
DATA TRANSFORMATION FOR IMPROVED QUERY PERFORMANCE

By

Alok Watve

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2012

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3505722
Copyright 2012 by ProQuest LLC.

UMI Number: 3505722

ABSTRACT

DATA TRANSFORMATION FOR IMPROVED QUERY PERFORMANCE

By

Alok Watve

A database management system stores data in order to facilitate fast and efficient retrieval

while executing queries. The typical queries that are run in a database can be classified into

three broad categories. They are range queries, k-nearest neighbor (k-NN) queries and box

queries. Implementation of a box query typically involves simple comparison of values in

each dimension of the query feature vector with the corresponding dimension of an object

in the database. Implementing range queries and k-NN queries, however, may be more

involved due to computation of distances among the points. In this dissertation, we study

mapping of one type of the query on to the other. From performance perspective, an index

structure may favor one type of query over other. Hence, such a mapping provides a way of

improving query performance and exploiting available system capabilities. It also highlights

the relationships among the various types of queries.

Our first transformation maps a range query in L1 space on to a box query. Since

index pages of R-tree based indexing schemes are geometrically rectangles, this mapping

provides a similar interface between the query space and the data space of each of the index

page. In 2-dimensional space, the mapping is exact. However, it cannot be used directly

for higher dimensional spaces. We propose a novel approach called disjoint planar rotation

in order to extend the transformation in higher dimensions. We also develop a new type of

box query, called pruning box query, which is equivalent to the range query in the original

space. Our theoretical analysis shows that this mapping can improve I/O performance of the

queries. Further, performance improvement increases with increasing number of dimensions.

Due to the underlying similarity between range queries and k-NN queries, the proposed

transformation can also be used to improve performance of k-NN queries. We also present a

transformation to map box queries on to range queries in L1 space. The inherent property of

box queries to allow varying degree of selectivity along each dimension, poses some challenges

for the transformation. We propose square tiling approach to map each box query on to a

number of square box queries. Each of the square box queries can then be transformed into

a range query. We demonstrate the effectiveness of this mapping using M-Tree.

Euclidean distance (or L2 norm) is another popular distance measure. While exact

mapping of range queries in Euclidean space to box queries may be challenging, using vantage

point based indexing, it is possible to transform range queries into bounding box queries.

Since, execution of bounding box queries is computationally more efficient than that of

range queries, the transformation from range queries to bounding box queries can be used

to improve query performance (i.e. the number of distance computations) in main memory

databases. Existing work on vantage point based indexing uses data points from the database

as vantage points. As a result the database becomes static and cannot allow dynamic

insertions, deletions and updates. Further, Computational complexity of these vantage point

selection schemes depends on the size of the database which can be a problem for large

databases. We analyze the impact of vantage points on false positives and the number of

duplicates; and present a heuristic algorithm for selecting vantage points in closed data

spaces. As the vantage point selection is independent of data, the database allows dynamic

insertions and deletions. Comprehensive experimental evaluation with several synthetic and

real databases shows effectiveness of the proposed vantage point selection scheme.

To my parents Kishor and Jyoti Watve.
My wife, Shipra and my brother, Abhijit.

iv

ACKNOWLEDGMENT

First and foremost, I would like to acknowledge my dissertation adviser Dr. Sakti Pra-

manik, who has provided constant guidance and encouragement throughout my graduate

career.

I would like to express my earnest gratitude to my dissertation committee members Dr.

George Stockman, Dr. Charles B. Owen, Dr. Qiang Zhu and Dr. James Cole for being there

for me whenever I needed. Their expertise and suggestions have significantly improved this

dissertation.

I also acknowledge our collaborators Dr. Shamik Sural, Dr. Sungwon Jung, Dr. Chad

Meiners and Dr. Alex Liu for there support and guidance. I wish to acknowledge the support

of the Michigan State University High Performance Computing Center and the Institute for

Cyber Enabled Research. I also thank my lab colleagues Jignesh Patel, Srikanth Vudayagiri

who made all these years thoroughly enjoyable.

Last but definitely not the least, I would like to thank of my wife Shipra and my parents

Kishor and Jyoti, who always believed in me and loved me unconditionally.

v

TABLE OF CONTENTS

List of Tables . x

List of Figures . xi

1 Introduction . 1
1.1 Basic concepts and notations . 2
1.2 Metric space . 3
1.3 Range query . 4
1.4 k-NN query . 5
1.5 Box query . 6
1.6 Motivation for query transformations . 7
1.7 Outline of the dissertation . 8

2 Related Work . 9
2.1 Data transformation techniques . 9
2.2 Vantage point based transformation . 12
2.3 Indexing schemes for multidimensional data 17

2.3.1 R*-tree . 17
2.3.1.1 Box query implementation 19
2.3.1.2 Range query implementation 19
2.3.1.3 k-NN query implementation 19

2.3.2 Packed R-tree . 20
2.3.3 M-tree . 21

2.3.3.1 Box query implementation 22
2.3.3.2 Range query implementation 22
2.3.3.3 k-NN query implementation 23

2.3.4 KD-tree . 23
2.3.4.1 Box query implementation 24
2.3.4.2 Range query implementation 24
2.3.4.3 k-NN query implementation 24

3 Transformation From L1 Range Query To Box Query 26
3.1 2-D Transformations . 27

vi

3.1.1 Transformation Function . 27
3.1.1.1 Space Transformation: . 28
3.1.1.2 Query Transformation: . 30

3.1.2 Transformation Properties . 31
3.1.2.1 Precision Property . 31
3.1.2.2 Distance Property . 31
3.1.2.3 Inequality Property: . 32

3.2 Multi-dimensional Transformations . 34
3.2.1 Disjoint Planar Rotations . 35
3.2.2 Pruning Box Query . 35

3.3 Theoretical Analysis . 37
3.3.1 Model Basics . 37
3.3.2 Analysis of Range Query . 38
3.3.3 Analysis of Box Query . 39
3.3.4 Hyper-dimensional Queries . 39

3.4 Experimental results with R*-Tree . 42
3.4.1 2-D transformations . 43

3.4.1.1 Effect of database size . 43
3.4.1.2 Effect of query ranges . 43

3.4.2 Higher dimensional transformation 45
3.4.2.1 Effect of database size . 45
3.4.2.2 Effect of query ranges . 46

3.5 Effect of the index structure . 46
3.6 Experimental results using Packed R-Tree 49

3.6.1 Correctness of theoretical model . 49
3.6.2 Avoiding empty pages . 51
3.6.3 Results for 2-D transformations . 53

3.6.3.1 Effect of database size . 53
3.6.3.2 Effect of query ranges . 54

3.6.4 Higher dimensional transformation 54
3.6.4.1 Effect of database size . 54
3.6.4.2 Effect of query ranges . 55

3.7 Performance results for real data . 55
3.8 k-NN queries using transformation . 57

3.8.1 k-NN in 2-D Space . 58
3.8.2 k-NN in 10-D Space . 59
3.8.3 k-NN on Real Data . 61

4 Transformation From Box Query To Range Query 63
4.1 Data and query transformations . 63

4.1.1 2-Dimensional Transformation . 64
4.1.2 High Dimensional Transformation . 67

4.2 Improvement Estimation . 68
4.2.1 Analysis of 2-D Queries . 68

vii

4.2.2 Analysis of High Dimensional Queries 70
4.3 Experimental Results . 71

4.3.1 2-D Transformation . 72
4.3.2 High Dimensional Transformation . 74
4.3.3 CPU Consumption . 76
4.3.4 Experiments with Real Data . 77

5 Transformation In L2 Space . 80
5.1 Shapes for higher order Lp queries . 80
5.2 Mapping L2 range query to box query . 82
5.3 Approximate transformations . 82

5.3.1 Minimum bounding box query . 83
5.3.2 Elliptical range queries instead of circular range queries 84
5.3.3 Approximating range query using multiple boxes 85
5.3.4 Using index built in L∞ space for doing range queries in L2 space . . 86
5.3.5 Other possible transformations in L2 space 87

6 Space transformation using vantage points 90
6.1 Vantage point transformation basics . 92

6.1.1 Data transformation . 92
6.1.2 Query transformation . 93

6.2 Selection of vantage points in 2-D space . 95
6.2.1 Minimizing Collisions . 95
6.2.2 Reduction of false positives . 97
6.2.3 Corner points as vantage points . 100
6.2.4 Choosing more than two vantage points 106
6.2.5 Experimental results with 2D data 106

6.3 Selection of vantage points in higher dimensional spaces 108
6.3.1 Effectiveness of data independent vantage points 109
6.3.2 Minimum Distance Variance . 111

6.3.2.1 A heuristic for selecting vantage points 112
6.3.3 Index structure and query algorithm 114

6.4 Experimental results . 114
6.4.1 Experimental set-up and datasets used 115
6.4.2 Time comparisons for generating vantage points 116
6.4.3 Range queries in synthetic databases 117

6.4.3.1 Effect of database size . 118
6.4.3.2 Effect of query radius . 119
6.4.3.3 Effect of number of vantage points 120

6.4.4 Range queries in real databases . 121
6.4.4.1 Effect of database size . 121
6.4.4.2 Effect of query radius . 121
6.4.4.3 Effect of number of vantage points 121

6.5 Vantage point selection in very high dimensional spaces 126

viii

6.5.1 A formula for computing vantage points 126
6.5.2 Selection vantage points based on number of flips 129
6.5.3 Performance comparison in very high dimensional space 131

6.6 k-NN queries in vantage space . 132

7 Conclusion and Future Work . 135

Bibliography . 139

ix

LIST OF TABLES

Table 3.1 Mean and Std - R-tree - various insertion orders 47

Table 3.2 Mean and Std - R-tree - various database 48

Table 3.3 Mean and Std. for packed R-tree . 48

Table 3.4 Break down of page accesses . 52

Table 4.1 Comparison of CPU times . 77

Table 6.1 Angle statistics for various vantage points on y-axis 105

Table 6.2 Angle statistics for various vantage points on y-axis 105

Table 6.3 Average Spacing Standard Deviation for some datasets 110

Table 6.4 Top 3 correlation coefficients for some datasets 110

Table 6.5 Average pairwise distance between corner points 112

Table 6.6 Recall of k-NN queries on uniform 2-D data (database size = 100k) 133

Table 6.7 Recall of k-NN queries on uniform 10-D data (database size = 100k) 133

x

LIST OF FIGURES

Figure 1.1 Examples of range queries in 2 dimensional space 4

Figure 1.2 Examples of range queries in 3 dimensional space 4

Figure 1.3 Examples of box queries in 2 and 3 dimensional spaces 6

Figure 3.1 Example of the query transformation 28

Figure 3.2 Illustration for Theorem 3.1.3 . 33

Figure 3.3 The MBR intersection areas in a quadrant 37

Figure 3.4 Visualizations of range and pruning box queries (4-D) 40

Figure 3.5 Effect on database size on page accesses 44

Figure 3.6 Effect of query range on page accesses 44

Figure 3.7 Effect of database size on page accesses 45

Figure 3.8 Effect of range on page accesses . 46

Figure 3.9 Comparison of estimated and observed improvement for 2-D data . . 50

Figure 3.10 Comparison of estimated and observed improvement for 10-D data . 50

Figure 3.11 Effect on database size on page accesses 53

Figure 3.12 Effect of query range on page accesses 54

Figure 3.13 Effect of database size on page accesses 55

xi

Figure 3.14 Effect of range on page accesses . 56

Figure 3.15 Range query on GIS data . 56

Figure 3.16 Range query on 9-dimensional image feature data 57

Figure 3.17 k-NN queries in 2-D for various database sizes 59

Figure 3.18 k-NN queries in 2-D for various values of K 60

Figure 3.19 k-NN queries in 10-D for various database sizes 60

Figure 3.20 k-NN queries in 10-D for various values of K 61

Figure 3.21 k-NN queries on GIS data for various values of K 62

Figure 3.22 k-NN queries on image feature data for various values of K 62

Figure 4.1 Square tiling of a rectangle . 64

Figure 4.2 Box query analysis . 69

Figure 4.3 Transformed range query analysis 69

Figure 4.4 2-dimensional data with varying database size 73

Figure 4.5 2-dimensional data with varying box size 73

Figure 4.6 2-dimensional data with random box size 74

Figure 4.7 10-dimensional data with varying database size 75

Figure 4.8 10-dimensional data with varying box size 75

Figure 4.9 10-dimensional data with random box size 76

Figure 4.10 Image database with varying database size 78

Figure 4.11 Image database (50M) with varying box size 79

xii

Figure 4.12 Image database with random box size 79

Figure 5.1 Variation in the query space with increasing Minkowski parameter p 81

Figure 5.2 False positives in a minimum bounding box query in 2-D 83

Figure 5.3 Approximating range query using multiple box queries 85

Figure 5.4 Fraction of false positives with increasing number of boxes 86

Figure 5.5 Transformation in equations 5.1 and 5.2 in first quadrant 87

Figure 5.6 Query transformation corresponding to equations 5.1 and 5.2 88

Figure 6.1 Transformation of points in 2-D space 93

Figure 6.2 Mapping range query to box query through space transformation . . 94

Figure 6.3 Reduction in false positives with increasing number of vantage points 95

Figure 6.4 Minimizing the false positives . 97

Figure 6.5 Proof of theorem 6.2.2 . 98

Figure 6.6 Angle subscribed by AA′ at Q is larger than the one by BB′ 100

Figure 6.7 Proof of theorem 6.2.2 . 101

Figure 6.8 Calculation of expected angle subscribed by a point 103

Figure 6.9 Effect of increasing the number of vantage points 106

Figure 6.10 Effect of increasing database size . 107

Figure 6.11 Effect of increasing query radius . 108

Figure 6.12 Effect of database size on time to generate vantage points 117

Figure 6.13 Effect of database size (synthetic data) 118

xiii

Figure 6.14 Effect of query radius (synthetic data) 119

Figure 6.15 Effect of number of vantage points (synthetic data) 120

Figure 6.16 Effect of database size (real data) 122

Figure 6.17 Effect of query radius (readl data) 123

Figure 6.18 Effect of number of vantage points (real data) 125

Figure 6.19 Comparison of minimum and maximum flips 130

Figure 6.20 Applying the proposed scheme on 64 dimensional synthetic data . . 131

Figure 6.21 Applying the proposed scheme on 60 dimensional synthetic data . . 132

xiv

Chapter 1

Introduction

High dimensional feature vector databases are increasingly becoming popular in several ap-

plications such as content based image search, Geographical Information Systems (GIS),

multimedia databases, etc. The most common queries executed in these databases can be

roughly classified into three groups : Range queries (also known as similarity queries), k-NN

(k-nearest neighbor) queries and Box queries. A range query returns all the data objects

within a certain distance from the query object. A k-NN query returns k nearest objects

from the query object while a box query returns all the objects whose individual dimensions

satisfy certain criteria. We will formally define these three types of queries later in the chap-

ter. Efficient implementation of these queries has been an active area of research for several

decades. In disk-based database systems, the primary objective of a query implementation

is to reduce the number of disk page accesses whereas in main memory database systems,

the focus is to reduce the number of costly distance computations. This dissertation pri-

marily focuses on data transformations that map range queries and k-NN queries onto box

queries. As will be shown later, box queries have several implementational advantages which

1

make them particularly preferable when database indexes are used. These advantages of box

queries can be exploited to improve the run-time performance of the other types of queries.

In this chapter, we first present the basic concepts and notations that will be used

throughout the dissertation. We then formally define the three types of queries.

1.1 Basic concepts and notations

LetD be the set ofN objects in the database. Each object itself is a feature vector containing

n real-valued dimensions and can be represented as a point in n-dimensional space R
n. We

denote a database object a as a = (a1, a2, . . . , an) where, ai(1 ≤ i ≤ n) is the projection of

point a along dimension i (also known as ith dimension of a). Without loss of generality,

we assume that the data space is bounded to a unit (hyper)cube. In other words, ai ∈

[0, 1], ∀a ∈ D.

d : Rn × R
n → R

+ denotes the distance function that measures dissimilarity between

the two points in the database. We denote distance between two points a and b as d(a, b).

Minkowski distance is a special type of distance measure denoted as Lp and formally defined

as,

Lp(a, b) =

(

n
∑

i=1

|ai − bi|p
)1/p

(1.1)

Here, p is called the order of Minkowski distance. In the limiting case where p→∞,

L∞(a, b) =
n

max
i=1
|ai − bi| (1.2)

Minkowski distances of order 1 and 2 (i.e. L1 and L2) are some of the most commonly

used distance measures. Several authors [3, 11] show that in higher dimensional space,

2

Lp norms with larger (i.e p > 2) values of p are not very meaningful. They propose a

metric called “relative contrast” (which is essentially the difference between the distance of

the farthest point and that of the nearest point with respect to a given point) to measure

effectiveness of Lp norm. It has been observed that for higher dimensions and larger values

of p, the relative contrast approaches zero highlighting the futility of the distance measures.

For this reason, we primarily focus on L1 (also known as Manhattan distance) and L2 (also

known as Euclidean distance) distance measures in this dissertation.

1.2 Metric space

Space D is said to be a metric space when distance d(a, b) between two points a, b ∈ D,

satisfies the following properties (called metric properties):

Symmetry : d(a, b) = d(b, a) ∀ a, b ∈ D

Reflexivity : d(a, b) = 0⇔ a = b ∀ a, b ∈ D

Non-negativity : d(a, b) ≥ 0 ∀ a, b ∈ D

Triangular Inequality: d(a, b) ≤ d(a, c) + d(c, b) ∀ a, b, c ∈ D

Properties of metric distances can be used to prune the search space while searching in

metric spaces. As an example, let us assume that we know the values of d(a, b) and d(b, c).

Then the lower and upper bounds for distance d(a, c) can be derived as |d(a, b) − d(b, c)|

and (d(a, b) + d(b, c)) respectively, without actually having to calculate the distance. These

bounds are very useful in efficient implementation of queries which makes metric spaces

(and metric distances) attractive in practice. In fact, many of the commonly used distance

measures including the Minkowski norms indeed have metric properties.

3

Or

x

y

(a) Range query in L1

Or

x

y

(b) Range query in L2

Figure 1.1: Examples of range queries in 2 dimensional space

O

r

x

y

z

(a) Range query in L1

x

y

z

(b) Range query in L2

Figure 1.2: Examples of range queries in 3 dimensional space

1.3 Range query

We now formally define the range query. For the given database D, the range query with

radius r at point a = (a1, a2, . . . an), denoted by r@a, is defined as,

r@a = {b | b ∈ D ∧ d(a, b) ≤ r} (1.3)

4

Thus, a range query returns all the objects whose distance is less than or equal to the given

radius r. Figure 1.1 shows example of range queries of radius r centered at O in 2 dimensional

spaces using L1 and L2 norms. Notice that geometrical shape of an L1 range query is a

diamond while that of an L2 range query is a circle. Figure 1.2 shows the geometrical shapes

of corresponding range queries in 3 dimensional space.

1.4 k-NN query

In a lot of applications, it suffices to retrieve only a few most relevant results (for example,

when searching images or in standard web document search). As the name suggests k-nearest

neighbor queries return the k objects that are the closest to the query object with respect to

the given distance measure. Formally, a k-NN query at point a = (a1, a2, . . . , an) denoted

by k@a is defined as,

k@a = Dk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dk ⊆ D ∧

|Dk| = k ∧

∀ b ∈ Dk, ∀ c ∈ D−Dk, d(a, b) ≤ d(a, c)

(1.4)

Here, |Dk| denotes the cardinality of the set Dk.

Although we identify k-NN queries as a separate class of queries, from implementation

point of view, they can be viewed as a variant of range queries. We will revisit implementation

of k-NN query as a range query later in section 3.8.

5

(min , min)

(max , max)

1 2

1 2

x

y

(a) Box query in 2-D

(min , min , min)

(max , max , max)

1 2 3

1 2 3

x

y

z

(b) Box query in 3-D

Figure 1.3: Examples of box queries in 2 and 3 dimensional spaces

1.5 Box query

Box query is a query that returns all the objects that satisfy individual criterion (i.e. range

of permitted values) for each dimension. Let mini and maxi be the minimum and maximum

value allowed on dimension i (1 ≤ i ≤ n) and let νi = [mini,maxi]. Then the corresponding

box query, represented by b@(ν1, ν2, . . . νn), is defined as follows:

b@(ν1, ν2, . . . , νn) = {a | a ∈ D ∧ ai ∈ νi for 1 ≤ i ≤ n} (1.5)

Thus, a box query returns all the data point whose dimensions lie in the respective

interval of values.

Figure 1.3 shows examples of box queries in 2 and 3 dimensional spaces respectively. An

important property of box query is that shape (or the query space) of the box query only

6

dependent on values allowed in each dimensions and is independent of the distance measure

used for the space (i.e. box query in L1 is same as the box query in L2).

1.6 Motivation for query transformations

For efficient execution of queries in a very large database, usually a multi-dimensional index

is created for the database and queries are implemented using this index. Note that execution

efficiency may refer to the number of disk accesses (in disk based indexing) or the amount

of CPU computations (in main memory based indexing). In a typical tree based index, a

query execution algorithm attempts to find if the data space of a node in the index tree

overlaps with the query space. If there is an overlap then that node is searched further; else

that node can be pruned from the search. Effectiveness of an index depends on its ability to

prune unwanted search branches which in turn depends on the geometry of the query space

and data spaces of tree nodes. This results in an index tree favoring one type of query over

another. In the proposed work we study relationships among the different types of queries

with special focus on mapping one type of query on to another. Such mapping is important

for the following reasons :

1. It enables a more efficient implementation of the queries by mapping them to the type

of query favored by the index. In case of disk based database systems, this translates to

lesser number of disk page accesses, and for main memory database systems, it results

in a lesser number of distance computations.

2. It provides a tool to implement both types of queries using the same query execution

engine. This may eventually obviate the need to explicitly support both the types of

7

queries in a database management system.

3. It lets the user take advantage of an indexing scheme (or any other optimization)

designed exclusively for a particular type of query.

4. It lets us gain insights into the relationships among various types of queries and the

query types and the index. This may lead us to better indexing schemes.

1.7 Outline of the dissertation

The rest of the dissertation is organized as follows: In chapter 2, we present the prior

work related to this research and discuss some of the relevant indexing schemes. Chapter

3 presents technique for mapping L1 range queries onto box queries. Chapter 4 discusses

inverse mapping of box queries on to L1 range queries. Chapter 5 presents some of the

possible transformation approaches for L2 queries in disk-based databases. Chapter 6 focuses

on the special type of transformation based on vantage points, in context of main memory

databases. Conclusion and future work follow in the last chapter.

8

Chapter 2

Related Work

There has been a lot of work on multi-dimensional indexing for database systems and ex-

ecuting queries using such indexes. However, use of data transformation to improve query

performance is a relatively new research topic. In this chapter we discuss the existing work

on transformation based data access methods. We also present an overview of some of the

popular indexing schemes that are of particular interest in the context of this dissertation.

We begin with various transformation approaches proposed for efficient queries and data

retrieval.

2.1 Data transformation techniques

A lot of the existing work on data transformation for efficient retrieval primarily focuses on

reducing dimensionality of the data. It is a known fact that many of the existing search

techniques which work well in the lower dimensional space, break down when dimensionality

of the data increases. In fact, Weber et al. [65] show that some of the traditional indexing

schemes are outperformed by linear scan (i.e. storing data in flat files without any indexing)

9

when the number of dimensions is greater than 10. This fact, known as dimensionality curse

[8] is the primary motivation for reducing the data dimensionality. Many of the real world

data have dimensions which are not independent of each other. Hence, the extrinsic (or

the apparent) dimensionality of the data is much more than their intrinsic dimensionality.

Avoiding this redundancy is also another reason why one may attempt dimensionality reduc-

tion. Data dimensionality is also an important parameter in any multi-dimensional indexing

scheme as it directly affects fan-out of a typical disk based index. Hence, a lot of work has

been done to reduce dimensionality of the data.

The linear algebra techniques of Principal Component Analysis (PCA - also known as

Karhunen-Loeve theorem) [40] and Singular Value Decomposition (SVD) [27] are commonly

used for dimensionality reduction. In general the source dimensions of the data may not

be orthogonal. PCA effectively transforms the data into another space such that all the

dimensions are orthogonal. Further the dimensions can be ordered in decreasing order of

data variance (i.e. data has the maximum variance along the first dimension and so on).

A user can then select the desired number of dimensions such that most of the variance is

captured while considerably reducing the dimensionality of the data. SVD decomposes a

feature matrix M into components M = UΣV T such that U, V are orthonormal and Σ is

diagonal matrix of singular values. Some of the smallest singular values can then be dropped

to reduce the dimensionality of the data without hurting the overall data variance.

Some of the earliest applications of dimensionality reduction for efficient database index-

ing and retrieval are the text retrieval systems proposed in [24, 36]. The authors use an

SVD based scheme called latent semantic analysis [20] to reduce the dimensionality. The

QBIC (Query By Image Content) system [52] developed by IBM uses SVD for extracting

10

relevant dimensions from efficient retrieval of image data. Note that in dynamic databases

(where the data may change anytime due to insertion, deletions or updates), PCA or SVD

analysis needs to be redone with changing databases for accurate results which can be very

expensive. A technique for incremental SVD (i.e. using past properties of data to simplify

calculation of SVD of new data) is proposed by Ravi Kanth et al. [56]. Aggarwal [2] presents

an analysis of existing dimensionality reduction on quality of the results. More examples of

dimensionality reduction techniques for data retrieval can be found in [17, 64].

TV-tree [38] proposed by Lin et al. is an indexing schemes which tries to minimize the

number of features used to create tree. Essentially a feature is used for indexing only if all

the features used so far cannot distinguish between the objects. Conceptually this is similar

to starting with projection of data in low dimensional space and then gradually adding

dimensions as they are required. For each child disk page, a bounding sphere is maintained

by the parent such that all the objects in the child page are contained in the bounding

sphere. Some other methods for dimensionality reduction can also be found in [21, 43, 51].

As an extreme case of dimensionality reduction, a lot of work has been done in transform-

ing the multidimensional data to 1-dimensional data. These methods use space filling curves

(such as Z-curve [50] or Hilbert curve [32]) which allow them to order high dimensional

feature vectors. Such methods employing Z-curve for executing box queries are proposed

in [54, 58, 6]. An interesting clustering based scheme called iDistance [39] is proposed by

Jagadish et al. They first cluster all the data points. Then each point is given a simple

numeric identifier which is derived from its cluster and its similarity with respect to the

cluster center. As each multi-dimensional point is mapped to a one dimensional numeric

value, it can be indexed using one dimensional indexing scheme such as B+ tree.

11

In a rather counter intuitive way, some indexing schemes have been proposed which map

data from lower dimensional space to higher dimensional space. Some of these methods

[22, 33, 44] transform objects (or polygons) into higher dimensional points and then use one

of the established point access methods such as the the grid file[53]. A detailed discussion

on all the transformation based data access schemes can be found in a survey by Gaede et

al.[25].

Linear transformation is a well known technique in linear algebra [45]. However, its

applications to database queries have not been explored much. To the best of our knowledge,

other than our work in [55], there is no other work in disk-based indexing on mapping of range

queries to box queries using data transformation. However, there has been some work on

approximating range queries using minimum bounding box queries. Although this mapping

has a lot of false positives, it guarantees all the true positives. In the next section, we look

at some of the existing work in this area.

2.2 Vantage point based transformation

In main memory database systems, data transformations based on vantage points (also

known as pivots or split points or reference objects in the literature) are particularly popular.

The main idea is to express each data point from the original space in terms of its distances

from a set of vantage points. In metric spaces, properties of the distances can then be used

to prune the search space. Using this transformation, range queries in the original space

are mapped to bounding box queries in the transformed space. The basic idea behind this

type of implementation of range query using box query is presented by Uhlmann[60, 61].

Most of the schemes in this domain use some kind of tree based indexing either implicitly

12

or explicitly. The existing work in this area can be divided into two categories based on

whether the index is built in the original space or in the transformed space. It should be

noted that although transformation and mapping of range query to bounding box query is

an important aspect of these schemes, the selection of the right vantage points is the primary

research focus of this dissertation.

One of the earliest tree-based methods using the concept of vantage points is the VP-tree

[66]. It uses only one vantage point per node of the tree. Vantage points are chosen in such

a way that each node partitions the data space in almost balanced partitions. The author

suggests that good vantage points are the points closer to the corner of the subspace and

the vantage point selection heuristic (choosing the point with maximum spread i.e. second

order moment about median distance) is designed to address this. GNAT [14] is another

tree based indexing scheme based on the variable number of vantage points (split points)

per node. Different set of vantage points are chosen at each level of the tree. The basic

strategy for vantage point selection is to choose points which are relatively the farthest from

a set of vantage points. Each vantage point defines a subtree of the index. Each point in

the node is assigned to the subtree of the nearest vantage point. Maximum and minimum

distance of each point in the subtree from the vantage point is recorded. In metric space,

this information can be combined with triangle inequality to decide which subtrees need to

be searched. The construction of GNAT is more expensive than VP-tree due to the amount

of processing required to generate the vantage points. However, executing a range query

in GNAT requires fewer distance computations than the VP-tree. MVP-tree [12, 13] is a

generalization of VP-tree into a multiway tree. MVP-tree uses two vantage points at each

node. Each vantage point can be used to partition the space in m partitions. The second

13

vantage point partitions each partition of the first vantage point in m partitions. Thus the

fan out of an internal node is m2. The vantage points themselves are chosen such that the

second vantage point is the farthest data point from the first. The first vantage point can be

chosen at random or by choosing the farthest point from a random data point. MVP-tree

computes a lot of distances during the tree construction time. Some of these distances are

cached in the nodes which avoids some distance computations at the query time. As MVP-

tree allows for large node fan-out, it can be implemented as a main memory tree or a disk

based tree. Mao et al. [47] use a PCA based vantage point selection technique in MVP-tree

frame work. They first select a set of candidate vantage points (outliers found using Fast

Fourier Transform - FFT). PCA of this candidate set is then used to identify dimensions

which have the maximum variance. Data points which have the maximum projection along

these dimensions are then chosen as the vantage points. They also use PCA to identify

intrinsic dimensionality (hence the best choice of the number of vantage points) of the space.

The methods discussed so far select vantage points at each node of the index tree. Thus,

vantage point selection considers information local to the index node. The index itself is

built in the original space. Hence, the partitions created by these methods are geometrically

very complex having (hyper-)spherical boundaries. These shapes do not interface very well

with spherical range query. However, by using global vantage points and by mapping range

queries on to bounding box queries through space transformations, it is possible to have

(hyper-)rectangular partitions interfacing with (hyper-)rectangular queries. This simplified

interface may greatly benefit efficient execution of queries. Hence, lately the focus have

shifted to applying space transformation using global vantage points.

One of the first approaches using global vantage points is proposed by Vleugel et al. They

14

use balanced box tree [5] to implement their strategy, but in theory, it can be used with any

multidimensional main memory indexing scheme. The authors use different vantage point

choice strategy for different databases, which can become a problem for generalization of the

scheme. For one of the datasets, they propose a Max-Min heuristic in which vantage points

are chosen such that they are relatively the farthest from each other (similar to GNAT). A

more generic vantage point selection algorithm for any type of data, is proposed by Hennig

et al. [31]. For each set of vantage point, they define a loss function for query q and resultset

R as D(q, R), which is the L2 distance between the vantage space representation of the

two objects. Their algorithm attempts to minimize the overall loss by incremental selection

of locally optimal vantage points. Around the same time, Bustos et al [16] observe that

vantage point with larger pairwise mean distance tend to have lesser false positives. They

present three strategies to exploit this property. These strategies are, (i) Generate several

random samples and choose the best one (i.e. one which has maximum mean distance)

(ii) Incrementally select vantage point to maximize mean distance at each step (iii) Select

a random sample and replace the points which have the least contribution toward mean

distance. Although authors have compared the three strategies amongst themselves in detail,

they have not compared these methods against any of the established (or published) methods

which makes it difficult to gauge the effectiveness of their proposal. Brisaboa et al [15]

propose sparse spatial selection (SSS) technique for vantage points. They try to ensure that

the vantage points are sufficiently far apart by requiring each vantage point to satisfy certain

minimum distance threshold of Mα where, M is maximum possible distance (=
√
n for n

dimensional unit cube in L2) and α is a control parameter which is empirically determined

to be between 0.35 to 0.4. The authors propose increase the vantage point set as long as

15

no new vantage points can be added without hurting the distance criterion. Hence, the

number of vantage points used is more than the dimensionality of the original space, which

essentially means that dimensionality of the transformed space is greater than that of the

original space.

Recently, Van Leuken et al. [62] have proposed two novel heuristics for choice of good

vantage points. We will discuss these heuristic in more depth later in chapter 6. Here

we just briefly describe their heuristics. The first heuristic suggests minimizing spacing

variance. Spacing is defined as the difference between two successive distances in transformed

space. The authors propose that minimizing spacing variance ensures that points are spread

uniformly in the vantage space. Their second heuristic is to minimize correlation of distance

vectors of two vantage points. A pair of vantage points with high correlation implies that that

at least one of the points is redundant. They propose a random sampling based algorithm

which uses these two heuristics. Experimental results show these heuristics to be better than

the earlier methods by Henning et al [31], Bustos et al. [16], Brisaboa et al. [15]

A related space-transformation based approach for approximate range queries and k−NN

queries in disk based index is proposed in [4] and [18]. Although the basic premise is same as

the other vantage point based methods, the authors use ranks of the data points (in terms

of distances from reference objects) as representatives of the records. Several heuristics have

been used to improve recall and reduce disk accesses. This idea can be used with any of the

distance measures such as Spearman Footrule distance, Kendall Tau distance and Spearman

rho distance [18, 26]. However, these methods are sensitive to the statistical characteristics

of the database and a lot of learning may be needed to determine values of some run-time

parameters. Further, the number of vantage points required for reasonable recall increases

16

with increasing database size and may not work well with dynamic databases. Another

vantage point selection scheme for disk-based indexing of protein sequences is proposed by

[63]. The authors choose the set of vantage points which has maximum variance. This set if

further optimized by evaluating pruning power of each vantage point and if possible replacing

it with a point with better pruning power. Note that use of this approach require some prior

knowledge about query pattern in order to estimate the pruning power.

2.3 Indexing schemes for multidimensional data

In this section we review the existing multidimensional indexing schemes that will be used

(and hence are relevant) in this dissertation. We also briefly describe implementation of

different types of queries on these indexes. For more comprehensive discussion on index

schemes for various types of queries, reader is directed to surveys by Samet et al.[35] and

Ilyas et al.[37]. We begin with R*-tree [7] which is one of the most popular indexing scheme

based on R-tree [30].

2.3.1 R*-tree

R*-tree[7] is a height balanced tree which can store both multidimensional points as well

as bounding boxes. The data objects are stored in the leaf nodes. Each directory node

contains bounding boxes (or MBRs - Minimum Bounding Rectangles) of child nodes along

with pointers to the chide nodes. Geometrically every disk page in an R*-tree is a (hy-

per)rectangle. The fundamental property of R*-tree (and any R-tree based index) is that

all the nodes in the subtree rooted at node N have their bounding boxes (in case of di-

rectory nodes) or data objects (in case of leaf nodes) completely inside the bounding box

17

of N . In other words, if node N has interval [mini(N),maxi(N)] along dimension i then

for each child node C with the interval [mini(C),maxi(C)] along dimension i, we have,

mini(N) ≤ mini(C) ≤ maxi(C) ≤ maxi(N). The maximum fan out of the tree M is cal-

culated so as to pack maximum possible number of entries in a single page of the index.

One tuning parameter for ensuring good disk utilization in R*-tree is minimum fan out

m(≤ M/2). R*-tree insertion algorithm guarantees that each page in the tree contains at

least m children (i.e. disk utilization of m/M). R*-tree is built bottom up meaning that any

insertion or deletion is first performed in the leaf node and then the change is propagated

all the way to the root.

Insertion algorithm in R*-tree uses three main heuristics namely, minimum overlap, min-

imum perimeter and maximum storage utilization. Whenever, there are multiple candidate

nodes for insertion of a data point, it first chooses the one which results in minimum overlap

among the MBRs of the nodes. This heuristics attempts to minimize the number of search

paths required to be traversed for searching, thereby improving the search efficiency. In case

of tie, it chooses the one that results in minimum perimeter. This heuristic attempts to

create more squarish MBRs. If there still exist multiple candidate then it chooses the node

that results in maximum storage utilization. Higher storage utilization decreases the total

number of nodes in the tree there by reducing the disk space requirements. In addition to

these heuristics, R*-tree periodically reinserts some of the data points in order to stabilize

the tree against different initial configurations. Algorithms for implementing various types

of queries are described below.

18

2.3.1.1 Box query implementation

R*-trees naturally support box queries as each disk page itself is represented as a box. At

each node N , the query box compared against the bounding box each child of N to check

if they overlap. Note that, the two boxes will overlap if and only if their intervals along

each dimension overlap. Each child whose bounding box overlaps with the query box is

recursively searched.

2.3.1.2 Range query implementation

Range query implementation in R*-tree is based on the fact that if the bounding box of a

node overlap with the query sphere then that node may contain data objects satisfying the

query. For node N , we can find minimum distance of the bounding box of each of its children

from the query center. If this distance is less than query radius then that child is searched

recursively, otherwise it is pruned.

2.3.1.3 k-NN query implementation

Roussopoulos et al. [57] proposed some of the earliest heuristics for executing k-NN queries

in R*-tree. The basic idea is to keep track of the distance dk of the current kth neighbor

from the query point. If the minimum distance of the bounding box of a node N is less than

dk then that node may potentially contain a point nearer than the current kth neighbor.

Hence, that node needs to be searched. Hjaltason et al. [34] showed that for k-NN queries,

the order in which nodes are searched is critical. Instead of traditional depth-first search,

they propose using best first search approach which seems to be more effective in pruning

the search faster. The basic idea in best-first search is to maintain a pool of all the candidate

19

nodes, and pick the one that is currently the closest to the query point (irrespective of its

position in the tree). As the better k-NN candidates are found, the pool of nodes is refined.

2.3.2 Packed R-tree

Packed R-tree [41] is a variation of R-tree that is suitable for static databases. Static

databases are the databases which do not have any updates or deletions and insertions

are done at the beginning when the index is built. Thus, all the data is available prior

to building the index. Dynamic index schemes such as R-tree or R*-tree do not have any

control over order or distribution of data. Packed R-tree however can organize the data such

that it suits the index better. It pre-sorts the data using space filling curves such as Z-order

[50] or Hilbert curve [32]. The sorting phase ensures spatial locality based ordering of the

data objects (i.e. data that are close to each other in the order are spatially close). The

ordered database objects are then maximally packed into the leaf nodes and leaf nodes are

then maximally packed into the higher level directory nodes. The last step is repeated until

a single root node is obtained. Following the R-tree scheme, each node is represented in

terms of its MBR in its parent node, hence, geometrically each node is a (hyper)rectangle.

The primary advantage of this scheme is that disk utilization in almost 1 (i.e. each node

is filled to the maximum capacity). As Packed R-tree is a variant of R-tree, the algorithms

to run box queries, range queries and k-NN queries are similar to those mentioned in the

previous section.

20

2.3.3 M-tree

The indexing schemes discussed so far are mainly based on partitioning of the space based

on spatial locations of objects. However, there has been a lot of work in design and im-

plementation of indexing schemes that are based on distances among the objects. Vantage

point based indexes described earlier in this chapter fall in this category. For disk based

databases however, M-tree [19] is one of the most popular distance based indexing scheme.

M-tree is a height balanced tree built in bottom-up fashion. Each node in an M-tree contains

a point (center) and a distance (r) for each of its children. All the data points in a child

node are guaranteed to be within distance r from the center of that node. Geometrically,

each node in an M-tree is a (hyper)sphere. Insertion in an M-tree proceeds as follows: For

each point to be inserted, first we find if there is already a node such that, the point lies

within the radius r of the node. If no such node can be found, then the node which requires

minimum increase in its radius is considered. If the insertion causes the node to overflow, it

is split to create two smaller nodes such that the two new nodes follow preset disk utilization

constraint. Changes in the lower level nodes due to insertion percolate to the higher level

nodes. The authors propose a number of heuristics for splitting the overflowing node based

on the distance between the new centers, radii of the new nodes and distribution of points

in the new nodes. According to the authors, the heuristic named mM RAD that minimizes

the maximum of the radii of the new nodes provides the best performance and is applied in

the implementation used in our experiments.

21

2.3.3.1 Box query implementation

The original M-tree is designed for range queries and k-nearest neighbor queries. However,

it is possible to implement box queries in it. The main idea is to figure out if a node can

overlap the query box or not. For each child of node N , we first find distance of the nearest

point of the query box from the center of the child node. If this distance is less than the

radius of the child then that node is searched recursively else it is pruned. We would like

reiterate that although M-tree can be used for box queries it is not the best index for this

type of queries.

2.3.3.2 Range query implementation

M-tree supports range queries naturally. Recollect that M-tree is designed to be used for

metric spaces, hence, the distance measure used for M-tree satisfies the metric properties.

Each node in an M-tree contains centers and radii of all its children. For executing a range

query, we first find the distance between the query center and the center of a child node.

By triangular property if this distance is greater than sum of the two radii (query radius

+ child node radius), then the node can be safely pruned because it cannot contain any

data objects that satisfies the range criterion. Any node whose distance is less than the sum

of the two radii is searched recursively. The original M-tree algorithm also keeps track of

distance of a node from the parent. This distance can be used to avoid unnecessary distance

computations thus reducing the CPU cost of the implementation.

22

2.3.3.3 k-NN query implementation

Implementation of k-NN query in M-tree is conceptually similar to that in R*-tree. Initially,

we do not have any estimate on the distance of the nearest neighbors hence we proceed using

the best first search algorithm to get the first set of K-nearest neighbors. The distance of

the kth neighbor, dk provides the distance threshold that each subsequent data page must

satisfy in order to be considered as a search candidate. Again, using the triangular inequality

property of the metric space, a node can be safely pruned if distance between the center of

the node from the query point is greater than the sum of the radius of the node and the

distance of current kth neighbor. If a point whose distance from the query point is less than

dk is found, then it replaces the current farthest point in the k nearest neighbors and the

threshold distance dk shrinks.

2.3.4 KD-tree

KD-tree[9] is one of the earliest multidimensional indexing scheme for main memory based

databases. It is a space-partitioning binary tree that recursively divides n dimensional space

by n− 1 dimensional hyperplanes. Function of each node in the KD-tree is two fold. First,

it stores one data point, second, it provides a splitting point for next level. The node splits

the space along a certain dimension, called splitting dimension, which is chosen in round

robin fashion. The root splits the space along first dimension. All the data points whose

first dimension is less than that of root node are indexed in the left subtree of the root. All

the points whose first dimension is greater than or equal to the root node are indexed in the

right subtree of the root. Although not guaranteed to be balanced, it can provide average

run time of O(logn) for insertion and searching.

23

2.3.4.1 Box query implementation

Box query (referred to as region query in the original paper) implementation in a KD-tree

is straightforward. At each node, the algorithm has to find answers to two sub-problems.

first, it has to check if the data point corresponding to the node itself is contained in the

box query. If it is, then it is added to the resultset. Second, the algorithm has to determine

if the query box overlaps with left or right subtree (which in fact is a hyper rectangle). A

subtree is searched only if the hyper rectangle corresponding to the subtree overlaps with

the query box.

2.3.4.2 Range query implementation

Range query implementation in a KD-tree is conceptually similar to box query in the sense

that at each node range query algorithm has to solve the same sub-problems. However, the

algorithm may have to keep track of a lot more information if it has to prune the search

effectively. Note that, by default KD-tree does not keep explicit information about the

subspace corresponding to each node. Algorithm for range query in KD-tree needs to keep

track of this information. At each node, it first determines if the data point corresponding

to the node should be included in the resultset. Next, it checks if the query sphere overlaps

with the sub-spaces of left and right subtrees to decide if they need to be searched. Each

overlapping branch is then recursively searched.

2.3.4.3 k-NN query implementation

An algorithm to implement k-NN queries using KD-tree is presented in [23]. First, the algo-

rithm searches for the query point as if it were to be inserted. The leaf node corresponding

24

to the insertion gives is used as the first estimate for the distance of the nearest point. O

The basic idea is to estimate if a particular sub-tree can have a neighbor or not. This is done

by constructing a sphere whose radius is equal to the distance of kth neighbor. If this sphere

does not overlap with the sub-space of a branch, then that branch can be safely pruned. Else

it needs to be searched.

25

Chapter 3

Transformation From L1 Range Query

To Box Query

In this chapter, we present transformation of L1 range queries to box queries. The objective

of transformation is to take advantage of the particular shape of the box query for better

index performance. We first present the transformation in 2-dimensional (2-D) space and

then extend it for higher dimensional spaces.

In 2-D case, the transformation is easy and involves simple axis alignment. The transfor-

mation is challenging in the case where the number of dimensions is greater than two. It is

generally difficult to align the query space with the axes without blowing up the number of

dimensions, which is not desirable for building efficient indexes. We tackle this problem by

transforming two dimensional projections of the space. As an artifact of this, the bounding

box no longer models the range query correctly. We propose a novel pruning method to

alleviate this problem.

26

3.1 2-D Transformations

Mapping range queries into box queries requires transformations of both data space and

user queries. The space transformation is performed offline on the data, before building the

index. For simplicity, we call a database built with the transformed data a “transformed

database”. The query transformation is performed online on each query. The transformation

needs to satisfy the property that the result of the transformed query over the transformed

database is equal to, or at least a superset of, the result of the original query over the original

database. This requirement ensures that the transformed query does not miss any data

objects which would have been retrieved by the original query. When the two query results

are equal (i.e. there are no false positives or false negatives), we call such transformations

precise transformations ; otherwise, we call them approximate transformations. Approximate

transformation may introduce false positives (i.e., the points that do not satisfy the original

query but do satisfy the transformed query) or false negatives (i.e., the points that are in the

original query but are not in the transformed query). Precise transformations have neither

false positives nor false negatives. We now formally present the proposed transformations.

It will be shown later that our transformations are precise.

3.1.1 Transformation Function

In this section, we present the transformation function from range queries to box queries for 2-

D spaces. We also highlight some of the important properties of the proposed transformation

which are important for extending the transformation in higher dimensional spaces.

27

(a) Range query

(b) Transformed range query

Figure 3.1: Example of the query transformation

3.1.1.1 Space Transformation:

Intuitive basis for the 2-D space transformation is illustrated in the example in Figure 3.1a.

Note that the edges of the range query follow the line vectors 〈1, 1〉 and 〈−1, 1〉. If we adjust

the query space’s axes to align with these vectors 〈1, 1〉 and 〈1, − 1〉 instead of the units

vectors 〈1, 0〉 and 〈0, 1〉, our query space become the space shown in Figure 3.1b. It is in-

teresting to see that in the transformed space, the minimal bounding box b@([−2, 2], [−2, 2])

28

precisely defines our original range query in Figure 3.1a.

The space transformation function can be designed in a number of ways. The most direct

way is to use a space rotation by and angle of 45◦. This gives us the following transformation

function:

T (x, y) = (
x− y√

2
,
x+ y√

2
) (3.1)

However, we can achieve the same effect of mapping a range query on to the box query using

a more elegant transformation. Our transformation from range queries to box queries is

accomplished by mapping each point (x, y) in the original 2-D space to the point (x+y, x−y)

in the transformed space, which is essentially a change of axis as shown in figure 3.1.

Formally, our transformation function T : R2 → R
2 is defined as,

T (x, y) = (x+ y, x− y) (3.2)

And the inverse transformation function T−1 : R2 → R
2 is defined as,

T−1(x, y) = (
x+ y

2
,
x− y

2
) (3.3)

This function essentially changes the two axes so that they align perfectly with the

geometric faces of range queries in the original space. It can be seen that the function

defined in equation 3.2 is computationally easier than the one in equation 3.1. Further, the

transformation is an inverse of itself (with a scaling factor). By such transformations, a range

query in the original space based on L1 distance becomes a box query in the transformed

space. For any 2-D database D, which is a set of 2-D points in the original space, the

29

transformed database T (D) is defined by

T (D) = {T (x, y) | (x, y) ∈ D}

Note that we do not need to store T (D) as a separate database; rather, we build an index

for T (D), which points back to the original points in D.

3.1.1.2 Query Transformation:

Mathematically, r@(a, b) denotes the set of all the points that are within range r based on

L1 distance from point (a, b). Geometrically, all the points in r@(a, b) form a diamond with

four end points: (a + r, b), (a, b + r), (a − r, b), (a, b − r). On the other hand, all points in

b@([a1, b1], [a2, b2]) form a rectangle with four end points: (a1, b1), (a2, b1), (a2, b2), (a1, b2).

The space transformation transforms the four corners of the range query r@(a, b) to the

four points, (a + r + b, a + r − b), (a − r + b, a − r − b), (a + r + b, a − r − b), (a − r +

b, a + r − b), respectively. The square defined by these transformed points is precisely the

space corresponding to the range query in transformed space. This square is essentially the

representation of a box query b@([a+ b− r, a+ b+ r], [a− b− r, a− b+ r]) in the transformed

space. Geometrically, our 2-D transformation from range queries to box queries converts a

diamond in the original space to a square in the transformed space. For example, in figure 3.1,

range query 2@(0, 0) in the original space is equivalent to the box query b@([−2, 2], [−2, 2])

in the transformed space.

30

3.1.2 Transformation Properties

We now present several important properties of our transformation function T defined in

formula 3.2. These properties are particularly useful in extending 2-D transformation for

higher dimensions.

3.1.2.1 Precision Property

Theorem 3.1.1 shows that the proposed transformation from an L1 range query to a box

query is precise.

Theorem 3.1.1. For any point (x, y) ∈ D, (x, y) satisfies the range query r@(a, b) if and

only if (iff) T (x, y) satisfies the box query b@([a + b− r, a + b+ r], [a− b− r, a− b+ r]).

Proof 3.1.1. Our proof is based on the fact that for any two numbers u and v, |u|+ |v| ≤ r

iff |u+ v| ≤ r and |u− v| ≤ r. This fact can be easily proved by assuming u > v without loss

of generality and then considering the following three cases: (1) u > v > 0, (2) u > 0 > v,

and (3) 0 > u > v. We omit the proof of this fact.

Based on this fact, |x−a|+|y−b| ≤ r holds iff both |(x+y)−(a+b)| = |(x−a)+(y−b)| ≤

r and |(x − y) − (a − b)| = |(x − a) − (y − b)| ≤ r hold. Note that (x, y) satisfies the

range query r@(a, b) iff |x − a| + |y − b| ≤ r holds, and T (x, y) satisfies the box query

b@([a+b−r, a+b+r], [a−b−r, a−b+r]) iff |(x+y)−(a+b)| ≤ r and |(x−y)−(a−b)| ≤ r

holds.

3.1.2.2 Distance Property

The proposed transformation function T does not preserve L1 distance, even though it is

precise. Consider two points p = (1, 1) and q = (1.5, 0). Distance of these points from

31

origin is 2 units and 1.5 units respectively. Using the transformation, T (p) = (2, 0) and

T (q) = (1.5, 1.5). As origin is unaffected by the transformation, the distances of transformed

points from the (transformed) origin are 2 units and 3 units respectively. It can be seen that

neither the distance nor the relative ordering of points is preserved.

Theorem 3.1.2. For any two points (x1, y1) and (x2, y2), L1(T (x1, y1), T (x2, y2)) =

L1((x1, y1), (x2, y2)) + ||x1 − x2| − |y1 − y2||.

Proof 3.1.2. Our proof is based on the fact that for any two numbers u and v, |u + v| +

|u − v| = |u| + |v| + ||u| − |v||. This fact can be proved easily proved by assuming u > v

without loss of generality and then considering the following three cases: (1) u > v > 0, (2)

u > 0 > v, and (3) 0 > u > v. We omit the proof of this fact.

Based on this fact, we have L1(T (x1, y1), T (x2, y2)) = L1((x1+y1, x1−y1), (x2+y2, x2−

y2)) = |(x1+y1)−(x2+y2)|+|(x1−y1)−(x2−y2)| = |(x1−x2)+(y1−y2)|+|(x1−x2)−(y1−y2)|

= |x1−x2|+ |y1−y2|+ ||x1−x2|−|y1−y2|| = L1((x1, y1)− (x2, y2))+ ||x1−x2|−|y1−y2||.

We can prove a similar property for T−1.

Corollary 3.1.1. For any two points (x1, y1) and (x2, y2), L1(T
−1((x1, y1)), T−1((x2, y2))) =

(L1((x1, y1), (x2, y2)) + ||x1 − x2| − |y1 − y2||)/2.

3.1.2.3 Inequality Property:

Although transformation function T does not preserve L1 distance, Theorem 3.1.3 shows an

important special case where the transformation function T preserves distance inequality.

Theorem 3.1.3. Given a point (x1, y1), an MBR represented as a rectangle B, and a point

(x2, y2) on the edge of the rectangle, if among all the points in B, (x2, y2) is the point

32

(x ,y)2 2

(x ,y)

(x ,y)

1 1

3 3

B

Figure 3.2: Illustration for Theorem 3.1.3

that is closest to (x1, y1), then T ((x2, y2)) is the closest point in T (B) to T ((x1, y1)) and

T−1((x2, y2)) is the closest point in T−1(B) to T−1((x1, y1)). Here, T (B) and (T−1)(B)

are the sets obtained by transforming all the points in B using the transformations T and

T−1 respectively.

Proof 3.1.3. Our proof is based on the fact that for any four non-negative numbers u, v, w,

and z, if u+v ≤ w+z, u ≤ w, and v < z, then u+v+ |u−v| ≤ w+z+ |w−z|. This fact can

be easily proved by considering the following three cases: (1) u ≤ w ≤ v ≤ z, u ≤ v ≤ w ≤ z,

and u ≤ v ≤ z ≤ w. We omit the proof of this fact.

For any two points (x1, y1) and (x2, y2), we use L1((x1, y1), (x2, y2)) to denote their

L1 distance. Considering any point (x3, y3) in the rectangle, because (x2, y2) is closer to

(x1, y1) than (x3, y3), we have L1((x2, y2), (x1, y1)) ≤ L1((x3, y3), (x1, y1)), |x2 − x1| ≤

|x3 − x1| and |y2 − y1| ≤ |y3 − y1|. Now we need to prove L1(T ((x2, y2)), T ((x1, y1))) ≤

L1(T ((x3, y3)) − T ((x1, y1))). By Theorem 3.1.2, we have L1(T ((x2, y2)), T ((x1, y1))) =

L1((x1, y1), (x2, y2))+ ||x1−x2|−|y1−y2|| = |x1−x2|+ |y1−y2|+ ||x1−x2|−|y1−y2|| and

L1(T ((x3, y3)), T ((x1, y1))) = L1((x1, y1), (x3, y3))+ ||x1−x3|−|y1−y3|| = |x1−x3|+ |y1−

y3|+||x1−x3|−|y1−y3||. By the above fact, we have |x1−x2|+|y1−y2|+||x1−x2|−|y1−y2|| ≤

|x1 − x3|+ |y1 − y3|+ ||x1 − x3| − |y1 − y3||.

33

Figure 3.2 shows an example scenario for points (x1, y1), (x2, y2), (x3, y3) and the rect-

angle.

3.2 Multi-dimensional Transformations

For number of dimensions n = 2, range queries can be precisely transformed into box queries.

However, to the best of our knowledge, for n > 2 we have not found any heuristics in the

literature on precise transformations. We conjecture that such a precise transformation may

not exist. Intuitive justification for this conjecture can be given by considering the number

of vertices and number of faces in the query space. Range query in L1 has 2n vertices and

2n faces (In 3-D, 6 vertices and 8 faces). A box query on the other hand, has 2n vertices

and 2n faces (In 3-D, 8 vertices and 6 faces). In fact, these two query spaces are duals of

each other in the sense that vertex in range query space is a face in box query space and vice

versa. Hence, it may not be possible to map range query space onto the box query space

using simple affine transformations.

In this section, we first use the 2-D transformation of section 3.1 to define an approximate

transformation called disjoint planar rotations (DPR). Since the transformation is not pre-

cise, the basic high dimensional box query as defined in equation 1.5 results in a lot of false

positives which may negatively affect the performance. Hence, we develop a new type of box

query that uses the range value from the original range query to prune the false positives in

the transformed box query while preventing the occurrence of false negatives.

34

3.2.1 Disjoint Planar Rotations

DPR is a transformation that is derived from our two dimensional transformation function.

We transform the n dimensional space via this technique by transforming disjoint planes

in the database. For example, a four dimensional point (x, y, z, w) can be transformed into

(T (x, y), T (z, w)). That is, this transformation can be visualized as a rotation of each of the

2-D disjoint planes in the database’s space.

More formally, we define a n dimensional transformation Tn(p) of a point p = (p1, p2, . . . , pn),

as follows:

Tn(p) =

(T (p1, p2), . . . , T (pn−1, pn)) whenn iseven

(T (p1, p2), . . . , T (pd−2, pn−1), pn) whennisodd

(3.4)

Note that when n is odd, we choose to preserve the last dimension because in 1-dimensional

space, range query and box query are one and the same and they differ only in the representa-

tion (e.g. r@(x)⇔ b@([x−r, x+r])), which obviates the need for an explicit transformation.

3.2.2 Pruning Box Query

Our modification to box query (which we call Pruning Box Query - PBQ) is based on the

observation that if we can estimate distance between the query center and an MBR of the

index tree, we can prune the branches of the tree that do not contain any true positives. We

first prove the result proposed in theorem 3.1.3 for n−dimensional data.

Theorem 3.2.1. Given a point c and an MBR B. If p is the closest point in B to c, then

Tn(p) is the closest point in Tn(B) to Tn(c) and (T−1)n(p) is the closest point in (T−1)n(B)

to (T−1)n(c). Here, Tn(B) and (T−1)n(B) are the sets obtained by transforming all the

points in B using the transformations Tn and (T−1)n respectively.

35

Proof 3.2.1. The proof is similar to that of theorem 3.1.3 and is omitted.

Based on the theorem we propose following heuristic to eliminate all the false positives:

Heuristic: If an MBR M overlaps with the query box, we find the closest point Tn(p)

in M to query center Tn(c). Using the inverse transformation we then calculate distance

between p and c in the original space; if it is greater than the query range then the MBR is

pruned. Else it is recursively searched. Once we reach the leaf level nodes, for each record

Tn(q) in the node, we calculate the L1 distance between q and c. If this distance is less than

the query radius, q is added in the resultset.

This approach not only eliminates all the false positives but it also provides more efficient

query execution. It is important to note that we do not miss any data record with this pruning

strategy. Theorem 3.2.2 states this.

Theorem 3.2.2. For every point p that satisfies the range query r@(c1, c2 . . . cn), p is also

contained in the result of the PBQ.

Proof 3.2.2. Let c = (c1, c2 . . . cn). Further, Let, if possible, there be a point p such that,

p ∈ r@(c1, c2 . . . cn) but p′ is not contained in the pruning box query, where p′ = Tn(p).

This is possible, only if the MBR M containing p′ was pruned by the box query at some

point, i.e. the estimated distance between M and c′ (c′ = Tn(c)) was greater than r. Let

u′ = T d(u) be the closest point in M to c′. This implies that while u′ was the closest point to

c′ in the transformed domain, u was not the closest point to c in the original data domain.

This contradicts theorem 3.2.1. Hence, such a point p cannot exist. In other words, resultset

returned by the PBQ contains all the points from the one returned by the original range

query.

36

3.3 Theoretical Analysis

Using DPR and pruning box queries improves the performance of indexed queries because

the transformation aligns the index’s minimum bounding boxes’ faces with faces of the query.

In this section we provide a detailed analysis of the range query and the PBQ performances.

We first present it for 2-dimensional queries and then generalize it for higher dimensions.

3.3.1 Model Basics

Without loss of generality, we fix the size of all MBRs so that we can calculate the area

of MBR centroids whose corresponding MBRs intersect with a query. From this area, we

can calculate the probability that an MBR of a certain size will intersect with a query. For

example, for 2D query spaces, we fix an MBRs length to be 2l and breadth to be 2b. We

must calculate probability that a random MBR of certain size intersects the query space

(a diamond in case of the range query and a square for the PBQ). We analyze only one

quadrant of the 2-D plane. Analysis for other quadrants is similar and is omitted.

Query

space

D E

2l

2b

A
B

O
C

G

F

R4

r

R2

R1

R3

(a) Range query

MBRR1

A

D

O C F
R3

E

2l

2b

(b) Transformed box query

Figure 3.3: The MBR intersection areas in a quadrant

Figure 3.3 shows the space in which an MBR of size 2l× 2b must lie in order to intersect

37

with the query space. We can see from this visualization that the query faces align with

the MBR faces after transformation, and we conjecture that this alignment improves query

performance for two reasons: MBRs are less likely to intersect with the PBQ than the range

query, and MBRs that do intersect with PBQ have a higher likelihood of containing a point

within the query than MBRs that intersect the range query.

3.3.2 Analysis of Range Query

To calculate the probability of intersection for a range query PR(r,l,b) with an MBR, we

determine the area in which the centroid of an MBR with length 2l and breadth 2b must lie

for it to intersect with the query. As shown in Figure 3.3(a), the intersection space can be

divided into four regions R1(�ADEB), R2(�OABC), R3(△BEF) and R4(�CBFG). The

area of the intersection space can then be calculated as,

AR(r,l,b) =Area of R1, R2, R3, and R4

=

∫ r

0
b dx+ lb

+

∫ r√
2

0
2x dx+

∫ r

0
l dx

=
r2

2
+ lb+ r(l + b) (3.5)

Hence, given the area of the data space, A, the probability that an MBR will overlap with

a range query is,

PR(r,l,b) =
AR(r,l,b)

A
(3.6)

38

3.3.3 Analysis of Box Query

To calculate the probability PB(r,l,b) of intersection of a PBQ with an MBR, we determine

the area in which the centroid of an MBR with length 2l and breadth 2b must lie for it to

intersect with the query. As shown in Figure 3.3(b), the intersection space is an extended

box query with length of 2(l+r) and breadth of 2(b+r). Note that the space has dilated by a

factor of 2 due to the transformation. Hence, the total area of the space in the transformed

domain is 2A. We divide the space into three regions R1(�ADEB), R2(�OABC) and

R3(�CBEF). The area of the intersection space can then be calculated as,

AB(r,l,b) =Area of R1, R2, and R3

=

∫ r

0
(l + x) dx+ lb

+

∫ r

0
(b+ x) dx

= r2 + lb+ r(l + b) (3.7)

Hence, given a the area of the data space, 2A, the probability that a random MBR intersects

the transformed range query is,

PB(r,l,b) =
AB(r,l,b)

2A
(3.8)

3.3.4 Hyper-dimensional Queries

Figure 3.4 represents the four dimensional space as a two dimensional grid of two dimensional

slices through the four dimensional space. In this case, the grid is a coarse grain visualization

of the effect of the wz plane on the xy planes so each panel in the wz represents the xy plane

39

w
z

y
x

MBR

Range

Queryw

z

x

y
w

z
y

x

MBR

Pruning Box

Query

(a) (b)

Figure 3.4: Visualizations of range and pruning box queries relationship with MBRs in
hyperspace

that is fixed at the wz panel’s coordinate. While this visualization is coarse grained in that

it does not show every point in the range query, it illustrates how DPR transforms the range

query into a PBQ as shown in Figure 3.4(b), which shows Figure 3.4(a)’s range query as

a PBQ in a DPR transformed space. Note that this visualization can be generalized to

visualize any hyperspace as a nested series of two dimensional grids. The above equations

can be generalized to any even number of dimensions via a density function. We use this

nesting concept to find the area of centroids for any even dimensional query. As we move

away from the center of the query in xy plane, density of points (or query space) in wz plane

decreases. We define density function as the area in which center of an MBR must lie in

order to intersect with query space. The n-dimensional density function for range query is

denoted as AR(r,W,n) and that for the pruning box query is denoted as AB(r,W,n).

Consider the MBR in Figure 3.4(a); we first examine the intersections of the wz pro-

jections of the MBR and query, which is shown by the dotted lines. Note that if these

projections did not intersect there would be no intersection of query and MBR; however,

40

since there is an intersection we can determine if query and MBR do intersect by looking for

an intersection in the xy projection that is closest to the origin of the range query.

Given a hyper-rectangle with widths W = 〈w1, · · · , wn〉, the density function for the

range query is recursively defined as,

AR(r,W,0) =1

AR(r,W,n) =

∫ r

0
AR(r−x,W,n−2)wn dx

+ AR(r,W,n−2)wn−1wn

+

∫ r√
2

0
AR(r−x

√
2,W,n−2)2x dx

+

∫ r

0
AR(r−x,W,n−2)wn−1 dx (3.9)

PR(r,W,n) =
AR(r,W,n)

A
(3.10)

in the original space and

AB(r,W,n) =1

AB(r,W,n) =

∫ r

0
AB(r−x,W,n−2)(wn−1 + x) dx

+ AB(r,W,n−2)wn−1wn

+

∫ r

0
AB(r−x,W,n−2)(wn + x) dx (3.11)

PB(r,W,n) =
AB(r,W,n)

2n/2A
(3.12)

in the transformed space. Again, the space dilation is responsible for the factor 2n/2 in the

equation 3.12. It can be seen that area analyses for two dimensional cases are in fact special

41

cases of equations 3.9 through 3.11

It can be shown that the density function for the PBQ is less than the density function

for the range query, when we increase the number of dimensions. Hence, the range query

has a larger number of valid centroids that intersect it than the pruning box query.

It should be noted that this analysis does not provide an exact modeling of the actual trees

because, MBRs are not completely random in any index tree (due to the use of heuristics),

and the analysis holds if all the MBRs have the same sides which is generally not the case.

3.4 Experimental results with R*-Tree

In this section we present the results of applying the proposed transformation on various

databases. Effectiveness of the proposed transformation is measured by comparing the IO

cost (i.e. number of index page accesses) for the proposed pruning box queries with that of

range queries.

For performance comparison purposes, we create R*-tree index for the range query in the

original space and R*-tree index for the pruning box query in the transformed space. Later

in the chapter we highlight some of the shortcomings of R*-Tree which can be overcome by

using packed R-Tree. We demonstrate with comprehensive experiments that the proposed

transformation is equally effective with packed R-Tree as well.

Uniformly distributed synthetic databases are used for the experiments. Data records

are normalized to unit (hyper)cube. Page size of 4K bytes was used for the index nodes.

All results presented here are based on averaging the I/O of one hundred random queries.

All the experiments were run on AMD Opteron 2.2.GHz systems running GNU/Linux. The

labels used for various methods in the figures and tables are as follows: RQ - traditional

42

range query on R*-Tree, PBQ - Pruning Box Query on R*-Tree.

3.4.1 2-D transformations

As explained earlier, transformation in 2-dimensional databases is precise, i.e., the trans-

formed query does not lose any useful results nor does it gather any unwanted results. Here,

we present effects of increasing database size and query radius on performance gain obtained

by the transformation.

3.4.1.1 Effect of database size

Figure 3.5 shows the effect of increasing database size on the number of page accesses. As

seen from the figure, as the database size increases, number of page accesses for both range

and pruning box queries increases, as expected. However, rate of increase for range query

is higher than that of the pruning box query. The performance improvement increases with

increasing database size. The relatively small improvement is consistent with our analysis

in section 3.3.

3.4.1.2 Effect of query ranges

We experimented with various query ranges keeping database size constant (50 million

records). The performance comparison of pruning box query with range query is shown

in figure 3.6. Ranges in the figure are a normalized distances. It can be seen from the figure

that pruning-box queries perform consistently better than range queries, however, percentage

improvement is not very significant.

43

Figure 3.5: Effect on database size on page accesses

Figure 3.6: Effect of query range on page accesses

44

Figure 3.7: Effect of database size on page accesses

3.4.2 Higher dimensional transformation

The main challenge in transforming high dimensional queries is that the DPR transformation

tends to retrieve a lot of false positives. We use the pruning box query to eliminate false

positives and reduce the number of page accesses for execution of the query. In the following

subsections, we present the results for 10-dimensional uniformly distributed synthetic data.

3.4.2.1 Effect of database size

Figure 3.7 shows effect of database size on the query cost. We used a database with 10-

dimensional vectors. Query range was kept constant. As can be seen from the figure, as the

database size increases, cost for both range and box queries increases, as expected, but the

rate of increase is much slower for pruning box queries than for range queries. We get more

than 40% reduction in the cost for a database size of 100 million vectors.

45

Figure 3.8: Effect of range on page accesses

3.4.2.2 Effect of query ranges

Figure 3.8 gives the comparative performance of range queries versus pruning box queries

with increasing query range. As seen from the figure, performance of pruning box queries

is consistently better than range queries, and the performance difference gets wider with in-

creasing query ranges. This is because hyper-diamonds of the range queries tend to intersect

more with the bounding boxes than the pruning box queries.

3.5 Effect of the index structure

We have observed that the performance improvement due to transformation is sensitive

to the structure of the R*-tree being built. One of the primary reasons for this is the

fact that R*-Tree (and many dynamic index structures) are very sensitive to the order in

which data is being inserted. Although R*-Tree makes some attempt to improve the index

through periodic reinsertion of some of the data points, it is unable to nullify the effect of

46

insertion order completely. This sensitivity makes it difficult to assess improvement due to

transformation. As we are building two separate indexes (one in transformed space and one

in original space), it is possible that one of the index has a favorable order while the other

does not. In other words, improvement may result from combined effect of transformation

and insertion order.

We performed extensive empirical analysis to study the effects of insertion orders on the

performance of R*-tree. We also studies R*-tree performance for several different databases

all coming from the same distribution. Tables 3.1 and 3.2 summarize our findings. For all the

experiments, database size was fixed at 10 million records. We used 10 different insertion

orders within the same database for the first experiment and 10 different databases (all

with uniform distribution) for the second. Average number of page accesses and standard

deviation of the number of page accesses was calculated. It can be seen from these tables

that there exists a large variance in query performance of R*-Tree. There are cases where

performance improvement is observed to be in excess of 40%. What this analysis shows

is that for a given database, it may be difficult to isolate the performance improvement

due to transformation from the positive or negative effects of insertion order and statistical

properties of data.

Table 3.1: Mean and Std. deviation of # page accesses for various insertion orders

Query type # Dimensions Mean IO Std. Deviation

RQ
2 27.67 0.21
10 7678.05 1626.54

PBQ
2 25. 09 0.46
10 7609.86 1465.36

The inherent dependence of R*-Tree on insertion order and statistical properties of the

database may make it difficult to effectively measure the performance improvement due to

47

Table 3.2: Mean and Std. deviation of # page accesses for various databases

Query type # Dimensions Mean IO Std. Deviation

RQ
2 27.77 0.35
10 7220.27 1702.33

PBQ
2 24.88 0.35
10 6509.47 1375.35

transformation. We apply the proposed transformation on a static index called packed R-

Tree [41]. Packed R-Tree (and any static index) assumes that all the data is available at

the time of indexing. This allows for better tuning of the index. Packed R-Tree sorts the

data using Hilbert ordering before inserting. Further, it tries to put as many data records

in a node as possible. This creates more compact R-Tree in which all the records in a leaf

node are spatially close to each other. Due to pre-sorting, the order in which the data comes

in does not matter, it is always indexed in the same order. Further, Packed R-Tree also

guarantees (almost) 100% space utilization which considerably reduces the total number

disk pages required for the index.

Similar to the R*-Tree we measured mean and variance of number of page accesses

for 10 different databases. Table 3.3 shows results of these experiments. It can be seen

that standard deviation in the number of page accesses for a packed R-Tree is very small

highlighting its stability. At the same time performance gain in terms of page accesses is

significant even for higher dimensions.

Table 3.3: Mean and Std. deviation of # page accesses for various databases indexed using
packed R-tree

Query type # Dimensions Mean IO Std. Deviation

RQ
2 29.21 0.14
10 3212.96 3.28

PBQ
2 26.41 0.1
10 2500.88 2.21

48

Based on these results, we decide to use Packed R-Tree for all our experiments in order

to nullify any positive or negative effect of the index properties and to accurately measure

performance improvement due to transformation alone.

3.6 Experimental results using Packed R-Tree

In this section we present the results of applying the proposed transformation on various

databases indexed using packed R-Tree. As before, effectiveness of the transformation is

measured by comparing the IO cost (i.e. number of index page accesses) for the pruning box

queries with that of range queries. For performance comparison purposes, we create packed

R-Tree indexes for the range query in the original space and the pruning box query in the

transformed space.

A detailed analysis of effect of database sizes, number of dimensions and query radius is

presented in subsequent sections. We first prove the correctness of our theoretical analysis

by comparing improvement predicted by our model with the actual improvement observed

experimentally.

3.6.1 Correctness of theoretical model

We define the query-performance improvement as the ratio of the number of page accesses

in the transformed space to that in the original space. Based on equations 3.9 and 3.11 we

can estimate expected relative improvement due to the transformation as,

I(r,W, n) = PB(r,W,n)/PR(r,W,n) (3.13)

49

Figure 3.9: Comparison of estimated and observed improvement for 2-D data

Figure 3.10: Comparison of estimated and observed improvement for 10-D data

When range r is considerably large compared to size of the MBRs, the first term in equa-

tions 3.5 and 3.7 will dominate and we won’t have any significant improvement. However,

in most of the real world systems, query range is usually small so that it retrieves only a few

relevant records. Hence, in general, we can expect a considerable performance gain.

50

Figures 3.9 and 3.10 compare the estimated values of relative improvements (equation

3.13) with the observed values for a fixed query for 2 and 10-dimensional databases respec-

tively. For ease of evaluating integrals, we assumed that all MBRs are uniform (i.e. l = b).

Further, as leaf level nodes dominate the page accesses, we use only leaf level I/O for the

comparison. It can be seen from the graphs that our analysis is fairly accurate especially for

larger databases. When database size is small, some of our assumptions such as MBRs are

uniform and they all have the same size, may not be valid. This results in slight disagreement

between observed performance improvement and predicted one. However, as database size

increases, the assumptions hold and we see much better agreement between the two values.

3.6.2 Avoiding empty pages

Experimentally, we can see that the reduction in area that our model predicts for pruning box

queries translates to fewer page accesses in the index tree. Table 3.4 shows the performance

break down at each level of the index tree for both range and pruning box queries for two

and ten dimensions and database of 10 million records. The break down shows the average

number of page accesses, the average number of empty page accesses, and the average number

of non-empty page accesses. An empty page has no children that satisfy the query, while a

non-empty page has at least one child that satisfies the query.

We observe that both range and pruning box queries have a similar number of non-empty

page accesses, which corresponds in our model to the shared centroid area with both queries.

The number of non-empty pages access should be similar between both query types because

our transformation does not change the relative distribution of the records in the space.

It can be seen that the performance improvements are best gained by reducing the number

51

Table 3.4: Break down of page accesses

PBQ n = 2, r = 0.005
Level Total Empty Non-empty

Top 1.47 0.44 1.03
Middle 3.97 2.34 1.63
Bottom 20.13 3.35 16.78

RQ n = 2, r = 0.005
Level Total Empty Non-empty

Top 1.34 0.31 1.03
Middle 3.46 1.67 1.79
Bottom 23.34 5.44 17.9

PBQ n = 10, r = 0.07
Level Total Empty Non-empty

Top 1.91 0.53 1.38
Middle-h 27.76 22.31 5.45
Middle-l 269.56 255.75 13.81
Bottom 1948.66 1922.56 26.1

RQ n = 10, r = 0.07
Level Total Empty Non-empty

Top 1.95 0.56 1.39
Middle-h 34.17 29.81 4.36
Middle-l 346.53 335.74 10.79
Bottom 2690.01 2665.98 24.03

of empty page accesses. For example, when n = 2, there are very few empty pages, and we see

a small difference in performance between queries. However, when n = 10, empty pages make

up the majority of page accesses, and we see that the pruning box query loads approximately

two third the number of empty pages than the range query, which results in a much larger

performance improvement.

52

3.6.3 Results for 2-D transformations

Here we present the experimental results with 2-dimensional data. As before, we study

effects of increasing database size and query radius.

3.6.3.1 Effect of database size

Figure 3.11 shows the effect of increasing database size on the number of page accesses.

Our observations are similar to the ones noted in section 3.4.1.1. Query I/O increases with

increasing database size for both the methods but the rate of increase is smaller for pruning

box query. For database size of 5 million we see about 12% improvement in the number of

page accesses.

Figure 3.11: Effect on database size on page accesses

53

3.6.3.2 Effect of query ranges

Figure 3.12 shows the performance of the pruning box query against range query with in-

creasing radius. It can be observed that pruning box query consistently outperforms range

query in original space.

Figure 3.12: Effect of query range on page accesses

3.6.4 Higher dimensional transformation

We now present results of applying pruning box query to packed R-tree indexing 10-dimensional,

uniformly distributed synthetic data.

3.6.4.1 Effect of database size

Figure 3.13 shows effect of database size on the query I/O. Significant performance gain in

excess of 25% can be obtained using PBQ instead of RQ. Rate of increase in the I/O of PBQ

is lesser than that for RQ which is another encouraging observation.

54

Figure 3.13: Effect of database size on page accesses

3.6.4.2 Effect of query ranges

Figure 3.14 compares performance of pruning box query with the range query for increasing

query range. Note that volume of the query space increases exponentially with increasing

radius. Hence rate of increase in the query I/O is also faster than linear. However, as it can

be seen from the figure that the proposed method offers much better performance than the

traditional range query (about 30% improvement for query radius of 0.1).

3.7 Performance results for real data

The experimental results described so far were carried out on synthetic data. In this section

we show effectiveness of the proposed approach on real data. As packed R-Tree is more

stable of the two index trees, we present these results only for packed R-Tree.

We use two different datasets for our experiments. First is a GIS dataset with two

dimensions (co-ordinates of points obtained through GPS) and there are totally 108779

55

Figure 3.14: Effect of range on page accesses

records (obtained from a GIS company). We randomly selected 100 points from the database

as range query centers. For each query center, range was changed from 0.01 to 0.05. Figure

3.15 shows that even for this small database pruning box query has better performance than

the traditional range query on the packed R-Tree.

Figure 3.15: Range query on GIS data

56

Our second dataset is an image feature dataset. Similar to the features used in Coral

Image data[59], first three moments were calculated for hue, saturation and intensity values

of the pixels. Each image is described using this 9-dimensional feature vector. A feature

database of 10 million images obtained from [49] was built. Range was varied from 0.005 to

0.010. Note that the value of the range was chosen such that we get a reasonable number of

hits. Figure 3.16 shows that with increasing range, performance improvement due to PBQ

increases. which highlights applicability of the proposed transformation to high-dimensional

spaces.

Figure 3.16: Range query on 9-dimensional image feature data

3.8 k-NN queries using transformation

k-NN (k-Nearest neighbor) queries can be considered as a special case of range queries which

only return the set of k records that are most similar to the query record. A k-NN query

can be implemented by keeping track of distance dk of current kth neighbor [34, 57]. Any

57

data node whose MBR is farther than dk can be safely pruned. This is conceptually similar

to range query with range dk. As query execution proceeds, the query range decreases (i.e.

query sphere shrinks). Due to the underlying similarity between k-NN queries and range

queries the proposed transformation can also be applied for k-NN queries. The algorithm

used for implementation of k-NN query in the original space is described in section 2.3.1.3.

The same algorithm can be adapted for use in transformed space, by creating a box query

whose side shrinks as the search proceeds.

It was observed that at higher levels in the index tree, node MBRs are large in size and

query point is inside a lot of MBRs and its minimum distance from these MBRs is zero. We

break the ties in such cases using distance of the query point from the center of the MBR.

This heuristic was observed to perform better than choosing any one of the qualifying MBRs

randomly.

In the next few subsections we present results of using the transformation for k-NN

queries. We executed k-NN queries in the transformed space as well as in the original space.

Different combinations of number of dimensions, database size and value of k were used. In

all th following graphs, the labels KNN-Orig and KNN-Trnf are used for representing k-NN

queries in original space and transformed space respectively.

3.8.1 k-NN in 2-D Space

Figure 3.17 shows the results of running 500-NN queries on 2-D database. Database size was

varied from 2 million to 10 million records. It can be seen that k-NN query in transformed

space is consistently better than that in the original space. The slight jump in the number

of query I/O for the database size of 8 million is due to the increase in the height of the tree.

58

Figure 3.17: k-NN queries in 2-D for various database sizes

Figure 3.18 shows the results of varying the value of k (i.e. number of neighbors) for a

database of 10 million records. We observed that for very small values of k(< 100), queries

in transformed space perform worse than those in original space. This is expected because

for small k the effective radius of the query space is much smaller. From equations 3.6 and

3.8, it can be seen that for small query radius, the transformation may not be very effective.

So our observations are in accordance with the analysis. The performance improvement was

observed to be around 7% for larger values of k.

3.8.2 k-NN in 10-D Space

Figures 3.19 and 3.20 highlight advantages of transformation for K-NN queries in 10-dimensional

space. It can be clearly seen from the figures that improvement in excess of 20% can

be achieved using the transformation. Further, the improvement increases with increasing

59

Figure 3.18: k-NN queries in 2-D for various values of K

Figure 3.19: k-NN queries in 10-D for various database sizes

60

Figure 3.20: k-NN queries in 10-D for various values of K

database size and increasing values of k.

3.8.3 k-NN on Real Data

We used the proposed technique for the real databases mentioned in section 3.7. Our findings

are in accordance with the observations we made with synthetic data. For 2 dimensional real

data, there is no improvement if the value of k is small. But for k ≥ 80, the transformation

indeed provides better performance. For the 9-dimensional image feature data, as the value

of k increases, query I/O for both the methods increases. However, rate of increase of query

I/O is much slower in transformed space. It can be seen that we get about 25% improvement

in the query I/O which highlights effectiveness of the transformation.

61

Figure 3.21: k-NN queries on GIS data for various values of K

Figure 3.22: k-NN queries on image feature data for various values of K

62

Chapter 4

Transformation From Box Query To

Range Query

The previous chapter discusses mapping of range queries and k-NN queries to box queries

for efficient implementation in R-tree based structures. However, there has been a lot of

research in distance based indexing schemes that use the distances among the data points

for building the index. M-tree[19] described in section 2.3.3 is one such indexing scheme.

Being a distance based index, M-tree provides efficient implementation of range queries and

k-NN queries, however, it is not very effective for box queries. In this chapter we will discuss

mapping of box queries to L1 range queries for their efficient implementation in M-tree like

indexing schemes.

4.1 Data and query transformations

The basic idea behind the transformation is similar to the axis aligning rotations discussed

in the previous chapter. However, length of sides in a box query can be non-uniform which

63

Figure 4.1: Square tiling of a rectangle

poses challenges for direct mapping of box queries onto range queries.

4.1.1 2-Dimensional Transformation

A two dimensional box query is a rectangle while a range query (in L1) is a diamond. If

the box query is a square, a simple rotation by 45 degrees transforms a box query in to

a range query. However, when the sides of the box are not uniform, the transformation is

slightly involved. If the rectangle can be expressed as a combination of squares (the process

is called square-tiling), then each component square can be transformed into a range query.

As shown in figure 4.1 there are a number of ways for square tiling of a rectangle. When

the squares that make up the given rectangular box query overlap each other, we call it an

overlapping transformation; and similarly the transformation that converts a rectangle into

a set of non-overlapping squares is called a non-overlapping transformation.

For a non-overlapping transformation, we can find a minimal square tiling of the given

rectangle using the Euclidean tiling algorithm and a recursive construction technique in [42].

However, the minimum number of squares required for a non-overlapping transformation

may be fairly high. Each square component of the box query is mapped to a range query

64

whose execution needs resources such as CPU and memory. Hence, in order to minimize

the resource requirement, we have to minimize the number of range queries. Hence, for

both overlapping and non-overlapping transformations, we want to minimize the number

of squares that make up the given rectangle. Note that neither of the transformations

have any false positives. Hence, in a disk based database, non-overlapping transformation

does not provide any advantage over overlapping transformation. However, overlapping

transformation generally results in smaller (and deterministic) number of squares. Hence,

we restrict ourselves to overlapping transformation in this dissertation. For an overlapping

transformation, we can convert a rectangle of size l × b (b < l) with a minimum of ⌈ lb⌉

overlapping squares of side length b. The basic idea is to tile the rectangle with b× b sized

non-overlapping squares until we are left with a rectangle of size (l mod b)× b. This region

is then covered by a b × b square that overlaps with the previous square (see figure 4.1 for

an example). The theorem below proves that the overlapping transformation provides tiling

with minimum number of squares.

Theorem 4.1.1. Overlapping transformation gives minimum square tiling of the box query.

Proof 4.1.1. The largest square that can be used to tile a rectangle of size, l × b (b < l)

has size b × b. Hence the minimum number of squares needed =
⌈

area of the rectangle
area of the square

⌉

=

⌈ lb
b2
⌉ = ⌈ lb⌉ = number of squares used by our transformation.

Algorithm 1 presents an extension of existing box query algorithm to execute the multiple

box queries in existing index structures based on bounding boxes (such as R*-Tree [7]) or

bounding spheres (such as M-tree [19]). The main idea is to compare each MBR (or hyper-

sphere in case of M-tree) with all the box queries. If the MBR overlaps with any of the

queries, then its corresponding node needs to be searched. If no box query overlaps with the

65

MBR then its subtree can be safely pruned.

Algorithm 1 To implement a box query B using a set of box queries B1, B2 . . . Bn.

Input : A Box query B which has been tiled into multiple queries B1, B2, ... Bn each of
which is a square, and a node N in the database index tree.
Output : A list of database objects satisfying the box query B.
Algorithm :

1: if N is a leaf node then
2: for each object o in N do
3: if o is inside at least one of the queries B1...Bn then
4: Add o in the result set
5: end if
6: end for
7: else
8: for each entry e in N do
9: if e overlaps with at least one of the queries B1...Bn then
10: Search e recursively.
11: end if
12: end for
13: end if

An important property of this algorithm is that the query I/O for the multiple square

box queries is exactly the same as that required for the original box query.

Theorem 4.1.2. Algorithm 1 has the same I/O cost as that of the original box query.

Proof 4.1.2. The only time algorithm 1 accesses an index node N is when the index page

overlaps with one of the sub-queries (say Bi). The sub queries do not have false positives or

false negatives (i.e. they do not have any extra query space neither do they miss any part of

the original query). Hence, the fact that N overlaps with Bi implies that N overlaps with

B. Similarly, if N overlaps with B then it must overlap with Bj for some 1 ≤ j ≤ n. Note

that N is accessed at most once even though there may be multiple Bj overlapping with N .

Hence, each node N accessed in the given algorithm will also be accessed in the traditional

box query and vice versa. Thus, the two queries have the same I/O cost.

66

Once a box query is mapped to multiple square box queries, each of the square box

queries can be transformed into corresponding range query. These range queries can then be

run using algorithm similar to algorithm 1. As this algorithm keeps multiple queries in main

memory it will have slightly higher main memory cost and CPU cost. But the similarity

in query space and index page space provides improvement in the number of page accesses

required for query execution.

4.1.2 High Dimensional Transformation

The space rotation approach discussed so far does not work directly for data with more than

2 dimensions. We instead use the concept of Disjoint Planar Rotations from the previous

chapter. Each 2-D plane of the input data space is transformed using rotation. Each box

query is also projected on 2-D planes to generate a combination of box queries. Let B be a

box query in n dimensions and let Bi,j be its projection on i-j plane. A point p = (p1, p2...pn)

satisfies the box query if its projections satisfy the projected boxes on each of the 2-D planes.

Formally,

p ∈ B ⇐⇒ p1,2 ∈ B1,2 ∩ p3,4 ∈ B3,4 . . . ∩ pn−1,n ∈ Bn−1,n

Here, pi,j denotes project of p in i− j plane.

Each projection of B is a 2-D box query which can be executed using method outlined in

the previous section. Recollect that M-tree stores one radius for each directory entry. This

radius is the radius of the data sphere represented by the page and it is calculate with respect

to all n dimensions. As our individual queries are in 2-D space, use of global radius may not

provide much pruning and thus makes the query execution extremely inefficient. We instead

67

propose a minor modification in the structure of M-tree that can overcome this inefficiency.

For each directory entry in the M-tree we also keep track of radii of the projections of the

data sphere. On a flip side this approach slightly reduces fan out of the M-tree directory

node (due to the space required to keep this extra information), but, it provides much better

pruning power, which results in lower number of page accesses.

4.2 Improvement Estimation

We now present analysis of 2-dimensional transformation that can be used to estimate per-

formance improvement due to transformation. We assume that the data is normalized in

unit cube and is indexed using M-tree using L1 distance measure. Hence, each index page

geometrically is a diamond. Further, we also assume that all the index pages have the same

radius and are uniformly distributed in the data space (i.e. probability of having an index

page centered at a random point in the space is the same irrespective of location of the

point). We compute area of the region in which the center of the index page must lie in

order to overlap with the query space. For uniformly distributed data this area can be used

to estimate the probability of overlap between an index page and a query. We begin with

analysis of 2-D queries.

4.2.1 Analysis of 2-D Queries

With reference to figure 4.2, let input box query has size l × b. The shaded region in the

figure highlights the space in which center of any index page of radius r must lie in order to

overlap with the box query. Hence the probability Pbq that a randomly selected index page

68

b

r

l

Figure 4.2: Box query analysis

r

Figure 4.3: Transformed range query analysis

will overlap with box query is,

Pbq =
Area of the shaded region

Area of the data space
(4.1)

=
lb+ 2r(l + b) + 2r2

1
(4.2)

Now consider figure 4.3 for corresponding range query. Note that as the overlapping trans-

formation does not have false positives hence the query space remains the same (rectangle of

69

size l× b). For the same size of the index pages, the center of the index page must lie in the

shaded region in the figure in order to overlap with the query space. Hence the probability

Prq that a randomly chosen index page overlaps with the query space is,

Prq =
Area of the shaded region

Area of the data space
(4.3)

=
lb+ r

√
2(l + b) + 2r2

1
(4.4)

It can be seen from equations 4.2 and 4.4 that for the given values of l, b and r, the range

query will have slightly smaller probability of overlap. Hence, the transformation is expected

to have lesser number of page accesses resulting in better query performance.

4.2.2 Analysis of High Dimensional Queries

An important characteristic of box queries is that overlapping of query space and index pages

is dimension independent. What we mean by this is, whether a query overlaps with an index

node along dimension i does not depend on their overlap along any other dimension j(j 6= i).

Hence, probability Pbq of overlap between a n dimensional box query is calculated as,

Pbq = P (Query overlaps with the index page along all the dimensions)

= P (

n
⋂

i=1

query overlaps along dimension i)

= P (

n/2
⋂

i=1

query overlaps in the projection in each 2-D plane) (4.5)

Due to dimension independence property, this can be simplified to,

70

Pbq =

n/2
∏

i=1

P
(2i−1),2i
bq (4.6)

where, P
2i−1,2i
bq is probability of overlap along dimensions 2i− 1, 2i obtained using equation

4.2.

The concept of dimension independence also applies to the transformed range queries

as the range queries in different 2-dimensional projected planes are not related. Hence,

expression for probability that a transformed range query overlaps with the index page is,

Prq =

n/2
∏

i=1

P
2i−1,2i
rq (4.7)

where, P
2i−1,2i
rq is obtained using equation 4.4. Since each term in equation 4.7 is smaller

than corresponding term in equation 4.6, we can expect Prq to be much smaller than Pbq.

4.3 Experimental Results

In this section, we present the results of applying the proposed transformation to synthetic

and real data. All the experiments are run on AMD Opteron 2.2 GHz systems running

GNU/Linux. Synthetic data containing a mixture of Gaussian clusters (with random means

and covariance matrices) are generated in 2 and 10 dimensional space. M-tree is built in

both original space and transformed space (with L1 distance metric). Box query (in original

space) and its equivalent range query (in transformed space) is run to measure the number

of disk page accesses.

We also compare performance statistics of M-tree with linear scan (i.e. data stored in

flat files without any indexing) wherever they are comparable. As suggested in [65], due to

71

sequential disk access, linear scan is 10 times faster than random disk access. Hence, we used

10% linear scan (i.e, 0.1 × Number of disk pages in a flat file) in our comparison. However,

in cases where linear scan is considerably worse than indexing, it is dropped from the graphs

for better clarity.

In all the figures we used the label BQ to denote M-tree running traditional box query,

MRQ to denote M-tree running multiple range queries and 10%L to denote linear scanning.

4.3.1 2-D Transformation

In the first set of experiments we consider 2-dimensional synthetic data. We present results

with uniform query box size (all the sides of the box are of the same length) as well as with

random query box size (sides of the box are chosen randomly). Note that, a uniform box

query is a (hyper)square and can be mapped to single range query. The concept of multiple

queries comes into play only when the box query is non-uniform.

Figure 4.4 shows the effect of database size. As per our analysis in section 4.2.1, although

we see improvement in the query performance, it is relatively low (query I/O reduction is

about 8% to 12%). But it should be noted that as the database size increases, transformation

tends to perform better and better which is very encouraging.

Figure 4.5 shows performance improvement with increasing query box size. As the box

size increases, larger and larger volume of the database is queried, hence I/O for both the

methods increases. However, it can be seen from the figure that the transformation is more

and more effective with increasing query box sizes (5% I/O reduction for box size 0.01 to

9% for box size 0.05).

In figure 4.6, we demonstrate effect of increasing database size, on box queries with

72

Figure 4.4: 2-dimensional data with varying database size

Figure 4.5: 2-dimensional data with varying box size

73

Figure 4.6: 2-dimensional data with random box size

random box sizes. In each of the experiments, box sizes were chosen randomly. However,

maximum box size was limited to limit the number of hits. It can be seen that even in this

case, as the database size increases, the transformation provides better improvement.

4.3.2 High Dimensional Transformation

We now present results of applying the proposed transformation to 10-dimensional synthetic

data. Just like the previous case, we compare the performance of our transformation by

varying database sizes and box sizes.

Figure 4.7 shows box query I/O with increasing database size. Box size was kept at

0.2 and the boxes were all uniform. It can be seen from the figure that effectiveness of

transformation increases with increasing database size. For, database with 10 million records,

it reduces query I/O by 30%.

Figure 4.8 shows effect of increasing box size. For very small box sizes, transformed

74

Figure 4.7: 10-dimensional data with varying database size

Figure 4.8: 10-dimensional data with varying box size

75

Figure 4.9: 10-dimensional data with random box size

M-tree is slightly worse than the traditional M-tree. But as box size increases, performance

gain due to to transformation increases. At very large box sizes, 10% linear scan starts

outperforming the indexing schemes. This is expected as the large boxes tend to retrieve

much larger percentage of data. It is still encouraging to see that for box size 0.3, even when

traditional M-tree performs considerably worse than linear scan, the transformed M-tree

maintains its better performance.

Figure 4.9 shows effect of running random sized box queries with increasing database

sizes. It can be seen that, traditional M-tree cannot compete with linear scan for small

database sizes, however, transformed M-tree consistently outperforms other schemes.

4.3.3 CPU Consumption

As the transformed M-tree executes multiple range queries for the same box query, it is

expected to take more CPU time than the original M-tree. Table 4.1 compares the CPU

76

Table 4.1: Comparison of CPU times

Dimensions CPU times (milli-seconds)
BQ MRQ

2 2.1 54.7
10 45.8 464.1

times for original and transformed queries for 2 and 10 dimensional databases containing 10

million records. For uniform box queries, there is exactly one range query for each box query

(ergo, CPU cost is similar). Hence, random box sizes were used for these experiments. As

expected the transformed M-tree takes much more (10X - 27X) CPU time than the traditional

one. However, in a very large database, the time saved due to reduced I/O can easily make

up for extra time lost in CPU computation. An interesting observation to note is that CPU

time comparisons are much better in 10-D data than in 2-D data. This may appear counter

intuitive at the first glance, but it should be remembered that in 10-dimensional space, the

individual radii maintained in M-tree provide a much better scope for pruning which avoids

several unnecessary box comparisons resulting in (relatively) better CPU consumption.

4.3.4 Experiments with Real Data

In this section, we present results of applying the proposed transformation on image feature

database. The database is essentially the same database used in sections 3.7 and 3.8.3. It

contains 50 million images, each with 9 features (first three moments for hue, saturation and

intensity).

Figure 4.10 shows box query I/O with increasing database size. The box size was kept at

0.2 and the boxes were all uniform. It can be seen that the transformation provides about

14% I/O reduction for the database with 10 million feature vectors. Further, the performance

77

Figure 4.10: Image database with varying database size

improvement increases with increasing database size (about 21% for 50 million).

Figure 4.11 shows effect of increasing box size for the database containing 50 million

feature vectors. Similar to our observations with synthetic data, for very small boxes the

transformed M-tree performs slightly worse than the traditional M-tree. However, as box

size increases, performance gain due to to transformation increases. For the largest box size

the I/O reduction is about 28%.

Figure 4.12 shows effect of running random box queries with increasing database sizes.

The transformed M-tree comprehensively beats the traditional M-tree providing I/O reduc-

tion of about 80% which increases with increasing database size. Queries with random box

sizes are more realistic than those with uniform box sizes in practical application. The ex-

cellent performance gain for random box queries highlights importance of transformation in

high dimensional data spaces.

78

Figure 4.11: Image database (50M) with varying box size

Figure 4.12: Image database with random box size

79

Chapter 5

Transformation In L2 Space

The transformations discussed so far apply to data in L1 space. However, Euclidean distance

(also known as L2 norm) is another equally popular distance measure used in information

retrieval systems. In this chapter we will consider the problem of applying transformation

approaches in L2. We begin the discussion with geometry of Lp range queries for various

values of p.

5.1 Shapes for higher order Lp queries

We have already introduced generic Lp norm (also known as Minkowski norm) in equation

1.1. In this section we analyze how the shapes of the range queries change with the value of

parameter p.

Figure 5.1 shows range queries in 2-dimensional Lp spaces for p = 1, 2, 3, 4, 5,∞. In each

of the queries, center of the query is fixed at origin and radius is fixed at unity. The first

observation that can be made from the figure is that Lp+1 query is a superset of Lp query.

In other words, each higher order query contains all the points in the lower order query plus

80

-1.0 1.0

1.0

-1.0
(a) Range query in L1

-1.0

-1.0

1.0

1.0

(b) Range query in L2

-1.0 1.0

1.0

-1.0
(c) Range query in L3

-1.0

-1.0

1.0

1.0

(d) Range query in L4

-1.0

-1.0

1.0

1.0

(e) Range query in L5

-1.0 1.0

1.0

-1.0
(f) Range query in L∞

Figure 5.1: Variation in the query space with increasing Minkowski parameter p

a few additional points. The second observation is that the extra points get added more

along the 45°lines. In fact, the point along the axes are the same for all the queries. Third

and the most important observation is that with increasing order the queries resemble more

and more to a square box query i.e., the query space becomes more and more squarish. As

a matter of fact, the query space corresponding to the L∞ space is exactly a square. Thus,

as the order p of the Minkowski norm increases, the range query becomes more and more

box like.

81

5.2 Mapping L2 range query to box query

As mentioned earlier, for p =∞, range query is in fact the same as the box query. Thus, in

order to map a range query in L2 to a box query in L∞ we have to come up with a mapping

that converts L2 sphere to L∞ sphere.

A theorem by Gromov [28] states that two compact metric spaces which have Gromov-

Hausdorff distance[29] zero from each other are isometric i.e., we can map spheres from one

space to those in the other such that there are neither false positives nor false negatives.

However, the curvature of Euclidean space is 0. On the other hand the curvature of the

L∞ space is negative. Hence, the Gromov-Hausdorff distance between them is non-zero

meaning they are not isometric. This essentially means that it is impossible to precisely

map spheres (or range queries) in L2 space onto spheres in L∞ space. As L∞ range queries

are geometrically similar to box queries, we conjecture that transformation from L2 range

queries to box queries may not be possible.

5.3 Approximate transformations

Since the exact transformation from L2 range query to a box query may not be possible, we

consider approximate transformations. Desired properties of an approximate transformation

are as follows :� The transformation should miss very few (ideally zero) true positives.� It have very few false positives.� The transformation should map the circular range queries to the rectangular box

queries.

82

O

r

A B

CD

Figure 5.2: False positives in a minimum bounding box query in 2-D

In the next few subsections, we discuss some of the possible approximate transformations.

We begin with a simple minimum bounding box query and then move on to more involved

transformations. We will assume 2-D space unless explicitly specified otherwise.

5.3.1 Minimum bounding box query

The simplest form of mapping between a range query and a box query is to approximate

range query using a bounding box. Although the bounding box is guaranteed to return all

the true positives, it also returns a lot of false positives. For uniformly distributed data, the

amount of false positives is proportional the area of the extra space queried by the bounding

box query.

Figure 5.2 shows the L2 range query at point O with radius r, which is approximated

by a box query �ABCD. The shaded region in figure 5.2 corresponds to the false positives.

The amount of false positives can be estimated as,

83

FP =
Area of shaded region

Area of query space

=
Area of �ABCD −Area of query space

Area of query space

=
4r2 − πr2

πr2

=
4− π

π

≈ 27.32%

As the number of dimensions increases, the percentage false positives increases exponen-

tially. Note that each false positive can potentially result in an unwarranted disk page access.

Hence, use of minimum bounding box to approximate a range query becomes inefficient with

increasing dimensions.

5.3.2 Elliptical range queries instead of circular range queries

When comparing L2 range query with a box query, it can be observed that the curvature of

boundary of the query sphere is a non-zero constant in case of range query, while it is zero

in case of a box query. Hence, it may be possible to map a range query onto a box query

by transforming the range query curve (i.e. a circle) to a curve with curvature close to zero.

consider a simple transformation, y′ = cyy and x = cxx, where 0 < cy < 1 and cx > 1. This

transformation essentially shrinks one dimension while stretching the other. An L2 circle is

then mapped to an ellipse. At first glance, it may appear that since the absolute area are

corresponding to the false positives is reduced, this transformation may have smaller false

positives. However, it should be noted that this transformation changes the distribution of

84

the points in the space. Since the index built will follow the distribution of the points, the

index pages will now have rectangular shapes instead of squares. In other words, instead

of absolute area, we should consider area of false positives relative to the area of the range

query as a true measure of index performance degradation. It can be easily shown that

relative area corresponding to the false positives remains the same as in the case of circular

query. Hence, in practice this kind of transformation may not be used.

5.3.3 Approximating range query using multiple boxes

Figure 5.3: Approximating range query using multiple box queries

Another, simple extension to the simple minimum bounding box query is to use multiple

boxes instead of a single box to approximate a range query. Figure 5.3 shows two possible

ways in which multiple boxes can be used to approximate a 2-dimensional L2 range query. In

2-dimensional space, using the second method of the diagram, we can reduce the percentage

of false positives to 16.4%. Note that, using the first method, we can increase the number

of box queries as much as we want. Figure 5.4 shows the fraction of false positives with

increasing number of boxes. Here, it is assumed that all the boxes have the same width. It

can be seen that with increasing number of boxes, the amount of false positives decreases.

85

0 20 40 60 80 100
Number of approximating box queries

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Fr

ac
tio

n
of

 fa
ls

e
po

si
tiv

es

Figure 5.4: Fraction of false positives with increasing number of boxes

However, the rate of decrease in the false positives also decreases. It can be seen from

the figure that even after using 20 boxes to approximate the query, we still have 5% false

positives. Recollect that false positives increase exponentially with increasing number of

dimensions. Further, each additional box query requires extra processing power (CPU and

main memory). This may make this approach unreasonable in high dimensional spaces.

5.3.4 Using index built in L∞ space for doing range queries in L2

space

As mentioned earlier, range query in L∞ is geometrically the same as a box query. Hence,

it may be possible use an M-tree like index (with L∞ norm as a distance measure) that is

suitable for indexing spheres and use it to implement bounding box queries (which will not

86

0,0

0, 1 1, 1

Figure 5.5: Transformation in equations 5.1 and 5.2 in first quadrant

be range queries in L∞ norm). However, we empirically observed that M-Tree is not very

effective for L∞ distance measure and performance of M-trees running range query in L2

space is significantly better than M-tree running range query in L∞ space. As mentioned

earlier, the number of false positives in a bounding box query increase exponentially and it is

possible that even a better index structure is unable to counter the ill-effects of large amount

of false positives. Further, Performance of an M-tree depends on how well it can cluster the

points within a subtree. As highlighted in [3] L2 might be a better distance measure than

L∞ to cluster points. As a result, using L∞ range query to approximate L2 range query

may not be very effective in disk based database systems.

5.3.5 Other possible transformations in L2 space

A good transformation from a range query to a box query will transform the curve cor-

responding to the range query such that it closely follows that corresponding to the box

query. Motivated by this fact, it may be possible to design a transformation which follows

the general form,

87

0,0

0, 1 1, 1

Figure 5.6: Query transformation corresponding to equations
5.1 and 5.2

y′ = c1x
n + y (5.1)

x′ = x− c2y
′ (5.2)

For n = 1, this transformation maps a circular range query to an ellipse inclined at angle

with the x-axis. The shapes corresponding to higher order transformations (n > 1) are more

complex. However, these transformations suffer from two major drawbacks� By carefully adjusting parameters c1 and c2, it is possible to reduce the false positive

percentage to about 5% in first and third quadrant. However, this saving comes at an

expense of higher false positives in second and fourth quadrant.

88

� These transformations are query sensitive. In other words, not all queries have the same

degree of false positive reduction and one may come up with a particularly pathological

cases of queries in which the transformation may perform worse than simple bounding

box queries.

Based on our extensive study of various possible transformations for Lp queries, it ap-

pears that for disk based index application it may not be possible to come up with any exact

or approximate approach that can provide better performance than the original space range

query. However, in main memory database applications the focus is on reduction in CPU

utilization. There has been a lot of promising work on using vantage point based transfor-

mations that map range queries to box queries and is the subject of the next chapter.

89

Chapter 6

Space transformation using vantage

points

Over the last decade or so, there has been a lot of advancement in main memory tech-

nologies and computing systems with several gigabytes of main memory are quite common.

This makes it possible to keep even large databases completely in main memory. Hence,

efficient searching techniques for main memory databases have become important in many

applications. Unlike disk based databases where the main goal of searching is to minimize

disk page accesses, in main memory databases the primary focus is to reduce the number of

complex distance computations. For metric spaces, indexing based on vantage points is one

of the popular approaches for implementing range queries. The basic idea behind vantage

point based transformation is to express each data point (or feature vector) in terms of its

distances from the precomputed set of points called vantage points (also known as reference

points or pivots). Range query in original space is then implemented as a minimum bounding

box query in the transformed space (also known as vantage space or pivot space). Selection

90

of vantage points is a critical step in this scheme. However, to the best of our knowledge

all the existing work in this area focuses on using data points as vantage points. The main

motivation behind this strategy is that vantage points selected from the dataset will closely

follow the properties of the data distribution. However, this strategy also has some serious

drawbacks.� Time complexity of vantage point selection algorithm is directly dependent on the size

of the database. This can be a serious problem when selecting vantage points in a large

database.� This requires the database to be static. All the data is required to be available at the

time of selecting the vantage points.� You need to reselect the vantage point for each different database even though it may

have the same properties (number of dimensions, distribution etc.).

We address these issues by proposing a novel scheme for vantage point selection that is

independent of the data. The only requirement of the proposed scheme is that data space

should be bounded. In other words, each dimension of a feature vector can take a real value

within a certain range. Without loss of generality, we assume that the data is bounded in

the unit (hyper)cube. The proposed algorithm depends only on the dimensionality of the

space and the number of vantage points. Vantage point selection being independent of the

data, allows dynamic insertions, deletions and updates to the database without having to

change the vantage points.

91

6.1 Vantage point transformation basics

We begin the discussion by first formally presenting data transformation and query transfor-

mation using vantage points and then move on to the various theories that drive our vantage

point selection algorithm. We will use euclidean distance throughout this discussion unless

explicitly specified otherwise.

6.1.1 Data transformation

As always, we denote the set of data points in n dimensional euclidean space as D. Let

p = (p1, p2, . . . pn) ∈ D be a feature vector representing a particular object. Let V =

{v1,v2, . . .vm} be a set of m vantage points. Each point p is then transformed to point p̂

such that, p̂ = (p̂1, p̂2, . . . , p̂m) where, p̂i is distance of p from the vantage point vi, i.e.,

p̂i = d(p,vi)

= L2(p,vi) since euclidean distance is used as the distance measure

Figure 6.1 shows how the points in 2-D space are mapped in the transformed space. Here,

we assume that the number of vantage points m = 2. Further, we use v1 = (0, 0) and

v2 = (0, 1) as the two vantage points. This transformation, in general, is not unique, i.e.,

multiple points in the original space can map into the same point in the transformed space.

As an example, consider v1 = (0, 0) and v2 = (1, 1) as vantage points and p = (0.4, 0.6)

and q = (0.6, 0.4) as two data points. It can be easily verified that p̂ = q̂ = (0.72, 0.72).

We define this event as a “collision”. In the later sections, we propose heuristics aimed at

eliminating or reducing the number of collisions.

92

Data points in original space Data points in transformed space

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6.1: Transformation of points in 2-D space

6.1.2 Query transformation

In a vantage point based index, a range query in the original space is mapped into a bounding

box query in the transformed space. We illustrate this mapping using the example in figure

6.2. Consider a range query (in euclidean distance) at a point (0.2, 0.7) with radius 0.1. All

the points inside the circle of radius 0.1 satisfy the query. Consider the same two vantage

points v1 = (0, 0) and v2 = (0, 1) for this example. The center of the query then maps

to (0.73, 0.36) in the transformed space. All the points inside the query space (circle) map

roughly to the shaded region in the transformed space. With respect to v1, the minimum

and maximum distances of any point in the query are 0.63 (dx1) and 0.83 (dx2) respectively.

Similarly, with respect to v2, the minimum and maximum distances of any point in the

query are 0.26 (dy1) and 0.46 (dy2) respectively. As can be seen from the illustration, the

minimum bounding box query ([0.63, 0.83], [0.26, 0.46]) in the transformed space contains all

the points of the range query in the original space. Thus, a range query is now mapped

93

dx

dx

dy

dy

dx

dx

dy dy

Range query in original space Box query in transformed space

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

1

1

2

2
2

2

1

1

Figure 6.2: Mapping range query to box query through space transformation

to a minimum bounding box query. Note that the mapping is not exact in the sense that

the minimum bounding box query has many more points than those inside the range query.

As we will see later, the amount of false positives depends on the relative position of the

vantage points. In fact, if one of the vantage points is the query center, then the box query

is the exact mapping of the range query with no false positives. However, the main point

here is that the box query is always a superset of the range query. At a first glance, it

may appear that the amount of false positives in the transformed space is much more than

that in the bounding box in the original space. However, it should be remembered that by

increasing the number of vantage points, we can reduce the number of false positives. Figure

6.3a shows visualization of a box query using two vantage points in the original space. The

shaded region corresponds to the amount of false positives. Figure 6.3b shows visualization

of a box query using three vantage points. As can be seen, adding one more vantage point

significantly reduces the amount of false positives. This potential for false positive reduction

94

O

P Q

R
S

r

(a) Box query with 2 vantage points

O

P
Q

R
S

r

(b) Box query with 3 vantage points

Figure 6.3: Reduction in false positives with increasing number of vantage points

makes box queries using vantage points particularly attractive over bounding box queries in

the original space.

6.2 Selection of vantage points in 2-D space

In this section, we develop some theorems that will be the basis for vantage point selection in

2-D space. Number of collisions and the number of false positives are some of the important

aspects of vantage point selection that need attention. We will consider each of them one by

one.

6.2.1 Minimizing Collisions

Following theorem gives vantage points that avoid mapping multiple points in the original

space into the same point in the transformed space, thus avoiding collisions. This is a one

to one functional mapping.

95

Theorem 6.2.1. Assuming that all the data points are in the unit square, if the two vantage

points lie on an axis of the 2-D space, then the resulting vantage point based transformation

function is one to one.

Proof 6.2.1. We prove the theorem when both the vantage points are on the y-axis. The

proof for vantage points on x-axis is similar. Let (0, y1) and (0, y2) be the two vantage points.

Let (x, y) be a point in the original space whose vantage point based functional mapping is

(d1, d2). Thus, the distance of the point (x, y) from the vantage point (0, y1) is d1 and that

from the vantage point (0, y2) is d2. In order to prove that this mapping is collision free, we

show that, given (d1, d2), we can uniquely calculate the point (x, y). Hence, we have to find

the solutions to the following two equations :

x2 + (y − y1)
2 = d21 (6.1)

x2 + (y − y2)
2 = d22 (6.2)

Subtracting equation 6.2 from equation 6.1 we get,

∴ −2yy1 + y21 + 2yy2 − y22 = d21 − d22

∴ 2y(y2 − y1) = d21 − d22 − y21 + y22

y =
d21 − d22 − y21 + y22

2(y2 − y1)

⇒ x = ±
√

d21 − (y − y1)2 (6.3)

From equation 6.3, whenever x is real, one of the two values of x is negative. As all the

data are in the first quadrant of the space, there remains exactly one valid solution for the

96

O

A

B

C

P Q

RS

P'

Q'

R'S'

D

T

Figure 6.4: Minimizing the false positives

equations 6.1 and 6.2. Hence, given (d1, d2), one can always calculate a unique corresponding

point (x, y), in other words, the transformation is collision-free.

6.2.2 Reduction of false positives

As described in section 6.1, vantage point based approach has to handle false positives. The

amount of false positives is dependent on the angle subscribed by the two vantage points at

the query center. As this angle gets closer to π/2, the false positive percentage gets smaller.

We will justify this statement by starting with two vantage points that make an angle of

π/2 at the query center and then showing that the number of false positives increases as we

move (everywhere in the space) one of the vantage points such that the angle becomes either

less or more than π/2. Figure 6.4 shows a query with center at O. The arcs are created

based on the nearest and the farthest distance of any point within the query space from the

vantage points as discussed in section 6.1. As shown in the figure, arcs SAR and PQ′Q

correspond to minimum and maximum distances from the first vantage point (i.e., v1 lying

on ray OA). Arcs PBS and QTR correspond to minimum and maximum distances from

97

the second vantage point (i.e., v2 lying on ray OB). Angle subscribed by the vantage points

v1 and v2 at the query center O is π/2. In this case, the query space is the squarish region

bounded by PQRS. Now assume that the second vantage point v2 moves such that it now

lies along ray OC and angle subscribed by the two vantage points at O is now slightly less

than π/2. After this change, the query region is the rhomboidal shape bounded by P ′Q′R′S′.

Note that the two regions P ′PD and R′RT got added (shaded gray) to the query space and

the two regions SS′D and Q′QT got removed (shaded black) from the query space. We

observe that whenever, r << d1, d2, the sum of the areas P ′PD and RR′T is greater than

the sum of the areas QQ′T and SS′D. Hence, the amount of false positives increases. The

following theorem formally states and proves the limiting case when d1, d2 →∞:

Theorem 6.2.2. Let v1 and v2 be two vantage points and q be a query center such that

d(v1, q) = d1 and d(v2, q) = d2. Let θ be the angle subscribed by points v1 and v2 at the

query center q. As d1, d2 →∞ the amount of false positives E(θ) is minimum when θ = π/2.

l

q

to vantage point v1 to vantage point v2

A B

C D

E 2r

Figure 6.5: Proof of theorem 6.2.2

Proof 6.2.2. We first derive an expression for percentage of false positives in terms of angle

θ. Since, d1, d2 → θ the arcs enclosing the query circle can be considered to be straight lines.

98

Hence, the circle is effectively enclosed in two sets of parallel lines (i.e. a parallelogram).

Geometrical properties of circles can be used to prove that the parallelogram is in fact a

rhombus. So we are approximating the circular query space with a rhomboidal shape. As

shown in the figure, the distance between the parallel lines (i.e. height of the rhombus) is

equal to the diameter of the circle = 2r. Also, internal angles of the rhombus are θ and

(π − θ). Based of this information, it can be seen that,

sin θ =
2r

l
where, l is the side of the rhombus

⇒ l =
2r

sin θ

Hence, area of the rhombus is,

Arhombus = 2rl

=
4r2

sin2 θ

For uniformly distributed data, the amount of false positives FP can be estimated as,

FP =
Arhombus − Acircle

Acircle

=
4

π sin2 θ
− 1 (6.4)

It can be seen that equation 6.4 attains the minimum value for θ = π/2 i.e. when the distance

vector OA and OB are perpendicular. Theorem 6.2.2 follows directly from equation 6.4.

Because points lying on the axis gives unique mapping and π/2 condition gives less false

positive, we use these two criteria as the basis of our vantage point selection technique.

99

6.2.3 Corner points as vantage points

Based on theorem 6.2.1, we select the vantage points on an axis of the space. The following

proposition highlights an important property of the angles subscribed by the vantage points

on y-axis at the query point.

Proposition 6.2.1. As the two vantage points on the y-axis move farther from each other

the angle subscribed by these two points at a query point increases.

Proof follows directly from the figure 6.6.

A

A'

B

B'
Q

Figure 6.6: Angle subscribed by AA′ at Q is larger than the one by BB′

When the two vantage points are infinitesimally close to each other, any point in the

space will form a zero degree angle with the vantage points. As the two vantage points move

away from each other (refer figure 6.6), the angles they form at any query point in the space

gradually increase. Hence the expected angle also increases as the vantage points move away

from each other.

Our next theorem proves that the number of points, which has angles with respect to

two vantage points closer to π/2, is maximum when the vantage points are two adjacent

corner points in the space (i.e., two extreme points on an axis). We state the theorem below

100

for corner points along the y-axis (i.e., (0, 0) and (0, 1)). Theorems and the corresponding

proofs for any one of the other three pairs of adjacent corner points are similar.

Proposition 6.2.2. Let (0, y) and (0, y+ y′) be the two vantage points on the y-axis. Then

the number of query points, that can subscribe angles in the range [π/2 − δθ, π/2 + δθ] and

0 ≤ δθ ≤ π/2 with the two vantage points, increases with increasing y′.

O (0,0)

A (0, 1)

B (1, 0)

C

C'

D

D'

E

F

G

r

R

dRdr

Figure 6.7: Proof of theorem 6.2.2

Justification. We consider two sets of candidate vantage points {D,D′} and {C,C ′} as

shown in figure 6.7. Without loss of generality, we assume that G = (0, 0.5) is the mid-point

of both DD′ and CC ′. The larger semi-circle (with radius R) corresponds to the locus of

points subscribing an angle π/2 with the vantage points C,C ′ and the smaller semi-circle

(with radius r) corresponds to the points making an angle π/2 with the vantage points D,D′.

Due to our assumption that G is the mid point, the two semi-circles are concentric. Now

connect the center G with any point F on the larger semi-circle. This line segment intersects

101

smaller semi-circle at E. ∠CFC ′ = ∠DED′ = π/2 and ∠CGC ′ = ∠DGD′ = π. Angle

subscribed by a query point lying along segment FG with respect to vantage points C,C ′

increases from π/2 to π as the point moves from F toward G. Similarly, angle subscribed by

a query point lying along segment EG with respect to vantage points D,D′ increases from

π/2 to π as the point moves from E toward G. Since length(FG) > length(EG), the rate at

which angles increase along ray EG (with respect the points D,D′) for smaller semi-circle is

larger than the rate at which angles increase along ray FG (with respect to C,C ′. Consider

a small strip around larger semi-circle which corresponds to the points making angles in the

range [π/2, π/2+δθ] with respect to C,C ′. Draw a similar strip along the smaller semi-circle

for angles with respect to D,D′. Due to smaller rate of increase in angles, for a given δθ,

dR > dr, i.e., the strip will be thicker for larger semi-circle than corresponding strip for a

smaller semi-circle. Because the circumference of the semi-circles with radius R is bigger

than the circumference of the semi-circle with radius r, the area of the strip around larger

semi-circle is larger than the corresponding strip around smaller semi-circle. For uniformly

distributed data, this area is directly proportional to the number of points that can make

angles [π/2, π/2 + δθ].

Now consider those points that are lying outside the larger semi-circle. Three facts can

be stated for these points.� They always subscribe an angle less than π/2 with either of the two vantage point sets.� For a given point in this space, the angle subscribed with respect to CC ′ is larger than

that subscribed with respect to DD′.� The area of the space outside of the bigger semi-circle is larger than the area of the

space inside of the semi-circle as long as the points CC ′ are within the corner points.

102

Based on the above three points we conclude that for points outside the bigger semicircle,

more of these points will subscribe angles with respect to CC ′ that are closer to π/2 than

those angles with respect to DD′.

Following theorem proves that the expected angle is π/2 when the two vantage points

selected are the corner points.

Theorem 6.2.3. If v1 = (0, 0) and v2 = (0, 1) are the two vantage points then the expected

value of the angle at a query point subscribed by the two vantage points is π/2.

(0, 1)

(0, 0)

(x, y)

1-y

y

x
θ1

θ2

φ

Figure 6.8: Calculation of expected angle subscribed by a point

Proof 6.2.3. As shown in the figure, let (x, y) be a random point in the unit square. The

angle φ subscribed by this point with respect to the two vantage points can be calculated as

103

the sum of the two angles θ1 and θ2.

φ = θ1 + θ2 = tan−1
(

1− y

x

)

+ tan−1
(y

x

)

∴ E(φ) =

∫ 1
0

∫ 1
0 φ dx dy

∫ 1
0

∫ 1
0 dx dy

=

∫ 1

0

∫ 1

0
tan−1

(

1− y

x

)

+ tan−1
(y

x

)

dx dy

=
1

2

∫ 1

0

[

y log

(

1 +
1

y2

)

− (y − 1) log

(

1 +
1

(y − 1)2

)

+ 2 tan−1(1− y) + 2 tan−1(y)
]

dy

= π/2

Theorem 6.2.3 combined with proposition 6.2.1 shows that as the vantage points move

away from each other, expected angle of a query point increases. Theorem 6.2.2 shows, that

the number of query points forming an angle close to π/2 increases as the vantage point

move father apart. Based on all three results, we can conclude that when the vantage points

are close to each other, the angles formed by the vantage points with the query points are

skewed toward zero degrees with mean less than π/2. On the other hand when the vantage

points are end points of the y-axis, the angles are more or less balanced around the mean of

π/2. We propose the following conjecture that captures these ideas.

Conjecture 6.2.4. As the vantage points on y-axis move farther and farther from each

other, the second moment about π/2 , E[(θ − π/2)2], of the angles decreases.

In other words, as the vantage points on y-axis move farther and farther from each

other, more and more angles come closer to π/2. Tables 6.1 and 6.2 show empirical results

obtained (using 10,000 random query points) for various possible vantage points on y-axis.

104

For ease of interpretation, the values are given in degrees instead of radians. Labels “Mean”

and “Moment90” are used to refer to average angle and second moment of angles about

90° respectively. In table 6.1, v1 is stationary and v2 is gradually moves away from v1.

In table 6.2, both the points are initially close to the center of the axis and move gradually

away from each other. Empirical results in these tables justify the conjecture. Based on the

statements of section 6.2.2, this directly translates to lesser false positive percentage. All

the theorems and the conjecture presented so far will provide some intuitive basis for our

vantage point selection algorithm in higher dimensions.

Table 6.1: Angle statistics for various vantage points on y-axis

v1 v2 Mean Moment90
(0, 0) (0, 0.1) 7.31 6947.03
(0, 0) (0, 0.2) 15.78 5834.77
(0, 0) (0, 0.3) 25.12 4812.36
(0, 0) (0, 0.4) 34.85 3898.39
(0, 0) (0, 0.5) 44.62 3110.59
(0, 0) (0, 0.6) 54.47 2427.74
(0, 0) (0, 0.7) 64.39 1893.86
(0, 0) (0, 0.8) 73.78 1506.00
(0, 0) (0, 0.9) 82.42 1271.09
(0, 0) (0, 1.0) 90.06 1191.51

Table 6.2: Angle statistics for various vantage points on y-axis

v1 v2 Mean Moment90
(0, 0.45) (0, 0.55) 10.02 6526.42
(0, 0.4) (0, 0.6) 19.91 5256.3
(0, 0.35) (0, 0.65) 29.71 4217.90
(0, 0.3) (0, 0.7) 39.38 3366.15
(0, 0.25) (0, 0.75) 48.85 2675.91
(0, 0.2) (0, 0.8) 58.06 2137.62
(0, 0.15) (0, 0.85) 66.97 1731.64
(0, 0.1) (0, 0.9) 75.52 1449.36
(0, 0.05) (0, 0.95) 83.52 1285.47
(0, 0) (0, 1.0) 90.63 1244.09

105

6.2.4 Choosing more than two vantage points

The discussion so far focuses on choice of first two vantage points. But it is possible to use

more than two vantage points. An apparent disadvantage of this is the increased dimen-

sionality (and the memory requirement) of the index. However, increasing vantage points

also decreases false positives and thus decreases the number of distance computations. In

2-D space, there are four corner points. Once the first two vantage points (i.e. (0, 0) and

(0, 1) are chosen, the other two corner points can be chosen in any order as the third and the

fourth vantage points. Our experiments show that the order does not make any difference.

The figure 6.9 shows the effect of increasing the number of vantage points. As is seen from

the figure, using 3 or 4 vantage points provide slightly better results.

Figure 6.9: Effect of increasing the number of vantage points

6.2.5 Experimental results with 2D data

Here, we present some preliminary experimental results using the proposed heuristics for

selecting vantage points. Two dimensional uniformly distributed synthetic data is used for

106

these experiments. We use 2 and 3 vantage points for each of the experiments. Labels CP-2

and CP-3 refer to corner points method with two and three vantage points, respectively.

Labels SC-2 and SC-3 refer to spacing correlation based method [62] while labels RND-2

and RND-3 refers to random vantage points. Figure 6.10 shows effect of increasing database

size while the figure 6.11 shows the effect of increasing query radius. It can be seen that

corner point based approach consistently provides better results. Further, increasing the

number of vantage points also decreases the distance computations further. This highlights

effectiveness of the proposed scheme in practice. More results comparing our methods with

others for several real and synthetic databases are given in section 6.4

Figure 6.10: Effect of increasing database size

107

Figure 6.11: Effect of increasing query radius

6.3 Selection of vantage points in higher dimensional

spaces

We now extend the theories developed so far for higher dimensional data spaces. As shown in

figure 6.3, in 2-D space, each additional vantage point reduces more false positives. The space

bounds corresponding to each vantage points are arcs of two concentric circles in 2-D. In

higher dimensions however, the space bounds are in fact concentric hyper-spherical surfaces.

This makes analysis of higher dimensional spaces more challenging. In the following sections,

we demonstrate that the concept of corner points indeed works even for higher dimensions.

We also extend the heuristics in 2-D spaces to guide the choice of vantage points in higher

dimensional spaces.

108

6.3.1 Effectiveness of data independent vantage points

In this section, we demonstrate the effectiveness of corner point approach for selecting data

independent vantage points. Although data independent vantage points may overcome some

of the important limitations of the data dependent method, they are useful if and only

if they can provide comparable (or better) performance in terms of the number of distance

calculations. Van Leuken et. al. [62] have proposed two metrics namely spacing variance and

pairwise distance correlation for evaluating the goodness of a set of data points as vantage

points. Spacing between two consecutive (with respect to distance from vantage point v)

points p and q is d(q,v) − d(p,v). Let µ be the average spacing. The spacing variance is

formally defined as,

σ2sp =
1

N − 1

∑

p∈D, q∈D
[(d(q,v)− d(p,v))− µ]2

where, N is the number of points in the database. Distance correlation is the correlation

between two sequences of distances where each sequence consists of the distances of the data

points from a vantage point. Formally let d̂i,1, d̂i,2 . . . , d̂i,N be distances of N points from

vantage point vi then distance correlation for vantage points vi and vj is,

C(vi,vj) =

N
∑

k=1

(d̂i,k.d̂j,k)−
N
∑

k=1

d̂i,k

N
∑

k=1

d̂j,k

√

√

√

√N

N
∑

k=1

d̂2i,k − (

N
∑

k=1

d̂i,k)
2

√

√

√

√N

N
∑

k=1

d̂2j,k − (

N
∑

k=1

d̂j,k)
2

They propose that choosing vantage points with lower spacing variance ensures that the

database objects are uniformly distributed in the transformed space. Choosing vantage

109

Table 6.3: Average Spacing Standard Deviation for some datasets

Dataset Type σspfor DP σsp for CP

Synthetic Uniform 0.00093 0.00033
Weather Data 0.00022 0.00018
Audio feature data 0.00027 0.00019

Table 6.4: Top 3 correlation coefficients for some datasets

Dataset Type Corr-coeff. for DP Corr-coeff. for CP

Synthetic Uniform 0.55, 0.51, 0.43 0.42, 0.32, 0.32
Weather Data 0.99, 0.98, 0.98 0.94, 0.90, 0.86
Audio feature data 0.97, 0.87, 0.81 0.84, 0.75, 0.73

points which have lower distance correlation guarantees that no vantage point is redundant.

We perform an empirical study in which vantage points are selected as a random sample of

data points and as a random sample of corner points (i.e., extreme points in each axis of

the space). We then compare the two methods in terms of standard deviation of spacing

and distance correlation coefficients. Tables 6.3 and 6.4 demonstrate our findings. In the

tables, label DP corresponds to using Data Points as vantage points and the label CP

corresponds to using Corner Points as vantage points. We used one synthetic data set of

uniformly distributed points and two real datasets (more description about the datasets is

given in section 6.4). Table 6.3 shows the average of the standard deviations of the distances

over all vantage points for the two methods. It can be seen that for all three datasets,

using corner points as vantage points gives much smaller standard deviation than using data

points as vantage point. Table 6.4 shows the top 3 correlation coefficients. It can be seen

that corner points approach consistently results in lower correlation coefficients. We will

use more effective heuristics for choosing the vantage points for both methods in the next

section. These results clearly suggest that corner points may be a better choice for vantage

points.

110

The main challenge in using corner points as data independent vantage points is that

different data may have different distributions. Hence, in order to choose a data indepen-

dent set of vantage points, we need to ensure that it can provide low spacing variance and

low distance correlation, irrespective of the data that are being indexed. In the following

subsections, we develop heuristics that focus on these objectives.

6.3.2 Minimum Distance Variance

The measures proposed by Van Leuken et al. are data dependent, i.e., one can evaluate

goodness of a set of vantage points only with respect to the data that are to be indexed.

However, for data independent choice of vantage point selection one can no longer use any

information of the dataset. The key idea is to ensure that the vantage points are spread

uniformly throughout the space. That will guarantee that each vantage point gets a view of

the dataset from a different perspective thus resulting in lower distance correlation. We use

variance of the pairwise-distance among vantage points as the measure of spread of vantage

points. If the vantage points are spread uniformly in the space then their distance from each

other will be more or less the same. In other words, the pairwise-distance variance will be

minimum. Minimizing pairwise distance variance alone may not be sufficient to ensure low

correlation among the vantage points. As mentioned in [16, 62], it is important that the

vantage points are neither too close nor too far from each other. We do not want to end

up with vantage points which are all at the distance 1 (minimum) or at the distance
√
n

(maximum). Further, the number of such points which are at these distances are small. So

as the number of vantage points increases, we will invariably be forced to choose the points

that result in higher pairwise-distance variance. We focus on choosing vantage points that

111

Table 6.5: Average pairwise distance between corner points

#Dimensions (n)
√

n
2 Avg. distance % difference

2 1.00 0.85 14.64%
4 1.41 1.34 5.36%
6 1.73 1.68 2.82%
8 2.00 1.96 1.88%
10 2.24 2.20 1.42%

are all at a distance of
√

n
2 with each other. This is based on the fact that average of the

distances from a corner point to all other corner points is very close to
√n

2 . This is verified

by the result given in Table 6.5 which compares average distance between corner points in

n dimensional space with
√n

2 . It can be seen that as the number of dimensions increases,

the two values converge. Following section provides a heuristic to create a set of vantage

points that minimizes the distance variance.

6.3.2.1 A heuristic for selecting vantage points

We can get a good set of vantage points by starting with corner points that are at a distance

√n
2 , and repeatedly adding points in such a way that the pairwise distance variance is

as small as possible. The heuristic algorithm for choosing vantage points is presented in

Algorithm 2. We begin with origin as the first vantage point. The second vantage point is

obtained by flipping half the dimensions of origin to 1. This guarantees that the initial set of

vantage points is always at the distance of
√n

2 . In each iteration, we go through each of the

corner points (that are not yet selected as vantage point) and find the minimum pairwise-

distance variance if that point is added to the set of vantage points (in the algorithm, the

function GetDistanceVariance() returns the pairwise-distance variance of a set of points).

The point whose addition results in the smallest pairwise-distance variance is chosen as the

112

next vantage point. We continue the process until the desired number of vantage points are

obtained. Note that our algorithm is greedy in the sense that at each step it chooses the

current best point. However, it may not result in a vantage point set which has globally

minimum pairwise-distance variance. Another important point to note is that even though

our algorithm begins with origin as the first point, one may begin with any corner point as

the first vantage point.

Algorithm 2 Generate m vantage points for n dimensional unit hypercube

Input: Number of dimensions n and number of vantage points m.
Output: A set of m vantage points all of which are at a distance of

√n
2 from each other.

Algorithm

1: Vantage point set V ← φ
2: Add origin to vantage point set.

V = V ∪ {a string of n 0s}
3: Next vantage point is obtained by flipping first n/2 dimensions.

V = V ∪ {a string of n/2 1s followed by n/2 0s}
4: for i = 3 to m do
5: minDistVariance ←∞, nextPoint ← φ
6: for each corner point p not yet selected do
7: Vtemp = V ∪ {p}
8: distVariance = GetDistanceVariance(Vtemp)
9: if distVariance < minDistVariance then
10: minDistVariance = distVariance
11: nextPoint = {p}
12: end if
13: end for
14: V = V ∪ nextPoint
15: end for
16: return V

The number of corner points in an n dimensional space is 2n. Hence, the for-loop in step 6

in the algorithm has complexity of O(2n). This loop is repeated (m−2) times (due to the for-

loop in step 4). Step 8 of the algorithm can be implemented in an incremental fashion such

that it runs in O(m) time. Thus, the overall complexity of this algorithm is O(m(2n +m)).

Thus, the time complexity of the algorithm is exponential in the number of dimensions and

113

polynomial in the number of vantage points. The exponential time complexity may make

the algorithm seem undesirable when the number of dimensions is very high. However, we

would like to highlight that this algorithm needs to be run exactly once for each value of

n. Once the set of vantage points (essentially the order in which corner points are chosen

as vantage points) is established, the set can be reused for any other application. We will

revisit this issue of complexity later in this chapter.

6.3.3 Index structure and query algorithm

We now present the index structure and the query algorithm used for our experiments. A

standard KD-tree is used to index the transformed feature vectors. A set of vantage points is

first generated before beginning to construct the index. For each feature vector, we transform

it by using the distances from the vantage points and then insert the transformed feature

vector into the KD-tree.

For a range query with query center at point o and radius r, we first derive the transformed

query center ô = (ô1, ô2, , . . . , ôm). The corresponding bounding box query is then computed

as ([ô1− r, ô1+ r], [ô2− r, ô2+ r], . . . , [ôm− r, ôm+ r]). The box query is executed using the

standard KD-tree box query execution algorithm [9]. For each node of the KD-tree satisfying

the box query, its actual distance is computed to eliminate all the false positives.

6.4 Experimental results

In this section we present experimental results demonstrating effectiveness of the vantage

points generated by the proposed vantage point generation scheme. We begin with detailed

description of the experimental set-up and the databases used.

114

6.4.1 Experimental set-up and datasets used

We use three synthetic databases each with different distribution and six real databases

each coming from a different application domain. The first synthetic database contains

10-dimensional uniformly distributed data. The second synthetic database contains 10-

dimensional skewed data which follows exponential distribution. Our third synthetic database

is a 10-dimensional data containing a mixture of Gaussian clusters with random means and

covariance matrices.

We use two 2 dimensional and four high dimensional real databases for our testing. The

first 2-D database is a GIS database which consists of coordinate points obtained through

GPS. The second 2-D database comes from the field of computational fluid dynamics. It con-

sists of collection of points which are used to model the air flows over and around aerospace

vehicle [46, 48]. The first high dimensional real database is the same as the one used for

experiments in previous chapters (sections 3.7, 3.8.3 and 4.3.4). It consists of image feature

vector data. For each image, first three moments for hue, saturation and intensity are used

as the image feature vector (similar to the features used in [59]). Thus, each data point

is a 9-dimensional feature vector. The second real database contains 12-dimensional music

feature vectors [10]. Each feature vector is essentially a 12 dimensional timbre average of

the music sequence. Our third real database contains human speech feature vectors. Each

speech segment is divided into a number of windows of equal width. For each segment, 8 fea-

tures such as mean frequency, percentage silence etc. are calculated. The last real database

contains 12-dimensional weather information [1] such as average temperature, pressure, wind

speeds.

All the experiments are run on 2.7 GHz quad-core ((512KB cache) machines running

115

Linux. For all the experiments, we compare our method (labeled CP in graphs) with the

spacing-correlation based scheme proposed by Van Leuken et al. [62] (labeled SC in the

graph) and with random vantage points (labeled RND in the graph). All three methods use

KD-tree (implemented in C++) for indexing the data in the transformed space.

For each of the methods, we measure the number of distance computations with increasing

database size and query radius. Average performance of 100 random queries is used for

comparison. As random vantage point method (RND) and spacing correlation based method

(SC) do not provide a deterministic set of vantage points, the performance metrics of these

methods are not deterministic. Hence, we use average of 10 runs of each experiment to

measure the performance. Unless specified otherwise we use 6 vantage points for all the

higher dimensional databases and 2 vantage points for 2-D databases. Database sizes were

set to 500k for most of the databases except GIS database (80k), fluid dynamics database

(200k), weather database (300k) and speech database (50k).

We begin with the comparison of the time required to generate vantage points using our

scheme and the one proposed in [62].

6.4.2 Time comparisons for generating vantage points

Data dependent method for vantage point generation use various properties of the data

to choose the best set of vantage points. Hence, as the database size increases, the time

required to generate the vantage points increases. This fact is evident from the graphs in

figure 6.12. The figure shows generation times for CP and SC with increasing database size.

As the behavior is more or less similar for all the databases, we only show the results for

two synthetic databases and two real databases. The vantage point generation time for the

116

(a) Uniform synthetic data (b) Clustered synthetic data

(c) Audio feature data (d) Image feature data

Figure 6.12: Effect of database size on time to generate vantage points

proposed method is few milliseconds in most of the cases.

6.4.3 Range queries in synthetic databases

In this section, we compare performance of the three methods (CP, SC and RND) when

applied to the different synthetic databases described earlier. We begin with the effect of

increasing database size.

117

(a) Uniform synthetic data (b) Skewed synthetic data

(c) Clustered synthetic data

Figure 6.13: Effect of database size on the number of distance computations

6.4.3.1 Effect of database size

For this set of experiments, database size was increased from 100k to 500k points. Query

radius was set to 0.25 for uniform database, 0.05 for skewed data and 0.15 for clustered data.

The value of query radius was chosen such that a reasonable number of hits are obtained for

each database size. It can be seen from the figure 6.13 that as the database size increases

the number of distance computations increases for all the methods. However, as can be seen

from the figure, the number of distance computations for CP is consistently less than the

118

other two methods. Further, the rate of increase in the number of distance computations is

also lower. This makes corner point method (CP) particularly useful in large databases.

6.4.3.2 Effect of query radius

For these experiments, database size was fixed at 500k. The number of vantage points

was fixed at 6 as in the previous experiments. As the query radius increases, the query

space(volume) increases. In fact, the increase in the query space is exponential in the num-

ber of dimensions. If the query is too big then none of the indexing scheme is effective as a

(a) Uniform synthetic data (b) Skewed synthetic data

(c) Clustered synthetic data

Figure 6.14: Effect of query radius on the number of distance computations

119

(a) Uniform synthetic data (b) Skewed synthetic data

(c) Clustered synthetic data

Figure 6.15: Effect of the number of vantage points on the number of distance computations

considerable fraction of the data is retrieved. As shown in the graphs in figure 6.14, with in-

creasing query radius, the proposed data-independent-method, CP, consistently outperforms

the other two.

6.4.3.3 Effect of number of vantage points

For these experiments, database size and query radius were fixed. The number of vantage

points is increased from 6 to 14 in steps of 2 for each of the methods. Query radii are same

as the ones used in section 6.4.3.1. As expected, increasing the number of vantage reduces

120

the number of distance computations. However, the degree of effectiveness of vantage points

diminishes with increasing number of vantage points.

6.4.4 Range queries in real databases

We now present result of applying the proposed scheme for real databases. As explained

earlier, we use four real databases from different application domains for these experiments.

We begin with the performance comparison of the methods with increasing database size.

6.4.4.1 Effect of database size

In this set of experiments, query radius and the number of vantage points are kept constant

and database size is increased. Query radius was set to 0.05 for audio database, 0.025 for

image database, 0.03 for weather database and 0.015 for speech database. Figure 6.16 shows

the results of our experiments. It can be seen that the proposed method consistently gives

lower number of distance computations than the others.

6.4.4.2 Effect of query radius

In this set of experiments, we vary the query radius while keeping the database size and the

number of vantage points constant. As shown in figure 6.17 with increasing query radius,

the number of distance computations increases for all the methods which is quite expected.

However, the rate of increase is smaller for the proposed method compared to others.

6.4.4.3 Effect of number of vantage points

In these experiments, database size and query radius (same as those in 6.4.4.1) were kept

constant. The results of increasing the number of vantage points are shown in figure 6.18.

121

(a) GIS data (b) Fluid dynamics data

(c) Audio feature data (d) Image feature data

(e) Speech data (f) Weather data

Figure 6.16:]
Effect of database size on the number of distance computations

122

(a) GIS data (b) Fluid dynamics data

(c) Audio feature data (d) Image feature data

(e) Speech data (f) Weather data

Figure 6.17: Effect of query radius on the number of distance computations

123

It can be seen that increasing vantage points causes decrease in the number of distance

computations and CP method performs the best in all the experiments.

124

(a) GIS data (b) Fluid dynamics data

(c) Audio feature data (d) Image feature data

(e) Speech data (f) Weather data

Figure 6.18: Effect of the number of vantage points on the number of distance computations

125

6.5 Vantage point selection in very high dimensional

spaces

We observe that there exists certain regularity in the way vantage points are chosen by

algorithm 2. This regularity can be exploited to speed up the vantage point generation

significantly. In this section, we present a recursive formula for computing a set of vantage

points that are exactly at a distance of
√

n
2 from each other. The time complexity of this

formula is O(n logn). However, this formula has two limitations. First, it can only generate

vantage points for databases for which the number of dimensions is a power of two. Second,

the formula cannot generate more than n points (i.e. number of vantage points cannot be

greater than the number of dimensions). The second limitation is not too severe as in most

of the applications m < n (since this reduces dimensionality of the data being indexed). To

alleviate the first limitations, we present a possible heuristic extension to the formula which

can be used when n is not a power of two.

6.5.1 A formula for computing vantage points

When the number of dimensions n is a power of two we can find a set of n vantage points in

n dimensional space which are all at a distance of
√

n
2 . The formula is recursively defined.

Formally, let V2k be the set of 2k vantage points in 2k dimensional space, and let Vk be the

set of k vantage points in k dimensional space. Also, we denote a vantage point v as a string

of 0s and 1s (since they are corner points). Then V2k can be represented recursively as,

126

V2 = {00, 01}

V2k = {(v · v)|v ∈ Vk} ∪ {(Com(v) · v)|v ∈ Vk} (6.5)

where, v · v represents concatenation of the two strings and Com(v) is a function that

complements each character in the string v. It is clear that the formula is applicable only

when the number of dimensions is a power of two. We now state and prove correctness of

this formula.

Theorem 6.5.1. Vantage points generated using formula 6.5 are all at a distance of
√n

2

from each other.

Proof 6.5.1. Since n is a power of 2, we represent it as n = 2k. Let V
2k

be the set of vantage

points in 2k dimensional space. We will prove the theorem using mathematical induction on

k. The basis case corresponds to k = 1. It can be easily seen that the vantage points in 2-D

space are indeed at a distance of
√

2/2 = 1 from each other.

Let us assume that the theorem is true for some k. Consider V
2k+1. From the formula 6.5,

every point in this set is generated either as a repetition of a point in V
2k

or as a combination

of a point and its complement in V
2k
. Let 4 points in V

2k+1 be, v1 = (u · u), v2 =

(u ·Com(u)), v3 = (v · v), v4 = (v ·Com(v)), where u, v ∈ V
2k
. From induction hypothesis,

u and v differ in exactly 2k

2 bits. The first halves of v1 and v2 are same while the second

halves are complements of each other hence, these two points differ in 2k bits which means

their distance is
√
2k =

√

2k+1
2 . Same argument applies for v3 and v4. Both halves of v1

and v3 differ in 2k

2 bits resulting in their distance being

√

2k+1
2 . Note that if u and v differ

127

in 2k

2 bits then Com(u) and v also differ in 2k − 2k

2 = 2k

2 bits. In fact, extending the same

argument, we can see that, Com(u) and Com(v) will also differ in 2k

2 bits. Once these facts

are taken into consideration, it can be easily seen that the points in other three pairs, i.e.

{v1,v4}, {v2,v3} and {v2,v4} are also at a distance of

√

2k+1
2 from each other. Since,

every point in V
2k+1 is generated from some point u ∈ V

2k
, it can be argued that all the

points in V
2k+1 are at a distance of

√

2k+1
2 from each other.

Following is an example showing the generation of the sets V2, V4 and V8.

Example 6.5.1. Vantage points for 2-D, 4-D and 8-D spaces

V2 V4 V8
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 1 1 1 0 0 0 0

0 1 0 1 1 1 0 0 1 1 0 0
1 0 0 1 0 0 1 1 1 1 0 0

0 1 0 1 0 1 0 1
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1

The requirement that the number of dimensions must be a power of 2 may be very

restrictive. We now present an algorithm to generate vantage points for any number of

dimensions by extending the formula in equation 6.5. The main idea is to start with the

next higher power of two and then eliminate dimensions one by one to get to the desired

dimensionality.

Algorithm 3 highlights the main steps in generating vantage points for any number of

dimensions. It begins with the vantage points for the next higher dimension which is a

power of 2 (i.e., for n = 12, it will begin with vantage points in 16 dimensions). Then

for each dimension, it calculates the pairwise distance variance of points obtained after

that dimension is removed. Dimension whose removal results in the minimum variance, is

128

Algorithm 3 Generate m vantage points for n dimensional unit hypercube

Input: Number of dimensions n and number of vantage points m.
Output: A set of m vantage points.
Algorithm

1: Let n′ be the power of 2 just larger than n
2: Generate the initial set of vantage points in n′ dimensions. Vn′ using formula in equation

6.5
3: Initialize V ← Vn′
4: for i = 1 to n′ − n do
5: minDistVariance = ∞
6: for each dimension c not yet removed do
7: Vtemp = Set of unique vantage points obtained after elimination of dimension c from

V
8: distVariance = GetDistanceVariance(Vtemp)
9: if distVariance < minDistVariance then
10: minDistVariance = distVariance
11: next = c
12: end if
13: end for
14: V = Set unique vantage points obtained after elimination of dimension next from V
15: end for
16: return V

removed in each iteration. The process is repeated until desired number of dimensions are

removed. Note that, this algorithm does not guarantee that the resulting vantage points will

have the minimum possible pairwise distance variance. However, our experiments suggest

that minimum pairwise distance variance of vantage point obtained using this algorithm is

close to those obtained using algorithm 2. What is very important here is that algorithm 3

has polynomial time complexity compared to exponential complexity of algorithm 2 which

makes it a more attractive choice in high dimensional spaces.

6.5.2 Selection vantage points based on number of flips

The formula presented in previous section generates n vantage points. However, in most

of the practical cases, the number of vantage points m is considerably less n. In theory,

129

Figure 6.19: Performance comparison of vantage points selection with minimum and maxi-
mum flips

any set of m points out of these n candidates will be equally good (in terms of pairwise

distance variance). However, we observed that there is difference in the performance of the

range query depending on which particular set of vantage points is chosen. We define a flip

as change in value of dimension i with respect to dimension i − 1. For example, in point

(0, 1, 1, 0), there is a flip in second and fourth dimension. It can be easily seen that the

points obtained using formula 6.5, have 1-point each with 0 to n− 1 flips. Our experiments

with synthetic data suggest that selecting points with most number of flips tends to have

consistently better (about 7 to 10%) query performance than those with least number of

flips. Figure 6.19 shows the comparison of number of distance computations obtained when

using vantage points with maximum number of flips and those with minimum number of flips.

These experiments are run with 16-dimensional uniform synthetic data. It can be clearly seen

that using vantage point with more flips may be slightly more beneficial. Assuming n = 4

and m = 2, this heuristic chooses the following set of vantage points : (0, 1, 0, 1), (1, 0, 0, 1).

130

(a) Uniform synthetic data (b) Skewed synthetic data

(c) Clustered synthetic data

Figure 6.20: Applying the proposed scheme on 64 dimensional synthetic data

6.5.3 Performance comparison in very high dimensional space

Using the formula from section 6.5.1, we computed 8 vantage points for 64 and 60 dimensional

synthetic data. Vantage points for 64 dimensions can be directly generated using equation

6.5, while for algorithm 3 for 60 dimensions. Query range was set to values between 0.05 to

0.3 for each of the experiments. We compared the performance of the three methods, CP, SC

and RND, for uniform, clustered and skewed data sets. The performance comparison, shown

in figures 6.20 and 6.21 clearly demonstrates the superiority of the corner point approach.

131

(a) Uniform synthetic data (b) Skewed synthetic data

(c) Clustered synthetic data

Figure 6.21: Applying the proposed scheme on 60 dimensional synthetic data

6.6 k-NN queries in vantage space

k-NN queries form an important class of queries in high dimensional databases. Although

k-NN queries are similar to range queries from the implementation point of view, there exists

an important difference between the two. The order of retrieval of query results does not

matter for range queries. For k-NN queries on the hand, the order is very important. A

vantage point based transformation does not preserve distances or the ordering among the

data points. Hence, implementing k-NN queries using the transformation can be challenging.

In this section, we present preliminary results on implementation of k-NN queries using the

132

Table 6.6: Recall of k-NN queries on uniform 2-D data (database size = 100k)

of
neighbors
(k)

Vantage points

2 3 4

1 0.79 0.9 0.94
25 0.82 0.88 0.94
50 0.83 0.88 0.94
75 0.83 0.88 0.94
100 0.83 0.88 0.94

Table 6.7: Recall of k-NN queries on uniform 10-D data (database size = 100k)

of
neighbors
(k)

Vantage points

6 8 10 12

1 0.03 0.08 0.27 0.38
25 0.12 0.27 0.44 0.56
50 0.14 0.30 0.45 0.56
75 0.16 0.31 0.46 0.57
100 0.17 0.33 0.47 0.58

vantage point transformation.

Tables 6.6 and 6.7 summarize the results of running the k-NN query in the transformed

space for increasing values of k. In each of the experiments, correctness of the k-NN query

in the transformed space is measured using recall as the quality metric. If Dk is the correct

set of k neighbors and if D′
k
is the set of k points retrieved by the query, then Recall R of

the query is defined as,

R =
|D′

k
∩Dk|
|Dk|

It can be seen from these two tables that, at higher dimensions, recall of the k-NN

queries is low. However, for a given number of dimensions, as k increases, recall gets better.

Increasing the number of vantage points also improves the recall significantly. We also

133

observe that k-NN queries run in the transformed space tend to have lower number of

distance computations. For example, for k = 10, query in the original space has about 18280

distance computations while the same query in vantage space (with 8 vantage points) has

only 5672 distance computations. The number of distance computations increases with the

increasing number of vantage points. At first, this may seem rather counter intuitive. But

it should be noted that by increasing the number of vantage points, we are increasing the

dimensionality of the transformed space. KD-tree like many other indexing schemes suffers

from dimensionality curse and hence provides poor performance in higher dimensions.

From these preliminary results, it can be concluded that there is a promise in the trans-

formation based approaches for k-NN queries, when the number of vantage points is less than

the number of dimensions. However, a naive k-NN query algorithm may not be sufficient to

provide a good recall . By using more advanced heuristics, it may be possible to improve

the recall statistics of the k-NN queries.

134

Chapter 7

Conclusion and Future Work

In this dissertation, we present several novel techniques that enable mapping of a range

query onto a box query and vice versa. It can be seen that under certain conditions, range

queries and box queries are not too different and one type of query can be implemented as

another enabling us to take advantage of specific properties of an index.

Our first transformation, maps L1 range queries onto box queries. The proposed trans-

formation is computationally easy to implement. In an R-tree like index, this mapping

provides similar interface of query spaces with space of the index pages. The idea of disjoint

planar rotations coupled with pruning box query can be used to achieve this mapping even

in higher dimensional spaces without any false positives. The theoretical analysis shows that

this mapping can provide improvement in query execution performance. The improvement

is dependent on the relative sizes of the query ranges and box sizes; and increases with in-

creasing dimensions, which is verified by experiments with synthetic as well as real data. As

k-NN queries are similar to range queries, the transformation can be applied to improve the

performance of k-NN queries as well. We show that the dynamic index structures like the

135

R*-tree can provide improved performance using this transformation but suffer from large

variance in results. However, using static indexing schemes such as the packed R-tree, the

performance improvement is consistent and in agreement with our theoretical model.

The second transformation maps a box query to a L1 range query. Although the basic

concept and the premise of the mapping is similar, the fact that a box query can have non-

uniform box sizes poses some challenges in the transformation. We propose the concept of

multiple queries to handle these and show that the resulting range query can significantly

outperform the original box query in M-tree like index structures.

We explore several possible transformations of L2 range queries onto box queries. Due to

specific properties of the L2 space, it may not be possible to precisely map L2 range queries

onto box queries without any false positives. However, L2 range queries can be mapped

to minimum bounding box queries using vantage point based schemes for main memory

database applications. Previous work in this area shows that this approach can provide

significant reduction in the number of distance computations required to execute the query.

Selection of vantage points is a critical step in this process and most of the existing schemes

for vantage point selection are data dependent. As a result, they do not support dynamic

insertion, deletion and updates in the data. Further, their running time for selection the

vantage points is proportional to the database size. We present a thorough analysis of

the impact of selection of vantage points on the number of false positives. Based on these

analyses, we present a novel data-independent scheme for selection of vantage points in closed

data spaces. Being data independent, our scheme allows dynamic insertions, deletions and

updates. Comprehensive experimental evaluation with several synthetic and real databases

shows that our technique for selection of vantage points provides much better performance

136

from the existing methods. The time complexity of our vantage point selection algorithm is

exponential in number of dimensions which may be problematic if the number of dimensions

is very large. We propose a recursive mathematical formula which generates the ideal set of

vantage points when the number of dimensions is a power of two and has a time complexity

O(n logn). We also propose an extension to the formula which can be used for any number

of dimensions and runs in polynomial time. We show that these methods, when applied

to very high dimensional data, provide significant performance improvement over existing

techniques.

In high dimensional data spaces, k-NN queries in main memory databases are equally

important. The future work involves evaluation of the applicability of the proposed vantage

point selection scheme for k-NN queries in high dimensional spaces. As the vantage point

based transformation is not order preserving, the nearest neighbors in the transformed space

may not be real nearest neighbors in the original space. Increasing the number of vantage

points may improve the quality of results, but, since the KD-tree is known to suffer from

dimensionality curse, an increase in the number of vantage points can significantly affect

search performance of the KD-tree. This may require a novel algorithm for implementing

k-NN search such that good quality results can be obtained without sacrificing performance.

Although vantage point concepts have been used for disk based database systems, they too

use data dependent vantage points. Hence, application of the proposed data independent

vantage selection techniques in these systems needs to be studied further.

137

BIBLIOGRAPHY

138

BIBLIOGRAPHY

[1] National oceanic and atmospheric administration (NOAA) weather data -
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/.

[2] C. C. Aggarwal. On the effects of dimensionality reduction on high dimensional simi-
larity search. In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 256–266, New York, NY, USA, 2001.
ACM.

[3] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance
metrics in high dimensional spaces. In Proceedings of the 8th International Conference
on Database Theory, ICDT ’01, pages 420–434, London, UK, 2001. Springer-Verlag.

[4] G. Amato and P. Savino. Approximate similarity search in metric spaces using inverted
files. In Proceedings of the 3rd international conference on Scalable information systems,
InfoScale ’08, pages 28:1–28:10, ICST, Brussels, Belgium, Belgium, 2008.

[5] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions. In
Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, SODA
’93, pages 271–280, Philadelphia, PA, USA, 1993. Society for Industrial and Applied
Mathematics.

[6] R. Bayer. The universal B-tree for multidimensional indexing: general concepts. In Pro-
ceedings of the International Conference on Worldwide Computing and Its Applications,
WWCA ’97, pages 198–209, London, UK, 1997. Springer-Verlag.

[7] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: an efficient and
robust access method for points and rectangles. SIGMOD Rec., 19(2):322–331, 1990.

[8] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
1961.

139

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/

[9] J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-
mun. ACM, 18:509–517, September 1975.

[10] T. Bertin-Mahieux, D. P. E. nad Brian Whitman, and P. Lamere. The million song
dataset. 2011.

[11] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”nearest neighbor”
meaningful? In Proceedings of the 7th International Conference on Database Theory,
ICDT ’99, pages 217–235, London, UK, UK, 1999. Springer-Verlag.

[12] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric
spaces. In Proceedings of the 1997 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’97, pages 357–368, New York, NY, USA, 1997. ACM.

[13] T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similarity search queries.
ACM Trans. Database Syst., 24:361–404, September 1999.

[14] S. Brin. Near neighbor search in large metric spaces. In Proceedings of the 21th Interna-
tional Conference on Very Large Data Bases, VLDB ’95, pages 574–584, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[15] N. R. Brisaboa, A. Farina, O. Pedreira, and N. Reyes. Similarity search using sparse
pivots for efficient multimedia information retrieval. In Proceedings of the Eighth IEEE
International Symposium on Multimedia, ISM ’06, pages 881–888, Washington, DC,
USA, 2006. IEEE Computer Society.

[16] B. Bustos, G. Navarro, and E. Chávez. Pivot selection techniques for proximity searching
in metric spaces. Pattern Recogn. Lett., 24:2357–2366, October 2003.

[17] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive dimension-
ality reduction for indexing large time series databases. ACM Trans. Database Syst.,
27(2):188–228, 2002.

[18] E. Chavez Gonzalez, K. Figueroa, and G. Navarro. Effective proximity retrieval by order-
ing permutations. IEEE Trans. Pattern Anal. Mach. Intell., 30:1647–1658, September
2008.

[19] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity
search in metric spaces. In VLDB ’97: Proceedings of the 23rd International Conference
on Very Large Data Bases, pages 426–435, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

140

[20] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing
by latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407, 1990.

[21] C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In Proceedings of the 1995 ACM
SIGMOD international conference on Management of data, SIGMOD ’95, pages 163–
174, New York, NY, USA, 1995. ACM.

[22] R. Fenk, V. Markl, and R. Bayer. Interval processing with the ub-tree. In Proceedings
of the 2002 International Symposium on Database Engineering & Applications, IDEAS
’02, pages 12–22, Washington, DC, USA, 2002. IEEE Computer Society.

[23] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw., 3:209–226, September 1977.

[24] G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L. A.
Streeter, and K. E. Lochbaum. Information retrieval using a singular value decomposi-
tion model of latent semantic structure. In Proceedings of the 11th annual international
ACM SIGIR conference on Research and development in information retrieval, SIGIR
’88, pages 465–480, New York, NY, USA, 1988. ACM.

[25] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput. Surv.,
30:170–231, June 1998.

[26] C. Gennaro, G. Amato, P. Bolettieri, and P. Savino. An approach to content-based
image retrieval based on the lucene search engine library. In Proceedings of the 14th Eu-
ropean conference on Research and Advanced Technology for Digital Libraries, ECDL’10,
pages 55–66, Berlin, Heidelberg, 2010. Springer-Verlag.

[27] J. E. Gentle. Numerical Linear Algebra for Applications in Statistics. Springer-Verlag,
1998.

[28] M. Gromov. Finite propagation speed, kernel estimates for functions of the laplace
operator, and the geometry of complete riemannian manifolds.

[29] M. Gromov. Groups of polynomial growth and expanding maps. pages 53–73, 1981.

[30] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD international conference on Management of data, SIGMOD
’84, pages 47–57, New York, NY, USA, 1984. ACM.

141

[31] C. Hennig and L. J. Latecki. The choice of vantage objects for image retrieval. Pattern
Recognition, 36:2187–2196, October 2003.

[32] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück . Mathematische
Annalen, pages 459–460, 1890.

[33] K. Hinrichs. Implementation of the grid file: design concepts and experience. BIT,
25(4):569–592, Dec. 1985.

[34] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Trans.
Database Syst., 24:265–318, June 1999.

[35] G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces (survey
article). ACM Trans. Database Syst., 28(4):517–580, 2003.

[36] D. Hull. Improving text retrieval for the routing problem using latent semantic indexing.
In Proceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’94, pages 282–291, New York, NY, USA,
1994. Springer-Verlag New York, Inc.

[37] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing tech-
niques in relational database systems. ACM Comput. Surv., 40(4):1–58, 2008.

[38] K. ip Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: An index structure for
high-dimensional data. The Vldb Journal, 3:517–542, 1994.

[39] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. idistance: An adaptive b+-
tree based indexing method for nearest neighbor search. ACM Trans. Database Syst.,
30:364–397, June 2005.

[40] I. T. Jolliffe. Principal Component Analysis (Springer series in statistics). Springer,
2002.

[41] I. Kamel and C. Faloutsos. On packing R-Trees. In Proceedings of the second in-
ternational conference on Information and knowledge management, CIKM ’93, pages
490–499, New York, NY, USA, 1993. ACM.

[42] R. Kenyon. Tiling a rectangle with the fewest squares. Journal of Combinatorial Theory,
A 76:272–291, 1996.

142

[43] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Dimensionality reduction
for fast similarity search in large time series databases. Knowl. Inf. Syst., 3:263–286,
2001.

[44] H.-P. Kriegel and B. Seeger. Plop-hashing: A grid file without directory. In Proceedings
of Fourth International Conference on Data Engineering, pages 369 –376, Feb. 1988.

[45] S. Lang. Linear Algebra. New York: Springer-Verlag, 1987.

[46] S. T. Leutenegger. Multi dimensional data sets, 2012.

[47] R. Mao, W. L. Miranker, and D. P. Miranker. Dimension reduction for distance-based
indexing. In Proceedings of the Third International Conference on SImilarity Search
and APplications, SISAP ’10, pages 25–32, New York, NY, USA, 2010. ACM.

[48] D. J. Mavriplis. An advancing front delaunay triangulation algorithm designed for
robustness. J. Comput. Phys., 117(1):90–101, Mar. 1995.

[49] MIT image dataset. MIT CSAIL : Visual dictionary -
http://groups.csail.mit.edu/vision/TinyImages/, 2010.

[50] G. M. Morton. A computer oriented geodetic data base and a new technique in file
sequencing. Technical report, 1966.

[51] A. H. H. Ngu, Q. Z. Sheng, D. Q. Huynh, and R. Lei. Combining multi-visual features
for efficient indexing in a large image database. The VLDB Journal, 9:279–293, April
2001.

[52] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. H. Glasman, D. Petkovic, P. Yanker,
C. Faloutsos, and G. Taubin. The QBIC project: Querying images by content, using
color, texture, and shape. In Storage and Retrieval for Image and Video Databases,
pages 173–187, 1993.

[53] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable, symmetric
multikey file structure. ACM Trans. Database Syst., 9:38–71, March 1984.

[54] J. Orenstein. A comparison of spatial query processing techniques for native and pa-
rameter spaces. SIGMOD Rec., 19:343–352, May 1990.

143

http://groups.csail.mit.edu/vision/TinyImages/

[55] S. Pramanik, A. Watve, C. R. Meiners, and A. Liu. Transforming range queries to equiv-
alent box queries to optimize page access. Proc. VLDB Endow., 3:409–416, September
2010.

[56] K. V. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for similarity
searching in dynamic databases. SIGMOD Rec., 27(2):166–176, 1998.

[57] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proceedings
of the 1995 ACM SIGMOD international conference on Management of data, SIGMOD
’95, pages 71–79, New York, NY, USA, 1995. ACM.

[58] H. Tropf and H. Herzog. Multidimensional range search in dynamically balanced trees.
Applied Informatics, pages 71–77, 1981.

[59] UCIML Repository. UCI machine learning repository corel image feature data set -
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features, 2010.

[60] J. K. Uhlmann. Metric trees. Applied Mathematics Letters, 4(5):61 – 62, 1991.

[61] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Inf.
Process. Lett., 40(4):175–179, 1991.

[62] R. H. Van Leuken and R. C. Veltkamp. Selecting vantage objects for similarity indexing.
ACM Trans. Multimedia Comput. Commun. Appl., 7:16:1–16:18, September 2011.

[63] J. Venkateswaran, D. Lachwani, T. Kahveci, and C. Jermaine. Reference-based indexing
of sequence databases. In Proceedings of the 32nd international conference on Very large
data bases, VLDB ’06, pages 906–917. VLDB Endowment, 2006.

[64] K. Vu, K. A. Hua, H. Cheng, and S.-D. Lang. A non-linear dimensionality-reduction
technique for fast similarity search in large databases. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference on Management of data, pages
527–538, New York, NY, USA, 2006. ACM.

[65] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In Proceedings of the 24rd
International Conference on Very Large Data Bases, pages 194–205, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[66] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general
metric spaces. In Proceedings of the fourth annual ACM-SIAM Symposium on Dis-

144

http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features

crete algorithms, SODA ’93, pages 311–321, Philadelphia, PA, USA, 1993. Society for
Industrial and Applied Mathematics.

145

	List of Tablesto 1em.
	List of Figuresto 1em.
	Introduction
	Basic concepts and notations
	Metric space
	Range query
	k-NN query
	Box query
	Motivation for query transformations
	Outline of the dissertation

	Related Work
	Data transformation techniques
	Vantage point based transformation
	Indexing schemes for multidimensional data
	R*-tree
	Box query implementation
	Range query implementation
	k-NN query implementation

	Packed R-tree
	M-tree
	Box query implementation
	Range query implementation
	k-NN query implementation

	KD-tree
	Box query implementation
	Range query implementation
	k-NN query implementation

	Transformation From L1 Range Query To Box Query
	2-D Transformations
	Transformation Function
	Space Transformation:
	Query Transformation:

	Transformation Properties
	Precision Property
	Distance Property
	Inequality Property:

	Multi-dimensional Transformations
	Disjoint Planar Rotations
	Pruning Box Query

	Theoretical Analysis
	Model Basics
	Analysis of Range Query
	Analysis of Box Query
	Hyper-dimensional Queries

	Experimental results with R*-Tree
	2-D transformations
	Effect of database size
	Effect of query ranges

	Higher dimensional transformation
	Effect of database size
	Effect of query ranges

	Effect of the index structure
	Experimental results using Packed R-Tree
	Correctness of theoretical model
	Avoiding empty pages
	Results for 2-D transformations
	Effect of database size
	Effect of query ranges

	Higher dimensional transformation
	Effect of database size
	Effect of query ranges

	Performance results for real data
	k-NN queries using transformation
	k-NN in 2-D Space
	k-NN in 10-D Space
	k-NN on Real Data

	Transformation From Box Query To Range Query
	Data and query transformations
	2-Dimensional Transformation
	High Dimensional Transformation

	Improvement Estimation
	Analysis of 2-D Queries
	Analysis of High Dimensional Queries

	Experimental Results
	2-D Transformation
	High Dimensional Transformation
	CPU Consumption
	Experiments with Real Data

	Transformation In L2 Space
	Shapes for higher order Lp queries
	Mapping L2 range query to box query
	Approximate transformations
	Minimum bounding box query
	Elliptical range queries instead of circular range queries
	Approximating range query using multiple boxes
	Using index built in L space for doing range queries in L2 space
	Other possible transformations in L2 space

	Space transformation using vantage points
	Vantage point transformation basics
	Data transformation
	Query transformation

	Selection of vantage points in 2-D space
	Minimizing Collisions
	Reduction of false positives
	Corner points as vantage points
	Choosing more than two vantage points
	Experimental results with 2D data

	Selection of vantage points in higher dimensional spaces
	Effectiveness of data independent vantage points
	Minimum Distance Variance
	A heuristic for selecting vantage points

	Index structure and query algorithm

	Experimental results
	Experimental set-up and datasets used
	Time comparisons for generating vantage points
	Range queries in synthetic databases
	Effect of database size
	Effect of query radius
	Effect of number of vantage points

	Range queries in real databases
	Effect of database size
	Effect of query radius
	Effect of number of vantage points

	Vantage point selection in very high dimensional spaces
	A formula for computing vantage points
	Selection vantage points based on number of flips
	Performance comparison in very high dimensional space

	k-NN queries in vantage space

	Conclusion and Future Work
	Bibliographyto 1em.

