.1275 0.1818 0.9995 0.9994 0.9862 0.9913 

IME1 0 0 0.9989 0.9994 0 0 0.9977 0.9977 0.9967 0.9971 

INO2 0.35 0.5 0.9938 0.9932 0.1458 0.1818 0.998 0.9985 0.9919 0.9917 

IXR1 0 0 0.9958 0.9901 0 0 0.9998 0.9998 0.9956 0.9899 

LEU3 0.5714 0.8571 0.9965 0.9961 0.1481 0.1875 0.9995 0.9998 0.9961 0.9959 
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Table 12. Compare CompMODEM with ChIP-chip. (continued) 

MAC1 0.5 0.375 0.9979 0.9992 0.2222 0.375 0.9994 0.9992 0.9973 0.9985 

MATA1 0 0 0.9986 0.9977 0 0 0.9998 0.9998 0.9985 0.9976 

MBP1 0.2368 0.3158 0.9844 0.986 0.0804 0.1143 0.9956 0.996 0.9802 0.9821 

MET28 0 1 1 0.9632 NA 0.0041 0.9998 1 0.9998 0.9632 

MET4 0.1111 0.6667 0.9959 0.9949 0.0357 0.15 0.9988 0.9995 0.9947 0.9944 

MIG1 0 0.1379 1 0.9796 NA 0.0288 0.9956 0.9962 0.9956 0.976 

MOT3 0 0 0.9992 0.9949 0 0 0.9994 0.9994 0.9986 0.9943 

PDR1 0 0.2667 0.9988 0.991 0 0.0625 0.9977 0.9983 0.9965 0.9893 

PDR3 0.1111 0.1111 0.997 0.9968 0.0476 0.0455 0.9988 0.9988 0.9958 0.9956 

PHO2 0 0 0.9998 0.9973 0 0 0.9971 0.9971 0.997 0.9944 

PUT3 1 1 0.9986 0.9979 0.1818 0.125 1 1 0.9986 0.9979 

RAP1 0 0.5143 1 0.9647 NA 0.0714 0.9947 0.9973 0.9947 0.9623 

RCS1 0 0.5455 0.9607 0.9973 0 0.25 0.9983 0.9992 0.9592 0.9965 

REB1 0 0.3333 1 0.9068 NA 0.0112 0.9968 0.9977 0.9968 0.905 

RFX1 0.6 0.4 0.9956 0.994 0.0938 0.0476 0.9997 0.9995 0.9953 0.9935 

RGT1 0 0.5 1 0.995 NA 0.0833 0.9991 0.9995 0.9991 0.9946 

RME1 0 0.5 0.994 0.9892 0 0.0137 0.9997 0.9998 0.9937 0.989 

ROX1 0 0.0769 0.9991 0.9893 0 0.0139 0.998 0.9982 0.9971 0.9875 

RPH1 0 0 0.9998 0.9908 0 0 0.9998 0.9998 0.9997 0.9907 

RPN4 0.5714 0.5714 0.9854 0.9806 0.0396 0.0301 0.9995 0.9995 0.985 0.9802 

RTG3 0.8 0.8 0.9925 0.9896 0.0741 0.0548 0.9998 0.9998 0.9923 0.9895 

SIP4 0.5 0.5 0.997 0.997 0.0476 0.0476 0.9998 0.9998 0.9968 0.9968 

SKN7 0.2857 0.2381 0.9723 0.9801 0.0316 0.0365 0.9977 0.9975 0.9701 0.9778 

SKO1 0 0 0.9973 0.9979 0 0 0.9994 0.9994 0.9967 0.9973 

STE12 0.3846 0.4231 0.9856 0.9892 0.24 0.3173 0.9927 0.9931 0.9785 0.9826 

STP1 0 1 0.9974 0.9964 0 0.04 0.9998 1 0.9973 0.9964 

SUM1 0.5 1 0.9907 0.9836 0.0159 0.018 0.9998 1 0.9905 0.9836 

SUT1 0 0 0.9896 0.9883 0 0 0.9998 0.9998 0.9895 0.9881 

SWI4 0.2857 0.2857 0.9764 0.9874 0.0248 0.0455 0.9985 0.9985 0.9749 0.9859 

SWI5 0.4545 0.2727 0.986 0.9946 0.051 0.0769 0.9991 0.9988 0.9851 0.9934 

TEC1 0 0.0909 0.9935 0.9894 0 0.0541 0.9934 0.9939 0.9869 0.9835 

THI2 0.875 0.625 0.994 0.9958 0.1489 0.1515 0.9998 0.9995 0.9938 0.9953 

UGA3 0 0 0.9992 0.9826 0 0 0.9995 0.9995 0.9988 0.9821 

UME6 0.25 0.35 0.9813 0.9752 0.0746 0.0787 0.9954 0.996 0.9769 0.9715 

XBP1 0.2 0 0.9886 0.9821 0.013 0 0.9994 0.9992 0.988 0.9814 

YAP1 0.1795 0.2564 0.9902 0.995 0.0972 0.2326 0.9951 0.9956 0.9854 0.9907 

YAP6 1 1 0.9911 0.9976 0.0167 0.0588 1 1 0.9911 0.9976 

YRR1 0 0 0.9965 0.9928 0 0 0.9994 0.9994 0.9959 0.9922 

ZAP1 0.3333 0.3333 0.9973 0.9967 0.1818 0.1538 0.9988 0.9988 0.9961 0.9955 

 11 27 45 21 11 36 11 27 45 21 

 
Table 13. Target list in cell cycle. 
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Table 13. Target list in cell cycle. 

 alpha-factor arrest cdc15 mutant elutriation 

YAL029C FKH2   

YAL040C MCM1_1   

YAR007C MBP1_2,STB1,SWI4_2,SWI6_2 ACE2,MBP1,STB1,SWI4,SWI6_1 SWI6_2 

YAR018C FKH2,MCM1_1,NDD1  FKH2_2,NDD1_2,SWI6_3 

YAR071W MCM1_1   

YBL002W   FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI5,SWI6_2 

YBL032W   FKH2_2 

YBL035C   SWI6_1 

YBL097W  FKH1_2  

YBL111C MCM1_3,SWI4_1,SWI6_1   

YBL112C MBP1_1,MCM1_3,SWI5,SWI6_1   

YBR008C  FKH1_2,FKH2_2  

YBR009C   FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI6_2 

YBR010W   FKH2_1,MCM1_1,NDD1_1,SWI4_2,SWI6_2 

YBR038W   FKH1,MBP1_3,MCM1_2,SWI5 

YBR054W MCM1_1   

YBR070C MBP1_2  SWI6_1 

YBR071W MBP1_1,SWI4_1,SWI6_1   

YBR073W   SWI4_1 

YBR078W   FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI5,SWI6_2 

YBR088C MBP1_2,STB1,SWI4_2,SWI6_2  MBP1_1,SWI4_1,SWI6_1 

YBR089W   MBP1_1,SWI6_1 

YBR092C FKH2,MCM1_1   

YBR093C MCM1_1   

YBR162C   FKH1,MBP1_3,MCM1_2,SWI5 

YBR202W   MCM1_2 

YBR222C   SWI6_3 

YBR243C  FKH1_2,FKH2_2  

YCL022C MBP1_1,MCM1_3,SWI5,SWI6_1   

YCL024W MBP1_1,SWI4_2,SWI6_1 ACE2,SWI4,SWI6_1  

YCL060C  MBP1  

YCL063W FKH1,FKH2   

YCL064C FKH1,FKH2   

YCR005C   SWI4_3 

YCR065W MBP1_2,SWI4_2,SWI6_2 MBP1,SWI4 SWI4_1,SWI6_1 

YDL003W MBP1_2,STB1,SWI4_2,SWI6_2 ACE2,MBP1,STB1,SWI4,SWI6_1 MBP1_1,SWI4_1,SWI6_1 

YDL018C MBP1_2 MBP1  

YDL037C  FKH2_1,NDD1  

YDL055C  SWI4 SWI4_2 

YDL101C  MBP1,SWI6_1  

YDL127W  MCM1_3,SWI5,SWI6_2  

YDL163W MBP1_2,STB1,SWI4_2,SWI6_2   

YDL164C MBP1_2,STB1,SWI4_2,SWI6_2  SWI6_1 

YDL215C   SWI4_3,SWI6_3 

YDR097C MBP1_2,STB1,SWI4_2,SWI6_2 ACE2,MBP1,SWI4 MBP1_1,SWI6_1 

YDR113C  SWI6_1 SWI6_1 

YDR146C  FKH1_1,FKH2_1,MCM1_1,NDD1 FKH1,FKH2_2,NDD1_2,SWI6_3 

YDR150W FKH2   

YDR224C  SWI4 FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI5,SWI6_2 

YDR225W  SWI4 FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI5,SWI6_2 

YDR309C   MBP1_1,SWI4_1,SWI6_1 

YDR353W  MBP1,SWI6_1  

YDR367W  FKH1_1,FKH2_1,NDD1  
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Table 13. Target list in cell cycle. (continued) 

YDR446W  FKH2_1,NDD1  

YDR451C  FKH1_2 FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI5,SWI6_2 

YDR452W   MBP1_3,SWI4_3,SWI6_3 

YDR481C  SWI6_1  

YDR507C MBP1_2,SWI6_2  SWI4_1,SWI6_1 

YDR528W  MBP1  

YDR545W MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1 MCM1_3  

YEL017W  FKH1_2,FKH2_2  

YEL040W MCM1_3,SWI4_1,SWI6_1   

YEL075C MBP1_1,MCM1_3,SWI4_1,SWI6_1 MCM1_3,SWI6_2  

YEL076C MBP1_1,MCM1_3,SWI4_1,SWI6_1   

YEL076C-A  MCM1_3,SWI6_2  

YEL077C MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1 SWI6_2  

YER001W  SWI4  

YER070W MBP1_2,STB1,SWI4_2,SWI6_2  MBP1_1,SWI4_1,SWI6_1 

YER095W MBP1_2,STB1,SWI6_2 MBP1,SWI6_1 SWI6_1 

YER110C  FKH1_1,FKH2_1,NDD1  

YER111C MBP1_1,STB1,SWI4_2,SWI6_2   

YER124C  ACE2  

YER189W MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1 MCM1_3  

YER190W  MCM1_3,SWI6_2  

YFL037W  FKH1_2 FKH2_1,MCM1_1,NDD1_1,SWI4_2,SWI5,SWI6_2 

YFL064C MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1   

YFL066C MBP1_1,MCM1_3,SWI4_1,SWI6_1   

YFL067W SWI4_1,SWI5   

YFL068W MCM1_3   

YGL008C MCM1_1 FKH2_1,MCM1_1,NDD1 MCM1_2 

YGL021W FKH1,FKH2,MCM1_2,NDD1 MCM1_1 FKH1,FKH2_2,MCM1_2,NDD1_2 

YGL038C MCM1_3,SWI4_1,SWI6_1 SWI6_1  

YGL101W  FKH1_2  

YGL116W FKH1,FKH2,MCM1_1  FKH1,FKH2_2,NDD1_2,SWI4_3 

YGL139W  FKH1_1  

YGL163C  MBP1  

YGL192W  FKH2_2  

YGL225W   MBP1_1,SWI4_1,SWI6_1 

YGR014W SWI4_2,SWI6_2   

YGR041W  ACE2  

YGR044C  ACE2,SWI5  

YGR086C  SWI6_2  

YGR092W   FKH2_2,MCM1_2,NDD1_2,SWI4_3 

YGR108W FKH1,FKH2,MCM1_2,NDD1 MCM1_1 FKH1,MBP1_3,MCM1_2,SWI5 

YGR109C  ACE2,MBP1,SWI4,SWI6_1 MBP1_1 

YGR138C FKH1,FKH2,MCM1_1,NDD1 FKH2_2 SWI4_3,SWI6_3 

YGR151C MBP1_2,SWI6_2   

YGR152C  SWI4,SWI6_1  

YGR153W  SWI4  

YGR177C  FKH1_1,FKH2_1,NDD1  

YGR189C MBP1_2,SWI4_2,SWI6_2 ACE2,MBP1,SWI4,SWI6_1 MCM1_2,SWI4_2,SWI5,SWI6_2 

YGR221C  SWI4 SWI4_1,SWI6_1 

YGR296W MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1 SWI5,SWI6_2  

YHL028W  MCM1_1  

YHL049C MBP1_1,SWI4_1,SWI6_1 MCM1_3  

YHL050C MBP1_1,MCM1_3,SWI4_1,SWI6_1   

YHR005C MCM1_1   
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Table 13. Target list in cell cycle. (continued) 

YHR023W FKH1,FKH2,MCM1_2,NDD1  SWI4_3 

YHR061C  FKH2_2,MBP1 SWI6_2 

YHR106W  SWI6_1  

YHR143W  ACE2,STB1,SWI4  

YHR149C SWI6_1  MBP1_1,SWI4_1,SWI6_1 

YHR151C FKH2   

YHR215W MCM1_1   

YHR218W MBP1_1,MCM1_3,SWI6_1 MCM1_3,SWI6_2  

YIL026C  MBP1,SWI6_1  

YIL066C  ACE2,MBP1,STB1,SWI4,SWI6_1 MBP1_1,SWI6_1 

YIL123W  FKH1_2,FKH2_2,MCM1_2 FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI5,SWI6_2 

YIL129C  MCM1_2  

YIL131C  MCM1_2  

YIL140W  ACE2,MBP1,STB1,SWI4,SWI6_1 SWI4_1,SWI6_1 

YIL141W  STB1,SWI4 MBP1_1,SWI6_1 

YIL158W FKH1,FKH2,MCM1_2,NDD1  FKH1,MBP1_3,NDD1_2 

YIL177C  MCM1_3,SWI6_2  

YJL051W  FKH2_1,MCM1_1 FKH2_2,NDD1_2,SWI6_3 

YJL073W MBP1_2,SWI6_2   

YJL074C MBP1_2,STB1,SWI6_2 MBP1,SWI6_1  

YJL078C  ACE2,MBP1,STB1,SWI4,SWI6_1  

YJL079C  MCM1_1  

YJL092W   SWI6_2 

YJL115W MBP1_1   

YJL118W  FKH1_2,FKH2_2,MCM1_2  

YJL119C  FKH2_2  

YJL121C  FKH1_1,FKH2_1,NDD1  

YJL134W  FKH1_2  

YJL158C   MBP1_3,MCM1_2,SWI4_2,SWI6_2 

YJL173C MBP1_2,SWI6_2 MBP1,SWI6_1 SWI6_1 

YJL187C  MBP1,SWI4 SWI6_1 

YJL194W  SWI5  

YJL196C   SWI6_3 

YJL225C MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1 MCM1_3,SWI6_2  

YJR001W  MCM1_2  

YJR030C  MBP1,SWI6_1  

YJR092W FKH1,FKH2,MCM1_2,NDD1 FKH2_1,NDD1  

YKL008C  SWI4  

YKL045W SWI4_2 MBP1,SWI6_1  

YKL069W FKH1 FKH1_2,FKH2_2  

YKL096W  MCM1_2 SWI4_3 

YKL096W-A FKH2 FKH1_1,FKH2_1,NDD1 FKH1,FKH2_2,MBP1_3,NDD1_2,SWI4_3,SWI6_3 

YKL113C MBP1_2,STB1,SWI4_2,SWI6_2   

YKL116C SWI6_1 MCM1_3,SWI5,SWI6_2 SWI6_3 

YKL164C  SWI5  

YKL185W  SWI5  

YKR010C  FKH1_2  

YKR013W SWI4_2 ACE2,SWI6_1 MBP1_1,SWI4_1,SWI6_1 

YKR077W  SWI5  

YLL066C  SWI6_2  

YLR032W   SWI6_1 

YLR049C  MCM1_3,SWI5,SWI6_2 SWI5 

YLR079W SWI5 SWI5  

YLR098C FKH1,FKH2,NDD1   
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Table 13. Target list in cell cycle. (continued) 

YLR099C  FKH1_2  

YLR103C MBP1_1,SWI6_1 MBP1  

YLR110C   MBP1_3 

YLR121C  ACE2,SWI4  

YLR131C FKH2,MCM1_2  FKH1,FKH2_2,NDD1_2 

YLR183C MBP1_2,STB1,SWI4_2,SWI6_2 ACE2,MBP1,STB1 SWI4_1,SWI6_1 

YLR190W FKH1,FKH2,MCM1_1,NDD1 FKH2_1,NDD1 FKH2_2,NDD1_2,SWI4_3,SWI6_3 

YLR194C  SWI5  

YLR210W  FKH2_2  

YLR212C  MBP1,SWI6_1  

YLR249W   SWI4_1 

YLR300W  MBP1,SWI6_1 MBP1_3,MCM1_2,SWI4_2,SWI5,SWI6_2 

YLR342W   SWI4_2 

YLR353W  FKH2_2  

YLR372W   MBP1_1,SWI4_1,SWI6_1 

YLR382C  MBP1  

YLR383W  MBP1 MBP1_1 

YLR389C  MCM1_2 MCM1_2 

YLR455W  FKH1_2,FKH2_2,MCM1_2  

YLR462W MBP1_1,MCM1_3,SWI4_1,SWI6_1 MCM1_3,SWI6_2  

YLR463C MCM1_3,SWI4_1,SWI5,SWI6_1 MCM1_3  

YLR464W MBP1_1,MCM1_3,SWI4_1,SWI6_1 SWI6_2  

YLR465C MBP1_1,SWI5,SWI6_1   

YLR466W MBP1_1,MCM1_3,SWI4_1,SWI6_1   

YLR467W MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1 MCM1_3,SWI6_2  

YML021C  MBP1  

YML027W MBP1_2,STB1,SWI4_2,SWI6_2 ACE2,MBP1,STB1,SWI4,SWI6_1 MBP1_1,SWI4_1,SWI6_1 

YML033W  MCM1_1  

YML034W MCM1_2 MCM1_1 SWI4_3 

YML048W  FKH1_1,NDD1  

YML052W  FKH2_1,MCM1_1,NDD1  

YML058W  MCM1_1 SWI4_3 

YML119W FKH1,FKH2,NDD1 MCM1_1  

YMR001C FKH1,FKH2,MCM1_2,NDD1 MCM1_1 FKH1,FKH2_2,NDD1_2 

YMR002W  MCM1_1  

YMR003W  MCM1_2  

YMR011W MBP1_2   

YMR031C FKH2,MCM1_1 MCM1_1  

YMR032W FKH1,FKH2,MCM1_1,NDD1 MCM1_1  

YMR078C   MBP1_1,SWI6_1 

YMR144W   SWI6_2 

YMR163C  FKH1_2  

YMR179W STB1,SWI4_2,SWI6_2 MBP1,SWI6_1  

YMR183C FKH1,FKH2   

YMR199W   MBP1_2,SWI4_2,SWI5,SWI6_2 

YMR215W   FKH2_1,MCM1_1,NDD1_1,SWI4_2 

YMR305C   FKH2_1,MBP1_2,NDD1_1,SWI4_2,SWI6_2 

YMR306W SWI4_2,SWI6_2   

YMR307W  SWI6_1 FKH2_1,SWI4_2,SWI6_2 

YNL030W   FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI6_2 

YNL032W  SWI6_2 SWI6_2 

YNL057W FKH1,FKH2,MCM1_1,NDD1   

YNL058C FKH1,FKH2,MCM1_1,NDD1 NDD1 FKH1,FKH2_2,NDD1_2,SWI4_3 

YNL225C  SWI6_1  
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Table 13. Target list in cell cycle. (continued) 

YNL231C MBP1_2   

YNL233W MCM1_3,SWI6_1   

YNL262W MBP1_2,SWI6_2 MBP1,SWI6_1 SWI6_1 

YNL278W   SWI6_2 

YNL283C  FKH2_2 FKH2_1,MBP1_2,NDD1_1,SWI4_2,SWI6_2 

YNL289W   SWI6_2 

YNL300W STB1,SWI4_2,SWI6_2  SWI6_1 

YNL312W MBP1_2,STB1,SWI4_2,SWI6_2   

YNL313C MBP1_2   

YNL328C  SWI5  

YNL339C MBP1_1,MCM1_3,SWI5,SWI6_1 MCM1_3,SWI5,SWI6_2 MCM1_1 

YNR009W   SWI4_1,SWI6_1 

YOL007C  ACE2,MBP1,STB1,SWI4,SWI6_1 MBP1_1,SWI4_1,SWI6_1 

YOL017W MBP1_1,MCM1_3,SWI6_1 MBP1  

YOL019W  MBP1,SWI6_1  

YOL030W FKH1 FKH1_1  

YOL090W MBP1_2,STB1,SWI4_2,SWI6_2 ACE2,MBP1,STB1,SWI4,SWI6_1 SWI6_1 

YOL113W  SWI6_1 SWI6_2 

YOL158C MCM1_1   

YOR025W MCM1_2 FKH2_1,MCM1_1,NDD1  

YOR058C  MCM1_1  

YOR066W MCM1_1   

YOR073W  FKH1_2  

YOR074C STB1,SWI4_2  SWI4_1,SWI6_1 

YOR100C   SWI6_3 

YOR246C FKH2   

YOR247W   FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI6_2 

YOR256C  MCM1_1  

YOR298W  FKH1_1,MCM1_1  

YOR313C   FKH1,FKH2_2,MBP1_3,NDD1_2,SWI5,SWI6_3 

YOR315W FKH1,FKH2,MCM1_2,NDD1  FKH1,FKH2_2,MBP1_3,MCM1_2,NDD1_2,SWI5,SWI6_3 

YOR316C   SWI4_3,SWI6_3 

YOR323C  FKH2_2  

YOR324C  FKH2_2,MCM1_2  

YOR325W  FKH1_2,FKH2_2  

YOR326W  MCM1_2 MCM1_1 

YPL014W SWI6_1   

YPL057C MBP1_2,STB1,SWI4_2,SWI6_2   

YPL111W  MCM1_2  

YPL116W  FKH1_2,MCM1_2  

YPL124W  SWI6_1  

YPL127C   FKH2_1,MBP1_2,MCM1_1,NDD1_1,SWI4_2,SWI6_2 

YPL128C  FKH1_2,FKH2_2,MCM1_2  

YPL141C FKH1,FKH2,MCM1_2,NDD1  FKH1,FKH2_2,SWI4_3,SWI6_3 

YPL153C MBP1_2,STB1,SWI4_2,SWI6_2 MBP1,SWI6_1  

YPL221W MBP1_2,SWI6_2   

YPL242C FKH1,FKH2,MCM1_1,NDD1  FKH1,FKH2_2,MBP1_3,NDD1_2,SWI4_3,SWI6_3 

YPL255W MBP1_2,SWI4_2,SWI6_2  SWI6_1 

YPL256C SWI4_2,SWI6_2 ACE2,MBP1,STB1,SWI6_1 SWI4_1,SWI6_1 

YPL267W MBP1_1,SWI4_2,SWI6_1   

YPL283C MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1   

YPR001W   SWI4_3 

YPR006C   FKH1,FKH2_2,NDD1_2 

YPR104C FKH1   
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Table 13. Target list in cell cycle. (continued) 

YPR119W  FKH1_1,FKH2_1,MCM1_1,NDD1 FKH1,FKH2_2,MCM1_2,NDD1_2,SWI5 

YPR120C MBP1_1,SWI6_1 MBP1,SWI6_1  

YPR135W MBP1_2,STB1,SWI4_2,SWI6_2   

YPR149W MCM1_1 NDD1  

YPR156C FKH1,FKH2,MCM1_1,NDD1  FKH1,FKH2_2,MBP1_3,MCM1_2,NDD1_2,SWI4_3,SWI6_3 

YPR174C  MBP1,SWI6_1  

YPR175W MBP1_2,STB1,SWI4_2 MBP1,SWI6_1  

YPR202W MBP1_1,MCM1_3,SWI4_1,SWI5,SWI6_1  MCM1_1 

YPR203W MBP1_1,MCM1_3,SWI4_1,SWI6_1 MCM1_3,SWI6_2  

YPR204W MBP1_1,MCM1_3,SWI6_1 MCM1_3,SWI6_2  

 
Table 14. Target list in dilution. 
Table 14. Target list in dilution. (continued) 

YAL012W MET28,MET32 

YAL054C ADR1 

YAR071W PHO4 

YBL015W ADR1 

YBR043C GLN3 

YBR139W GLN3 

YBR208C GLN3 

YBR213W CBF1 

YBR230C ADR1 

YBR293W CBF1,MET31,MET32 

YBR298C ADR1 

YCR010C ADR1 

YCR030C DAL80 

YCR094W DAL80 

YDL059C MET28,MET32 

YDL170W GLN3 

YDL171C GLN3 

YDL185W GLN3 

YDL208W DAL80 

YDL210W GLN3 

YDL231C GLN3 

YDL238C GAT1,GLN3 

YDR023W DAL80 

YDR090C GLN3 

YDR178W ADR1 

YDR242W GAT1,GLN3 

YDR253C CBF1,MET28,MET32 

YDR254W MET28 

YDR256C ADR1 

YDR399W DAL80 

YDR481C PHO4 
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Table 14. Target list in dilution. (continued) 

YDR502C CBF1 

YDR528W DAL80 

YEL064C GLN3 

YEL072W MET28 

YER015W ADR1 

YER037W PHO4 

YER070W DAL80 

YER091C MET28,MET32 

YER092W MET28,MET32 

YFL056C CBF1,MET28 

YFR017C ADR1 

YFR030W MET28,MET31,MET32,MET4 

YGL065C DAL80 

YGL127C CBF1,MET28,MET31 

YGL184C MET31,MET32 

YGL202W GAT1 

YGL205W ADR1 

YGR154C MET28 

YGR155W CBF1,MET28 

YGR221C DAL80 

YHL016C GLN3 

YHL032C ADR1 

YHL036W CBF1,MET28,MET32 

YHR018C GLN3 

YHR028C GLN3 

YHR037W DAL80,GLN3 

YHR039C DAL80 

YHR112C CBF1 

YHR136C PHO4 

YHR140W GLN3 

YHR176W MET28 

YHR202W GLN3 

YHR215W PHO4 

YIL071C GAT1 

YIL074C CBF1,MET28 

YIL146C GAT1 

YIL155C ADR1 

YIL160C ADR1 

YIL167W GLN3 

YIL168W GLN3 

YIR017C CBF1,MET28 

YIR018W MET28 
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Table 14. Target list in dilution. (continued) 

YIR027C DAL80,GAT1,GLN3 

YIR028W GAT1,GLN3 

YIR029W GAT1,GLN3 

YIR031C DAL80,GAT1,GLN3 

YIR032C GAT1,GLN3 

YJL010C DAL80 

YJL012C PHO4 

YJL060W CBF1,MET28 

YJL101C MET28 

YJL110C DAL80 

YJL117W PHO4 

YJL122W DAL80 

YJL172W GAT1,GLN3 

YJR010W MET28,MET31,MET32 

YJR127C GLN3 

YJR137C CBF1,MET28,MET4 

YJR138W GLN3 

YJR139C MET28,MET4 

YJR152W GLN3 

YKL103C GAT1,GLN3 

YKL148C ADR1 

YKR034W DAL80,GAT1,GLN3 

YKR068C MET28 

YKR069W CBF1,MET28,MET31,MET4 

YLL028W DAL80 

YLR063W DAL80 

YLR068W DAL80 

YLR092W MET28,MET32 

YLR155C GLN3 

YLR157C GLN3 

YLR158C GLN3 

YLR160C GLN3 

YLR164W GAT1,GLN3 

YLR220W GLN3 

YLR257W GLN3 

YLR276C DAL80 

YLR303W MET28 

YLR364W MET32 

YLR409C DAL80 

YLR436C GAT1,GLN3 

YML018C MET28 

YML089C ADR1 
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Table 14. Target list in dilution. (continued) 

YML106W GLN3 

YML123C PHO4 

YMR009W CBF1 

YMR081C ADR1 

YMR088C GLN3 

YMR170C GLN3 

YMR280C ADR1 

YMR301C MET31,MET4 

YNL101W GLN3 

YNL142W GAT1 

YNL191W CBF1 

YNL221C MET28 

YNL256W MET28 

YNL257C MET28 

YNL277W MET28 

YNR028W DAL80 

YOL007C DAL80 

YOL019W GAT1,GLN3 

YOL064C MET31 

YOL108C GLN3 

YOL128C GAT1,GLN3 

YOR003W GLN3 

YOR180C ADR1 

YOR270C DAL80 

YOR317W GLN3 

YOR341W DAL80 

YOR374W ADR1 

YPL018W PHO4 

YPL019C PHO4 

YPL024W GAT1 

YPL054W GLN3 

YPL134C ADR1 

YPL201C ADR1 

YPL227C DAL80 

YPL250C MET28,MET32 

YPL262W ADR1 

YPL267W DAL80 

YPR030W ADR1 

YPR035W GLN3 

YPR113W DAL80 

YPR167C CBF1,MET4 
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