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 It is possible to purchase, for as little as $10,000, a cluster of computers with 

the capability to rival the supercomputers of only a few years ago.  Now, users that 

have little to no experience developing distributed applications or managing a cluster 

are in a position to do so.  To allow domain scientists to effectively utilize these 

resources, Distributed OpenCL (DOCL) was developed.  DOCL is an easy-to-use 

foundation for peer-to-peer distributed computation on small to medium clusters.  It is 

assumed that the end-user is a domain scientist, familiar with model development in 

environments such as Matlab, though inexperienced with distributed computation or 

parallel programming.  The scope of this work includes the definition of a peer-to-peer 

protocol for discovering and establishing relationships with every node within a 

multicast domain, using the concepts of Zero-Configuration Networking, multicast 

DNS, and DNS Service Discovery.  A problematic edge case of multicast DNS is 

detailed along with a mitigation technique.  An XML schema is also described for 

basic peer communication and cluster management and inventory.  A system for 

scheduling algorithm tasks on the cluster of heterogeneous compute devices was 

developed, including an automatic computation and communication cost measurement 



system.  Finally, a graphical programming language was designed and implemented 

that allows non-expert programmers and modelers to develop new applications in a 

straightforward, accessible way.
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Distributed OpenCL: A platform for Distributed, Heterogeneous 

Computing for Domain Scientists

Introduction
 There is a growing divide between the capabilities of modern computing 

devices and our ability to program them.  Gabe Newell of Valve Software recently said 

“If there were 500 people who could write a good game engine in the last generation, 

you’re really talking 50 people who are going to be good enough to do it in the next 

generation.” (Francis 2010)  This is an important observation, but not just within the 

context of professional software and game development.  Scientific applications are, if 

anything, more susceptible to falling behind the technology curve.  Budgets being 

allocated to maintaining existing models are limited, and there are few opportunities to 

develop new models that are optimized for recently developed hardware.  In addition 

to limited budgets, talented programmers are enticed away from scientific computing 

to industries with the higher salaries, such as gaming and financial analytics.  To 

advance scientific computing, solutions that address these realities must be developed.  

I’ve responded by developing Distributed OpenCL; a platform that enables scientific 

application development using commodity and gaming hardware.

 Advances in the computer gaming industry are increasingly relevant to any 

discussion of general and scientific computing.  In the 1980s and 1990s, the 

computing industry was largely focused on providing high-quality tools for 

professionals, and it was during this time that the majority of supercomputer research 

and development took place.  World governments viewed supercomputer performance 

as an economic engine as well as an important area of intergovernmental competition.  

The industry enjoyed the support of considerable government procurements, including 

national centers and installations for classified work in agencies such as the 

Department of Energy (DOE) and the Defense Advanced Research Projects Agency 

(DARPA) (Gilliam 1993).
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 Although the government remains a significant factor in the computing 

industry, its ability to influence the direction of computing research and development 

has been overwhelmed by the expansion of the consumer mobile and entertainment 

market segments.  The market intelligence firm IDC values the 2011 High 

Performance Computing (HPC) market segment at $10 billion (Joseph and Shirer 

2012); it estimates the global value of handheld gaming at $14.7 billion (Ward and 

Shirer 2012) and the smartphone market at $157.8 billion in the same time period 

(Llamas, Restivo, and Shirer 2012).

 The expansion of the gaming console and smartphone markets pushed the 

computing industry to develop devices that are appropriate for these markets.  

Smartphone processors are designed to maximize performance within a very tight 

power budget.  Gaming consoles tolerate greater power draw, but achieving maximum 

performance is vital.  In both cases, cost is a major factor and vendors must provide 

inexpensive solutions.

 Semiconductor products enjoy economies of scale, meaning that the cost to 

produce an additional unit is less than the average cost to produce all prior units.  The 

majority of the costs associated with a semiconductor product are one-time sunk costs 

such as research and development, “tape out1,” and tooling.  In consumer markets, 

these costs are distributed across a large user base.  Targeting the consumer market is 

often a wise business decision; expensive and exotic products, targeted at high-

performance computing, are becoming less common.

 Healthy competition among vendors drives costs down while improving 

performance.  Microprocessor architecture licensing firms such as MIPS 

2

1 Tape out is the term used to describe the process of producing the photo-
lithographical masks used to define the patterns on a semiconductor wafer during 
production.



Technologies2 and ARM3 produce standard processor designs and Instruction Set 

Architectures (ISAs).  These companies do not manufacture physical products 

themselves; instead, they license their designs to independent firms.  The products 

based on MIPS and ARM architectures are often compatible within their families, 

allowing them to be treated as commodities.  Using commodity products in scientific 

applications ensures that scientists are able to pay the lowest possible price for a given 

level of functionality, making the most out of their fixed budgets.

 In addition to the changes in market conditions, we are at a unique time in the 

evolution of silicon technology.  In terms of clock speed, Moore’s Law has broken 

down.  During the period of exponential clock speed improvement, software 

development could remain stagnant; now that clock speeds are mostly constant, 

improvements in performance must come from increased parallelism.  Existing 

software packages, especially those that are single-threaded, will no longer improve 

with new hardware.  To keep pace with these changes, new software must be 

developed, and new programming techniques are needed.

Market Changes

 The consumerization and commoditization of technology began in the early 

1980s, when Compaq reverse-engineered the IBM BIOS and produced the first “IBM 

Compatible” computer.  Competition among vendors producing interchangeable 

products drove prices down, increasing the number of people who could afford home 

computers.  Home computers were used for entertainment purposes, including 

computer games, which exploded in popularity with the advent of the personal 

computer.

3

2 MIPS Technologies: http://www.mips.com/, accessed May 12, 2012
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 By the mid-1990s, computer gaming had become so popular and sophisticated 

that dedicated 3D graphics processors were developed for gaming.  Companies such as 

3dfx and Nvidia were founded with talent originating from scientific and enterprise 

computing companies such as SGI, LSI Logic, Sun Microsystems and AMD.  The new 

3D graphics processors were the perfect combination of price and performance.  

Features that were only useful for scientific applications, such as numerical precision, 

were sacrificed to keep costs low.

 Intense competition among the early graphics card companies accelerated 

product development.  Companies were able to increase performance by moving more 

of the graphics pipeline into hardware.  The Transform and Lighting (T&E) engine 

from the Nvidia GeForce 256 is a good example of this.  The T&E engine performed 

all of the linear algebra operations as well as basic fragment shading in hardware.  

According to Nvidia4, this product was the first Graphics Processing Unit (GPU).   

Two years later, Nvidia added programmability in the GeForce3 product.  The 

programs, called  “shaders,” were small, extremely constrained programs that could 

modify the way pixels were computed.  In time, shaders were added for vertices, 

geometry, and tessellation.  As the rendering pipeline became more diverse, Nvidia 

unified the hardware architecture of its processors, discarding the dedicated processing 

for vertices, primitive assembly, rasterization, and pixels.  The new architecture, called 

Common Unified Device Architecture (CUDA) (Lindholm et al. 2008), uses general-

purpose compute elements that are dynamically scheduled to perform any graphics 

task.  In 2006, Nvidia released the CUDA programming language that allowed non-

graphics applications to take advantage of the parallel processing power of the GPU.

 By generalizing the architecture and programming model, GPUs have become 

powerful co-processors.  Even before general-purpose programmability was in place, 

the movement toward utilizing the power of GPUs in non-graphics tasks began under 

4
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the General Purpose GPU (GPGPU) banner.  Researchers discovered ways to perform 

tasks such as large matrix solvers (Bolz et al. 2003), Fourier transforms (Moreland and 

Angel 2003), and fluid dynamics (Harris 2003) on GPUs by massaging the algorithms 

to appear as graphics tasks.  Technologies such as CUDA, and later OpenCL, allowed 

algorithms not easily described as graphics tasks to take advantage of GPUs.

 The movement of the computer into the home inspired technologies that are 

now used in scientific applications.  Had commodity graphics hardware not been 

invented, it’s hard to imagine that processor architectures inspired by GPUs would 

have been invented.
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Figure 1: Cell/BE architecture (Chow, Fossum, and Brokenshire 2005)

 Coincident with the development of the GPUs, gaming consoles were 

experiencing great growth in popularity and performance.  Strong competition among 

consoles encouraged rapid development of innovative technologies.  In anticipation of 

its next console, Sony teamed with Toshiba and IBM to found the STI Alliance.  
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Tasked with developing a “supercomputer on a chip,” they invented the Cell 

Broadband Engine (Cell/B.E., Figure 1) (Buttari et al. 2007).  The Cell/B.E. was a 

compromise between the parallel processing throughput of a GPU and the single-

threaded performance of a CPU.  The Cell/B.E. broke ranks with the powerful 

processors optimized for single thread performance that were common at the time.  

The new design took steps backward from the traditional tools used to improve 

instruction-level parallelism, such as out-of-order execution (OOE).

 The Cell/B.E. is an Asymmetric MultiProcessor (AMP), meaning that the 

individual processors are not identical to one another (in contrast to the much more 

common Symmetric MultiProcessor (SMP)).  The POWER Processing Element (PPE) 

is substantially similar to a PowerPC 970 CPU with the OOE logic removed.  In 

addition to the PPE, several Synergistic Processing Elements (SPE) are married with 

an Element Interconnection Bus (EIB).  The SPEs are designed to be highly efficient, 

vectorized, throughput-optimized processors.

 On an SMP system, the operating system can run itself or any other process on 

any of the processors in the system, because they’re all identical.  However, on the 

Cell/B.E., the SPEs are architecturally distinct from the PPE and cannot run kernel 

code.  The SPEs can only run specialized code and are scheduled by an application 

rather than the kernel.  Processor features that are necessary for running general-

purpose code are expensive in terms of power, die area, and complexity.  Discarding 

these features allowed the Cell/B.E. to achieve dramatically higher throughput than 

other processors available at the time.  The challenge presented by this design, 

however, was the significant increase in complexity presented to the programmer.

 The designers of the Cell/B.E. were ahead of their time in the sense that many 

of their design choices were used in many subsequent processor designs.  The Cell/

B.E. was the first in what became a shift in the strategy employed to improve 

processor performance.
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The end of clock rate increases

 Processors are physical devices; their capabilities and limitations are ultimately 

dictated by the material processes used to create them. The dimensions of these 

physical constraints have been explored since the beginning of semiconductor use in 

electronics.

Figure 2: Semiconductor manufacturing trend from 1962 to 1970. (G. E. Moore 1965) 

 In 1965, Gordon Moore wrote a paper that identified a trend in the 

semiconductor industry.  A widely interpreted quote from that paper is: “The 

complexity for minimum component costs has [increased] at a rate of roughly a factor 

of two per year.” (G. E. Moore 1965)  His paper included a graph that has been 

reproduced in Figure 2.  The quote refers to the minimum point on each of the relative 

manufacturing cost curves.  There is a range of cost/complexity for silicon devices, 

and the most efficient among them doubles in complexity approximately every year.  

Moore assumed that the trend would continue for at least 10 years.

 Since the original paper was published, Moore has revisited the relationship 

that has become known as Moore’s Law several times.  In 1975, he saw that integrated 

circuits had become optimal in terms of area utilization, and he reduced the slope of 

the curve to a doubling every two years (G. Moore 1975).  Later, in 1995, he was 
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unwilling to look to the future past 0.18 micron (10-6 meters) technology.  The 

lithography engineers at Intel couldn’t conceive of working at this feature size with the 

techniques available at that time (G. E. Moore 1995).

 One interpretation of Moore’s Law, which he later endorsed, was that 

processor speed would roughly double every two years.  The two quantities are 

related; as features become smaller, capacitance and propagation delay decrease.  

Those properties are the primary factors that determine the maximum clock rate of a 

device.

Transistors (000)
Clock Speed (MHz)
Power (W)
Perf/Clock (ILP)

10,000,000

1,000,000

100,000

10,000
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Figure 3: Historical clock speed and transistor count (Source: Shalf et al. 2009)

 Once personal computers had standardized on the x86 processor architecture 

vendors transitioned to using clock rate as a competitive metric.  Intel was particularly 

aggressive, and set high goals for clock rate scaling.  Intel strategically architected its 

processors to achieve higher clock rates than its competitors’ processors.  If the 

architecture and feature size are fixed, it is possible to increase clock rate by reducing 

the duration of the work completed per clock interval.  Increasing the number of stages 

in a pipeline means each stage requires less work and clock rate can increase.  Because 

it isn’t possible to know the result of a logical branch condition before its operands 
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have been computed, it’s necessary to predict the outcome.  When a branch is 

mispredicted, all of the speculative work must be discarded.  This strategy was tested 

to its extreme limit by the Intel Netburst architecture, which was used in the Pentium 4 

line.  The yellow line in Figure 3, clock speed in KHz, shows a noticeable bump 

between 1999 and 2005, caused by the Pentium 4 and Netburst.  The cost of branch 

mispredictions undermined any increases in performance that could have been gained; 

the Pentium 4 was noticeably slower than its rivals.  Since 2005, clock rates have 

remained nearly constant.  The fundamental limits that constrain clock rate -- power 

and performance per clock (a proxy for instruction level parallelism) -- prevent further 

advances in single-thread performance.

 In the future, the most reliable way to improve performance will be to increase 

the number of processors in a system.  This shift forces developers to change the way 

they think about improving the capabilities of computer systems.  It was once common 

wisdom that we could continue using an existing application and expect a doubling of 

its speed every 18 months.  Now, it will take considerably longer to yield similar 

results without modifying the application or, in extreme cases, re-architecting it from 

the ground up.  It is imperative that we develop applications that are able to take 

advantage of the proliferation of processors in a computer while tolerating lagging 

clock rates.

Parallelism is the path forward

 Processor vendors have had to embrace other methods for increasing processor 

performance year after year.  Without constant improvements in processor 

performance, there would be little reason to purchase new products.  Innovative 

architectures and increasing parallelism have become the primary means for 

increasing performance and driving sales.  The continued advance of process 

technology has enabled greater logic density, allowing for more processors in the same 

space.
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 Process technology has advanced beyond the concerns held by Moore and 

Intel’s engineers in 1995.  Current technology (as of this writing) is capable of 

producing chips with 22 nm (.022 micron) features.  The current best estimate for the 

absolute scaling limit for traditional semiconductor techniques is 5 nm.  It is estimated 

that we will reach this limit some time after 2020 (Figure 4).  After this point, 

significant modifications in process technology, such as silicon nanowires and carbon 

nanotubes5, will be necessary to continue to improve semiconductor density.
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Figure 4: Semiconductor feature size roadmap (Source: ITRS 2011)

 In anticipation of the end of feature size miniaturization, and responding to the 

needs of the mobile device industry, manufacturers have explored other means for 

increasing logic density.  Chip stacking techniques are now a common practice in 

highly integrated system-on-a-chip (SoC) solutions.  The success of these methods is 

evident in products such as the Apple iPhone.

 The Apple A4 processor, which is an ARM derivative, contains the application 

processor and Synchronous Dynamic Random Access Memory (SDRAM) in one 

10
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package.  The cross-section image presented in Figure 5 shows the construction of a 

typical chip-stack system-in-package device.  The image was created by Chipworks, in 

association with iFixit.com.  Shortly after the release of the Apple iPad, iFixit.com 

obtained and disassembled a unit, then sent the mainboard to the Chipworks facility.  

There, Chipworks cut the A4 in half and ground it smooth.

 The photograph is labeled to highlight a few items of interest.  The first, label 

(a), is the integrated SDRAM connected to a substrate through several bond wires, one 

of which is partially visible (b).  The application processor (c) is a flip-chip package 

mounted to its substrate with solder balls (not labeled).  The SDRAM subassembly is 

electrically and physically connected to the application processor using solder balls 

(d).  Finally, the entire package is mounted onto the PCB using a ball-grid array (e).  

The A4 is not an abnormal, or overly advanced, package.  The chip stacking approach 

has become common, and there are several techniques that enhance the level of 

integration of these system-in-package devices (Bansal et al. 2010).

ba

c d

e

Figure 5: Cross-section of the Apple A46

The widening gap between domain science and computer technology

 With the advancement of easy-to-use numerical modeling tools such as Matlab, 

R and Mathematica, it has become easier for domain scientists to describe their ideas 

11

6 Ifixit.com Apple A4 teardown, http://www.ifixit.com/Teardown/Apple-A4-
Teardown/2204/1, accessed May 15, 2012



and models in computer-readable form.  This opened the door for an expansion in the 

number and variety of computer models and advanced the frontiers of science.  

Though these tools simplify the creation of scientific models, they do little to improve 

the complexity of parallel programming; they are explicitly serial.  It is possible to 

develop parallel, or even distributed, applications with these tools, but it is no easier 

than using a language such as Fortran or C. 

 Embracing parallelism is the best way to continue to improve performance 

over time.  Existing applications, especially those that are not multithreaded, are not 

yielding the incremental increases in performance they once were.  However, with 

effectively utilized parallelism and GPU technologies, research that was formerly 

impractical is now possible.  For less than $10,000, it is possible to purchase a 

computer that would rival the purpose-built supercomputers of only a few years ago 

(Van der Maar and Batenburg 2009).  The power is available, and affordable, but is 

only useful to those who can harness it.

 A common reason for the lack of adoption of parallel and distributed 

computing is the lack of appropriate training options.  This knowledge is often passed 

between individuals in a workgroup, and sometimes between workgroups.  The 

techniques of parallel and distributed programming can become a type of folk 

knowledge.  The formal training available is, in large part, targeted toward 

professional programmers and computer science students.  Students are expected to be 

familiar with basic networking concepts and UNIX system administration and have 

experience programming in C.  Not only is the typical user unlikely to possess the 

skills or prerequisites for these courses, they are also likely to gain little from them.  

Their goal is not an exploration of the depth of parallel and distributed computing, but 

to explore the breadth of the field and learn practical ways they can benefit from its 

adoption.
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Distributed OpenCL Overview
 Distributed OpenCL (DOCL), the product of this work, was designed to 

address the issues facing scientific computing today.  It is intended to bridge the gap 

between domain science and computer technology.  Future computing devices will be 

more diverse, and CPUs and GPUs of a wide variety of architectures are already 

common.  As single-thread performance no longer increases at its previous rate, the 

use of parallel programming is now essential.  Though options exist for utilizing these 

resources with current technology, they are generally not accessible to domain 

scientists.

 To achieve the greatest impact, it is important to re-imagine what an effective 

programming environment is.  It must be capable of producing applications that can 

work on a variety of new commodity architectures, and even across ad hoc clusters.  

Distributed OpenCL is a model and platform that allows domain scientists to leverage 

the advanced computer architectures that are now commonplace, from smartphone 

processors to high-end GPUs.  It was designed from the ground up to allow the 

creation, management, and utilization of ad hoc clusters of commodity products.

Figure 6: Distributed OpenCL task graph

 The programming model chosen was the task graph (Figure 6).  A task graph is 

an explicitly parallel model for describing an algorithm.  The concept is used in a 

number of applications designed for end users.  It is used here not only to express 

parallelism, but to appeal to an intuitive understanding of the user’s application.  Even 
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without knowing the details of how the tasks work, it is possible to infer the broad 

form of an application simply by looking at the structure of the graph.

 It is valuable to allow the use of any available resources, even when they are 

part of another computer.  A great deal of manual work was required to make 

distributed resources work together in a cluster.  Configuring each computer, 

diagnosing network issues and developing software are each involved, technical tasks.  

Distributed OpenCL includes an automatic framework for configuring ad-hoc clusters 

of available resources.  The goal was to make the process of setting up a cluster as 

easy as running an application.

 Solutions for automatically creating a cluster of many computers of greatly 

differing type and configuration are widely available.  These solutions, however, are 

limited to embarrassingly parallel7 applications.  The foremost example of this 

technology, the Berkeley Open Infrastructure for Network Computing (BOINC)8, is 

only appropriate for enormous problems where no communication between parallel 

tasks is necessary.  BOINC documentation emphasizes that only tasks with thousands 

to millions of independent work elements are appropriate for this computation model.

 The utilization of ad hoc clusters can decrease the cost of computation while 

improving speed of discovery.  More processing power is available on the desktop 

than ever before, and with the advent of programmable GPUs, it is not uncommon to 

have several teraFLOPS at each workstation.  Distributed OpenCL provides the tools 

that enable the rapid development of scientific models that can run on a vast array of 

current hardware, and it functions across an ad hoc cluster of commodity products.  

The complexity of the underlying processes is hidden from users, allowing them to 

think about their application rather than the infrastructure that is required to make it 

function.
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Architecture

 Distributed OpenCL is composed as a stack of loosely coupled software 

modules (Figure 7).  Each module is only dependent on the layers below it.  The base 

layer is responsible for producing a set of network benchmarks, including average 

latency, UDP packet loss, and throughput.  These metrics enable upper levels of the 

software stack to make informed decisions when creating the network connections 

used to coordinate cluster nodes, and when opening bulk data channels for transferring 

intermediate results.

Graphical Programming Language 
and User Interface

Scheduler

Peer-to-Peer clustering

Network Benchmarking

Distributed OpenCL

Figure 7: Distributed OpenCL Architectural Diagram

 The next-lowest layer of the stack is the peer-to-peer clustering system, which 

is responsible for opening control channels and reliably passing control messages 

between peers.  A protocol had to be chosen to encapsulate these messages as they are 

transmitted between peers.  Several strategies exist for performing this task.  Only 

those that are well supported by standards were considered, especially Binary 
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Encoding Rules (BER)9 and XML10.  Although not always supported by a standard, 

object serialization was considered for its simplicity.

 Serialization is the process of taking the information in memory (often 

distributed across several separate regions) and ordering it in a given pattern.  On the 

receiving side, the process is reversed.  Most object-oriented programming languages 

provide tools to aid serialization.  The downside of serialization is that the messages 

are often not interchangeable among languages.  This work is intended to be a 

specification used to develop a suite of compatible implementations; therefore, 

dependence on a single language is not desirable.

 There are standard systems for converting objects into a serial stream of data 

that are suitable for transmission over a network.  The Lightweight Directory Access 

Protocol (LDAP)11 uses the Basic Encoding Rules (BER) for extensibly representing 

structured binary data.  BER is a very efficient binary protocol; however, it has 

relatively few encoders and decoders (relative to XML), and it is much more difficult 

to debug compared to a text-based protocol.

 The eXtensible Markup Language (XML) was decided upon as the container 

format for messaging in Distributed OpenCL.  Though it is inefficient relative to BER, 

there are many times more implementations of the standard.  Because XML is a 

human-readable text format, it is easy to trace the communication between peers.  

Finally, XML also includes a syntax and structure verification model.  When the 

document is parsed, its structure is compared to the schema12.  If the verification 
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succeeds, the structure of the document will match the expectations codified in the 

schema.

 The peer-to-peer clustering framework also maintains an in-memory copy of 

the pertinent statistics and configuration of every other node.  This provides other 

elements in the software stack easy access to the information required for scheduling 

and diagnostics.

Cluster
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5: CPU

4: GPU

1: CPU
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Cluster compute devices Task-device mapping Input task graph

Figure 8: Hierarchal representation of a cluster of five compute devices in three hosts 
(left).  A sample task graph (right) and the mapping between tasks and compute 

devices (center).  The mapping diagram shows the relative duration of compute (box 
length) and network communication (distance between boxes with dashed lines).

 The scheduling layer is responsible for mapping tasks from the user’s 

algorithm to the compute devices responsible for processing them.  This mapping is 

many-to-one, because each task runs on exactly one compute device, and any compute 

device could be assigned none to many tasks (Figure 8).  This layer is extensible and 

provides a straightforward method for developing new algorithms that generate this 
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mapping.  It is also responsible for constructing the concrete manifestation of the 

abstract representation of the user’s algorithm.  This includes preparing the compute 

devices on each of the peers, creating the bulk transfer network connections, and 

initiating the flow of data between those peers.

 At the top of the software stack are the graphical programming language and 

user interface through which users define their algorithm, monitor the cluster, and 

submit and monitor jobs.  The canonical implementation is written in Apple’s user 

interface and application framework, called Cocoa13, but is designed so that the core 

logic is as divorced as possible from the user interface logic.  User project files are 

written to disk in cleartext using XML, reducing the complexity of developing third 

party tools and editors.  Also, by using cleartext document files, it is possible to 

employ standard version management systems such as Git, CSV, SVN, and Perforce.  

An XML Schema is also provided to validate document files.

Previous Work

 The Message Passing Interface (MPI) (Gropp and Lusk 1993) has been 

effectively used for nearly two decades.  Though it is the de facto standard for cluster 

computing, it poses significant challenges for new users and non-experts.  For a 

typical user of a community model, such as the Regional Ocean Modeling System 

(ROMS) (Shchepetkin and McWilliams 2005) or NCAR’s Community Climate Model 

(Kiehl et al. 1998), configuring and troubleshooting MPI is be beyond their abilities.  

A study done to determine the optimal qualifications necessary for introducing the 

concepts of MPI found that a course in data communications or networking was 

required (Apon et al. 2001).  The configuration alone of MPI can be a significant 

challenge to these users, and the knowledge required to set up a cluster using MPI is 
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relatively minor compared with the expertise required to develop new models and 

applications.

 There have been attempts to develop languages that are explicitly parallel.  

One example, Sequoia (Fatahalian et al. 2006), took the novel approach of explicitly 

programming to the memory hierarchy.  Programmer define their application in terms 

of ever smaller work units, which are designed to fit into the ever-shrinking memories 

close to the processing hardware.  In the Fatahalian paper, their primary example is a 

large matrix multiplication.  At each level, the task is decomposed into smaller matrix 

multiplications.  For example, a 32x32 matrix could be used as the smallest unit, and it 

would be able to fit entirely into an example processor’s Level 1 cache.  Not only are 

they able to decompose the problem into pieces that perfectly match the underlying 

hardware, but each of the blocks is intended to execute in parallel. This work 

unfortunately falls into the same trap as many other programming languages: it is 

intended for an advanced audience.  The cluster support is implemented using MPI, 

bringing with it additional complexity.  Sequoia hasn’t made obvious progress in the 

last six years; though it is occasionally cited in literature, it isn’t clear if it is being 

used for development.

 The RapidMind platform (McCool 2008; McCool and Inc 2006) is another 

explicitly parallel programming package intended to take advantage of GPUs and 

other emergent massively parallel devices.  It is, unfortunately, another example of a 

programming language intended to reduce the complexity of these applications that 

doesn’t appear to meet its goal.  The actual language constructs used in RapidMind 

are, if anything, more complex and obtuse than those it is intended to replace.

 There are several solutions that generate code able to run on the GPU given 

existing source.  Lee et al. describe a method for translating OpenMP applications into 

CUDA (Lee, Min, and Eigenmann 2009).  The Portland Group released a Fortran 
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compiler that can off-load repetitive tasks to the GPU14.  Another company, 

AccelerEyes, produced a product called Jacket15 that can run Matlab code on the GPU.  

Even Mathworks, the maker of Matlab, added optional GPU support to its platform as 

part of the parallel computing toolbox16 .  These solutions allow existing applications 

to incrementally transition to GPU programming.  Though these systems simplify the 

transition to GPU programming, they are limited in their ability to make the most of 

the platform.  Automatic code generators are rarely able to produce solutions as 

efficiently as humans.

Figure 9: OpenDX user interface (opendx.org)
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 There are many examples of graphical programming languages; most are 

intended to provide a simple and approachable method for defining visualization tasks.  

OpenDX and Quartz Composer best exemplify these languages.  OpenDX (Figure 9) 

was written in the early 1990s at IBM (Lucas et al. 1992). IBM has since released 

OpenDX under an open source license.  It is intended to be used in conjunction with 

other scientific tasks and is able to run in a client-server environment.  The user 

interface runs on a lightweight client workstation, with the heavy computation 

occurring on a mainframe or even a cluster of computers communicating with MPI.  It  

is a powerful visualization tool able to perform complex operations on large datasets.  

Approaching two decades in age, it has struggled to keep up with current technology.  

It heavily leverages the X windows toolkit and is difficult for end users to install, 

requiring third-party solutions.  As a visualization tool, OpenDX is not appropriate for 

general computing tasks; however, the graph-based programming environment is 

approachable, expressive, and extensible.

Figure 10: Quartz Composer user interface (Apple)
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 Another example of a graphical programming language for visualization is 

Quartz Composer, developed by Apple17 (Figure 10).  It is included in the Xcode 

Integrated Development Environment (IDE) and is not designed for end users. 

Quartz Composer is intended to be a tool for testing image transformation filters and 

developing interactive Quicktime compositions.  Like OpenDX, it allows the user to 

define a task graph with independent operations and explicit dependencies.  The pink 

tabbed nodes (labeled 1 and 2) are output nodes and are responsible for drawing to the 

screen.  The green nodes (2b and 2c) are computation nodes.  Finally, the blue node is 

a user event node.  The Quartz Composer runtime system uses this graph to construct 

a system that evaluates the nodes in parallel whenever possible.  OpenCL support was 

added to the application; there is a node that allows the user to enter custom OpenCL 

kernels.  The graphical programming language used in Quartz Composer influenced 

the design of the language developed for Distributed OpenCL.

 In addition to others’ independent work on scheduling algorithms for cluster 

applications and graphic programming languages, I developed a task graph scheduler 

for the IBM Cell/B.E. eary in my graduate career.  This tool was not able to share 

work across hosts, but it did serve as the inspiration for this project.  The Cell/B.E. 

scheduler was developed out of necessity; programming for the Cell is notoriously 

difficult, and the scheduler was intended to abstract some of that complexity away.  

The programming model was inherently serial, as it was implemented in C.  To 

describe the task graph, the programmer would have provided an SPU kernel task 

implementation, callback function, and priority.  The task implementation was a 

reference to the compiled object file containing the SPU machine code, and the 

callback function was a function pointer that was called when the task completed.  The 

callback function’s responsibility was to enqueue topologically dependent tasks.  The 
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priority field was used within a priority heap data structure containing task elements 

that are eligible to run.  This system, while still complicated, significantly improved 

programmer efficiency during Cell/B.E. software development.  In addition, by 

dynamically mapping tasks to SPUs, the overall efficiency of the system improved.  

The improvement in system efficiency was due to the balancing effect that task 

dispatching had on pipelined computation.  I realized that the benefits of task graph 

representations for heterogeneous multiprocessing could be extended by supporting 

OpenCL and providing support for distributed computation across an ad-hoc cluster.  

The previous work relating to graphical programming languages provided the 

inspiration for the form of the task graph representation.  Describing these structures 

graphically leverages more of the human brain than text-based source code is able to.  

The structure and flow of an algorithm is immediately obvious, and the detailed 

implementation is available when the user needs it.

Materials and Methods

 The network used for the development and analysis of Distributed OpenCL is 

pictured in Figure 11.  A small cluster of Apple MacPros, each of which contains an 

Intel 82598 (Oplin) 10GBase/T ethernet adapter (Figure 12c), eight 2.66Ghz Intel 

Xeon cores, and between 6 and 12 GBytes of RAM running MacOS 10.7 (Lion), were 

used as the ad-hoc cluster of workstations.  The MacPros each contain a variety of 

GPUs, including the Nvidia GeForce GTX285 (Figure 12a) and the ATI Radeon 

HD4870 (Figure 12b).  The configuration of each host is provided in Table 1.  Housed 

in a production computing facility, the machines were loaded into a standard 19-inch 

computer rack (Figure 12d).  Maintenance and management of the machines was 

completed through Apple Remote Desktop (ARD).  Using the ARD interface, it is 

possible to control the system console and run scripts, either on demand or scheduled.
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Figure 11: Distributed OpenCL development cluster architecture
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Table 1: Development cluster configuration

System Compute Devices Memory Network

Tundra1 2x Intel Xeon Quad-core
Nvidia GT120

Nvidia GTX285

6 GBytes Intel 82598 Oplin, 10Gbit

Tundra2 2x Intel Xeon Quad-core
Nvidia GT120

ATI HD4870

6 GBytes Intel 82598 Oplin, 10Gbit

Tundra3 2x Intel Xeon Quad-core
Nvidia GT120

Nvidia GTX285

6 GBytes Intel 82598 Oplin, 10Gbit

Tundra4 2x Intel Xeon Quad-core
Nvidia GT120

ATI HD4870

6 GBytes Intel 82598 Oplin, 10Gbit

Tundra5 2x Intel Xeon Quad-core
Nvidia GTX285

12 GBytes Intel 82598 Oplin, 10Gbit

Tundra6 2x Intel Xeon Quad-core
Nvidia GT120

Nvidia GTX285

12 GBytes Intel 82598 Oplin, 10Gbit

Tundra7 2x Intel Xeon Quad-core
Nvidia GT120

ATI HD4870

12 GBytes Intel 82598 Oplin, 10Gbit

Tundra8 2x Intel Xeon Quad-core
Nvidia GT120

Nvidia GTX285

12 GBytes Intel 82598 Oplin, 10Gbit
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Figure 12: Materials used; (a) Nvidia GeForce GTX285, (b) AMD/ATI Radeon 
HD4870, (c) Intel 10GBase-T network adapter (82598), (d) eight rack-mounted Apple 

MacPro workstations, and (e) Arista 7140T-8S 10GBase-T switch.

 The 10Gbit network fabric used was provided by the Arista networks 

7140T-8S 48 port 10Gbit network switch (Figure 12e).  The switch has 40 ports of 

10GBase-T, and 8 SFP+ module garages.  Designed to be low-latency and high-

throughput, the 7140T-8S never demonstrated performance less than the 10Gbit line 

rate.  Port-to-port latency is specified to be less than 2.8 microseconds.  The largest 

contribution to the latency is the 10GBase-T physical layer circuitry, which is 

responsible for producing and receiving the signal used in the twisted pair wiring 

(Figure 13).  Normally, the switch functions in cut-through mode, where packets are 

switched from source to destination ports without buffering (non-blocking).  In some 

configurations, however, it is necessary to use buffering between ports (store and 

forward).  If there is more than 40Gbit/second throughput from one FM4224 ASIC to 
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another, the switch will transition to store-and-forward mode.  To ensure the best 

performance, all eight cluster nodes were attached to only one of the three ASICs.  The 

cross-sectional bandwidth of the ASIC was sufficient to ensure non-blocking operation 

at all times.

FM4224
300 ns

FM4224
300 ns

FM4224
300 ns

1.1 μs 1.1 μs

10 GE x 4

10 GE x 410 GE x 4

Rx-10GBase-T Phy. Tx-10GBase-T Phy.

Figure 13: Arista 7040T-8S switch architecture (Source: Arista Networks)

 Figure 11 shows the architecture of the network environment used to develop 

Distributed OpenCL.  The architecture was designed to test the platform in a variety of 

use cases.  It was important to identify common scenarios that would be encountered 

in real-world usage and develop test protocols to verify correct operation.  As the 

platform is intended for ad hoc clusters, it was important to develop a test that 

demonstrates correct operation when the nodes are attached to the college network in 

the way that any other workstation would be.  Another use case is a purpose-built 

research cluster used by one or more principal investigators.  In this case, a high-speed 

private network could be designated for the cluster.  Cases where the client 

workstation is and is not a part of this network were evaluated.

 In Figure 11, all of the 1Gbit network connections are on the Oregon State 

University College of Earth, Ocean, and Atmospheric Sciences core network 

infrastructure.  These connections are used in the case of ad-hoc clusters and when the 

10Gbit network is used only as a backhaul network.  The 10Gbit connections are an 

entirely private network with an un-routable subnet (172.20.64.0:255.255.240.0).  This 

network functions as the high-speed network that may, or may not, have client access.  
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It is vital to ensure that the peer-to-peer clustering worked in either case.  As it is 

unconventional to have more than one network connection on a single network node, 

some protocols made assumptions that do not hold in this case.

 The fitness of the algorithms used to implement Distributed OpenCL was 

evaluated through empirical testing.  Whenever possible, comparisons to theoretical 

best-case scenarios were used.  In the case of network benchmarks, comparisons were 

made against results derived by industry-standard tools, such as Netperf 18.
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Peer Discovery, Resolution and Latency Measurement
 Distributed OpenCL is intended to be easy to use and accessible to non-

programmers.  To achieve these goals, it is important to eliminate any manual 

configuration, replacing it with automatic resource discovery and configuration.  Zero 

configuration networking (Zeroconf) (Guttman 2001) was chosen for peer discovery 

and address resolution.  Zeroconf is a collection of technologies: Dynamic 

Configuration of IPv4 Addresses19, multicastDNS20, and DNS21 Service Discovery 

(DNS-SD) (Steinberg and Cheshire 2005).  Apple markets Zeroconf under the Bonjour 

trademark, and it is intended to eliminate manual configuration of network devices, 

even on networks that do not have DHCP22 servers.  A device can self-assign an IP 

address, discover network services such as routers and printers, and resolve IP 

addresses for these services without configuration or infrastructure.  The ease of use 

that Zeroconf networking promises, if it can be utilized, would dramatically reduce the 

complexity of configuring an ad-hoc cluster.  Though it was developed primarily by 

Apple, libraries that implement Bonjour on Windows and Linux exist.

 Zeroconf networking was designed with consumers in mind, so assumptions 

were made that are appropriate in that context but troublesome in less common 

configurations.  In a home environment, it is very uncommon for any network device 

to have more than one IP address, either on the same or multiple network interfaces.  

In the enterprise, however, this condition is much more common.  For example, the 

research network used during the development of Distributed OpenCL has at least two 

non-routed subnets on the same VLAN.  The first is the standard network that the 

Internet and file sharing traffic use.  The second is used for out-of-band management 
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of servers, commonly marketed under marks such as Integrated Lights-Out 

Management or Dell Remote Access Console (ILOM and DRAC, respectively).  A 

user that requires access to the internet and remote management networks can either 

use two network adapters or configure one network adapter with two IP address, one 

in each subnet.  This configuration isn’t compatible with Zeroconf networking in its 

native form.  A workaround for this problem was identified, and is presented under the 

using mDNS on a network with multiple subnets subheading.

Peer Discovery with DNS-SD

 The peer discovery and resolution processes depend on the mDNS and DNS-

SD components of Zeroconf.  Normally, DNS servers are specified by the user or 

automatically through DHCP.  Because Zeroconf dispenses with all user configuration 

and DHCP, mDNS was designed to send DNS queries to a specific multicast group.  

Every Zeroconf-aware device subscribes to this multicast group and responds to every 

pertinent query.  All mDNS hostname entries are in the virtual domain local. and are 

not accessible from outside the multicast domain.  Hostname conflicts with local. are 

prevented by the Zeroconf protocol by requiring new publications to first query local. 

for the existence of a device of the same name.  If a conflict is found, a number is 

appended to the requested host name, and the process is repeated.

 In concert with mDNS, DNS-SD adds a record to DNS for service types.  

DNS-SD allows clients to perform a query for services rather than hosts.  See Figure 

14 for the hierarchical organization of a Bonjour service name.  The service type is the 

unique designator for a protocol.  For example, a query for _ldap._tcp.example.com is 

a service discovery query for an LDAP server using TCP directed toward the 

example.com DNS server.  Examples of other service types are _http, _ssh, and _ipp 

for the HyperText Transport Protocol (HTTP), Secure SHell (SSH), and Internet 

Printing Protocol (IPP), respectively.  The underscore characters are prepended to the 

service type and transport protocol fields to prevent collisions with existing 
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hostnames, as an underscore is an illegal character in DNS hostnames23. The Internet 

Assigned Numbers Authority (IANA) maintains a database with DNS-SD service 

types24.  This database is a first come, first served repository for service type 

identifiers and contains contact names, protocol descriptions, and other information 

for each service type.  The Distributed OpenCL protocol has been registered in the 

database as _dist-opencl.  When used with mDNS, DNS-SD works by performing a 

similar query, but within the local. virtual domain.  In this case, the request would be 

_ldap._tcp.local., and would result in a DNS query placed on the multicast group.  

Each host participating in mDNS with a matching service would respond.
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Figure 14: Organization of a Bonjour service name (Source: Apple)

 In addition to the service type, DNS-SD allows additional fields to be added to 

the DNS TXT record, and this protocol defines three such fields, summarized in Table 

2.  The first field is named UUID and contains the Universally Unique ID (UUID) or 

Globally Unique ID (GUID) of the host.  This field is used to ensure that the node is 

unique before peering.  This field is especially important if a pair of nodes is in a race 
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condition, attempting to peer with one another at the same moment.  The UUID field 

allows for the detection of a duplicate peering and rejects one of them.  It is not 

important that the hardware UUID is used, only that it is unique and remains constant 

for a given node, though it may change during system reboot.

Table 2: DNS-SD TXT record field descriptions

TXT Record field Type Note

UUID String Used to ensure unique pairing

TCPendpoint Integer Port number for TCP benchmarking

UDPendpoint Integer Port number for UDP benchmarking & reachability

 The second field added to the DNS-SD TXT record is UDPendpoint, which 

provides the port number of an echo service.  The echo service reflects packets back to 

the sender and is necessary for calculating network latency and mitigating the issues 

caused by the mDNS edge-case described in the next section.  The final field is the 

TCPendpoint, which is substantially similar to the UDPendpoint.

Latency Measurement and mDNS Across Non-routed Subnets

 Because it uses a multicast group rather than an assigned IP address, mDNS 

makes no guarantees that a resolved IP address is actually reachable.  For example, if 

one machine is using 10.1.1.2 and another is using 128.193.1.2 on the same VLAN, 

mDNS will produce query responses between each device, even though there may not 

be a route between them.  A reachability test was devised to address this issue.  For 

each service that is discovered, but is not yet a peer, an mDNS resolution is performed.  

As IP addresses arrive, they are added to a queue.  Each address is then tested for 

network reachability and latency.  This test consists of a series of ping-like UDP 

packets sent to the UDPendpoint port designated in the DNS-SD service type 

description.  UDP, rather than an ICMP ping, was used because superuser privileges 

are required to transmit ICMP packets (Wright and Stevens 1995).  By using UDP, 
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Distributed OpenCL does not require elevated privileges, increasing security and 

simplifying application installation.

Table 3: Contents of the UDP ping packet

Offset Type Name
0 uint32 ttl (network order)

4 uint64 timeStamp

12 in_addr_t localAddress

 The UDP packets contain a TTL-like field that is decremented each time the 

packet is reflected.  When it reaches ‘0,’ the packet is processed by the reachability 

algorithm.  When initiating a reachability test, this field should only be set with odd 

numbers; otherwise, it will be processed by the reachability system of the host that did 

not originate the packet.  If this were to occur, the packet would be discarded.  The 

packet also contains a 64-bit, roughly nanosecond precision, time stamp.  The content 

of the timestamp field is flexible in terms of epoch and format.  This data is used only 

on the host that originated the packet, and is only required to be meaningful to that 

host.  Finally, the UDP packet contains an in_addr_t (32 bit integer containing the 

IPv4 address in network byte order (Wright and Stevens 1995)) field.  The purpose of 

this field is to inform to the sender which address was used to originate the packet.  

There are no portable APIs that allow user-level applications to know what routing 

decisions the OS made while sending a packet.  The recipient has access to this 

information, however, when the packet is received; it is in the sender’s address field.  

By copying this address into the data portion of the packet, we have complete and 

accurate information.

 The resolution/reachability process for each address occurs in parallel.  Once 

one of the available addresses demonstrates a satisfactory packet loss rate, each 

address is evaluated based on merit.  Address resolutions that have poor packet loss 

rates -- 50 percent or more was used -- are immediately canceled.  Other pending 

address resolutions are allowed to proceed.  Once every resolution is complete, the 
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network reachability and latency service provides this information to the upper level in 

the software stack.
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Peer To Peer Clustering
 Distributed OpenCL creates compute clusters automatically, using the 

principles of peer-to-peer (P2P) system design.  The central tenet of P2P networking is 

that the system requires no specialized master node.  The definition can be stretched to 

allow for master nodes, though they are often selected from among the peers.  

Typically, each peer executes identical code, but masters, or super-peers, assume 

greater responsibility.  The Skype video conferencing system and KaZaA use super 

peers (Zhang et al. 2010) in their networks.  Distributed OpenCL implements a pure 

peer-to-peer system; at no point are any masters or super-peers required.

 There have been other research projects exploring the applicability of P2P 

systems in the context of science and high performance computing.  Most of that 

research was related to compute grid initiatives (Czajkowski, Foster, and Kesselman 

1999).  Iamnitchi et al. explored whether P2P architectures can be used for research 

discovery in grid environments (Iamnitchi, Foster, and Nurmi 2002).  Resource 

management on grids using P2P was attempted (Uppuluri et al. 2005).  Resource 

discovery on grids using super peers (Mastroianni, Talia, and Verta 2005) and resource 

discovery and membership management (Mastroianni et al. 2005) were explored by 

Mastroianni.  Clusters have also been built using the Gnutella peer-to-peer network 

protocol (Ripeanu, Lamnitchi, and Foster 2002), which operates over the Internet.

 Abbes and Dubacq performed a study that evaluated the applicability of 

Zeroconf (the approach used in this paper) relative to Pastry25 for service discovery in 

a grid environment (Abbes and Dubacq 2009).  Pastry is implemented using 

Distributed Hash Tables (DHT), a common strategy for resource discovery.  In their 

paper, Abbes and Dubacq demonstrated that the Zeroconf architecture is an efficient 

and reliable protocol for resource discovery, and that Zeroconf is capable of 

discovering 100 percent of 1,000 nodes in a little as a few hundred milliseconds, easily 
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besting DHT.  Their work, however, did not include any attempt to initiate TCP 

connections between each of those nodes.  Because their cluster was an in-production 

compute grid facility, this step wasn’t necessary, as cluster homogeneity was assumed.  

Distributed OpenCL, in contrast, must not make these assumptions.  It is necessary to 

connect with each node to ensure that they are configured correctly, to collect system 

metrics, and to open a command channel.

 By and large, the protocols and techniques in the literature were intended for 

use with the compute grid initiatives or supercomputer facilities.  It is clear that much 

of the research to date has been to incrementally enhance the capabilities and function 

of existing distributed computing models.  In contrast, DOCL bridges the gap between 

the complexity of cluster configuration and parallel programming and the user-

friendliness of tools such as Matlab.

 The P2P system is responsible for establishing control channels between each 

system that was discovered using the Zeroconf DNS-SD system.  Using these control 

channels, the peers exchange information about their available resources, peers, and 

network interfaces.  This system lays the foundation for the upper layers in the 

software stack, including cluster management, scheduling, and user interface elements 

for diagnostics.

 In an effort to quantify the wall-clock efficiency of the clustering process, we 

characterized the time required to complete peering with a variable number of nodes.  

Theoretically, the time required to build the cluster using the P2P protocol would grow 

linearly with the number of nodes.  The best estimate of the total time required is 14 

seconds plus 5 seconds per host after the second host, or t = 14+max(0,5*[n-2]) where 

t is the wall-clock time and n is the number of hosts.  It is possible to reduce the 

peering time, perhaps to a log factor, but this would increase the risk of duplicate or 

missed peering.  Detailed analysis and empirical data are contained in the results 

section.
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Protocol Details

 The peer-to-peer clustering protocol is composed of three layers.  The first is 

responsible for discovering the presence of peers using multicast DNS and DNS 

Service Discovery, described in the Peer Discovery, Resolution and Latency 

Measurement chapter.  

 The next layer is responsible for ensuring an orderly initiation of TCP 

connections between nodes.  It is necessary to have exactly one TCP socket open 

between each pair of hosts.  Reliably enforcing this constraint required the bulk of the 

engineering effort of the P2P system.  There were no examples of previous work 

appropriate to this task available in the literature.  This work likely represents the first 

example of ad hoc P2P cluster construction using Zeroconf networking.  The output of 

this protocol is a fully connected graph of cluster nodes and TCP sockets.

 Finally, the application layer is built using XML.  This layer is responsible for 

ensuring reliable inter-node communication.  XML was chosen because it is well 

known, has many high quality implementations, and provides a mechanism for input 

sanity checking.

mDNS and
DNS-SD

System 1

Peer to Peer Clustering 

System 2

XML Messaging Schema

TCP - Mediated by
peering protocol

OSI Layers 1&2
Physical and Data link

OSI Layers 3-5
Network, Transport and Session

OSI Layer 6
Application

Corresponding layers
in the OSI Model

Figure 15: Architectural makeup of the cluster middleware.  The software stack is 
associated with the corresponding layers in the OSI model.  Two peers are shown, but 

any number of peers could be interconnected using the protocol.
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TCP Peering protocol
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Figure 16: Peering protocol flow chart.  Asynchronous events are linked to the action 
that initiated them with dashed lines.  Network communications between peers and 

their algorithm flow are indicated with dotted lines.
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 The peering process is implemented as an algorithm that spans a pair of hosts 

and includes four types of asynchronous events.  The complete flowchart for the 

protocol is presented in Figure 16; and the labels are used to unambiguously reference 

events.  Processing begins (a) with the initiation of an mDNS service type query for 

_dist-opencl (b).  Once the query begins, an alarm is set for an interval of fourteen 

seconds plus a random offset up to five seconds (c).  Within this period, when a host is 

discovered (t) the alarm is canceled (l) and another is set for five seconds plus a 

random interval up to five seconds (m).  Reachable addresses are found using the 

resolution and reachability processes described above (n,o).  The lowest latency 

address is chosen, and the TCP control channel is opened (p,g).  The initial Peer XML 

message is sent (q,h), and the UUID is checked to prevent duplicate peering (i).  

Finally, the peering is confirmed with a reciprocal Peer XML message (j,s).

 These alarm intervals were used to mitigate the effects of race conditions 

during cluster start-up.  During development, every host was started at once.  With 

static intervals, every node would transition to the published state at the same time.  

Newly discovered hosts are only peered with before the local host publishes (u).  This 

led to incomplete peering.  The random offset reduced the race condition to a degree; 

however, once the first host (the one with the smallest offset) published, every other 

host would immediately publish, causing a second race condition.  Suppression of this 

race condition was achieved by deferring the publication by the second random 

interval.  This structure has the effect of serializing the peering process.  This 

serialization forces the scaling of the peering process to a linear factor, rather than 

constant or logarithmic.  The benefit, however, is that the consistent global state of the 

cluster is maintained.

 Even with these strategies, it is still possible for two or more hosts to begin 

publishing coincidentally.  In this case, both nodes will be notified of the new 

publication after they have stopped connecting to new hosts (v).  If the UUID of the 

new host is already known, it is a publication of an existing peer and is ignored (y).  
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However, if the UUID is unique, another alarm is created (w).  Once this alarm fires, 

the peering process begins as normal (x).

XML Messaging protocol and schema

Message

Bench

Latency

kernel

update

*

system

network

peers

opencl opencl_device

peer bench

interface service

peer

Logs Log Event

DOCL-node DOCL-argument

DOCL-argument

Diagnostics

Benchmarks

Peering

OpenCL Scheduling and Execution

Throughput

device

mean

prepare

run

stop

DOCL-node

DOCL-node

DOCL-node

error

Figure 17: XML Message schema hierarchy.  The * node is a wildcard and can contain 
any node descendant from, and including, the System node.

 Once the peer nodes are discovered and TCP control connections are open, it is 

necessary to define an application layer protocol.  XML was chosen for this task 

because it is sufficiently established and has many robust implementations on virtually 
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every platform, and it is possible to validate XML messages against a reference 

schema.  A side benefit of XML is that the messages are human-readable, even when 

using packet tracing, simplifying debugging tasks.

 The basic vocabulary and hierarchy of the XML messages begins with a 

message node.  This node is the parent of every message sent between nodes.  A 

message node may have a collection of child nodes, as shown in the hierarchy in 

Figure 17.

 The details of the XML messaging protocol are best illustrated with a brief 

description of each message and element type.  Arbitrary messages can be composed, 

provided these rules are followed.  A value of null in the child field indicates that this 

element can be sent without children.  In this case, it could be interpreted with distinct 

meaning from the variant that contains children.  Both meanings, if applicable, are 

provided in the description.

Logs

 Children:  Log, null

 Attributes:  host - string: the Bonjour host name

 Description:  The Logs message is a request for the logs from the receiving 

host if it has no children.  In the case where the Log child is provided, it is either a 

response to a previous Logs message or an un-prompted update.

Log

 Children:  Event

 Attributes:  timestamp - string: time the log was created

 Description:  This element is the parent to every log entry.  It is best to 

consider it the console log in its entirety.

Event

 Children:  String element containing the log entry text
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 Attributes: severity - string: Failure, Warning, Information, or Debug

   timestamp - string: time the event occurred

 Description: This element encapsulates a single event.  The timestamp 

attribute allows for accurate reconstruction of the sequence of events, assuming the 

hosts’ clocks are synchronized.  The severity attributes allow the logs to be filtered.

Bench

 Children:  Throughput, Latency, Kernel

 Description: The Bench element contains one or more children.  The child 

elements contain benchmark information relating to their type.

Throughput

 Children: String element representing the mean throughput (MB/Sec)

 Attributes:  local_address - string: IPv4 address of the sending interface

   remote_address - string: IPv4 address of the receiving interface

 Description: This element contains the results of a complete throughput 

benchmark operation.  The local and remote addresses are from the perspective of the 

sender.

Latency

 Children: String element representing the mean latency (in seconds)

 Attributes:  local_address - string: IPv4 address of the sending interface

   remote_address - string: IPv4 address of the receiving interface

   std_deviation - float: Standard deviation of benchmark samples

   packet_loss - float: Observed rate of packet loss

 Description: This element contains the results of a complete latency 

benchmark.  In general, this element will be included with the initial Peer element in 

the first message to a remote host.  The data represented is likely to be collected 

during the resolution/reachability testing.

42



Kernel

 Children: Device

 Attributes:  uuid - string: UUID of the kernel being benchmarked

 Description: This element contains a collection of benchmark results for a 

single OpenCL kernel.  When a kernel update is sent using the DOCL-Node element, it 

is benchmarked on every OpenCL compute device in the local system.  These results 

are added as children to this element.  A unique UUID is generated for every kernel.  

This information is provided when the kernel is updated, and the same value is used in 

the uuid attribute.

Device

 Children: Stats, string: Type of error; argument, build, enqueue, etc.

 Attributes:  type - string: type of the OpenCL device: GPU, CPU

   model - string: device model name as reported by OpenCL

   index - integer: OpenCL device index (unique ID)

 Description: This element contains basic information about the OpenCL 

device for a given kernel benchmark.  The type and model strings allow the user 

interface to display relevant context for the results, and a subset of similar models can 

be benchmarked to save time.  The index is used during scheduling to uniquely 

identify an OpenCL device on a remote machine.  If the kernel is unable to run on the 

given device, the error type is provided as a string element.  Reasons for failure 

include argument, build, enqueue, or unknown failures.  If the benchmark is 

successful, the relevant statistics are provided in the Stats child element.

Stats

 Children: float: mean runtime for the kernel

 Attributes:  min - float: minimum observed runtime for a single instance

   max - float: maximum observed runtime for a single instance
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   std_deviation - float: sample standard deviation

   samples - integer: number of runs used in the sample

 Description: This element contains a digest of the results from a kernel 

benchmark on a single device.

Peer

 Attributes:  name - string: Bonjour name for the peer

   uuid - string: UUID of the peer

 Description: The peer element is either a peering request or an 

acknowledgement.  If the recipient has not yet sent a peer message to the sender, it is a 

peering request.  If the recipient has sent a peer message to the sender, it is a peering 

acknowledgement.

Update

 Children: System (or any child thereof), string: error

 Attributes:  Xpath - string: Xpath for the update pull or push

 Description: The update element allows the peers to transfer their system 

tree.  The system tree contains basic inventory statistics, network information, and 

cluster data from the remote peer’s perspective.  The peers structure in the system tree 

contains a list of every peer the remote system is associated with, including their 

network benchmark information.  This message contains an Xpath26 attribute that 

allows subtrees to be updated in place, thus increasing efficiency.  If this node has no 

children, it is considered an update request, or pull.  An unsolicited update message 

containing children is an update push.

DOCL-Node

 Children: DOCL-Argument
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 Attributes:  type - string: class name for node type

   name - string: node name

   uuid - string: unique UUID for node

   globalWorkSize - string: kernel global work dimension

   localWorkSize - string: kernel local work dimension

   kernelName - string: OpenCL kernel name (may equal name)

   buildOptions - string: Build options for the OpenCL compiler

 Description: A DOCL-Node element is an XML representation of an 

OpenCL kernel node.  The type attribute specifies the class name of potential 

subclasses.  For now, only DAGKernelNode is implemented.  The name is the human 

readable name of the node; kernelName is the name of the OpenCL kernel in the 

source code, and it may or may not be the same as name.  The uuid attribute is the 

UUID that uniquely identifies the kernel.  The localWorkSize and globalWorkSize 

attributes specify the size and dimensions of the problem space.  These will be 

described in more detail in the graphical programming language chapter, but they are a 

3-tuple of the size of the x, y and z dimensional size of the problem.  This is used in 

OpenCL to spawn work threads.

DOCL-Argument

 Attributes:  label - string: name for the attribute, must be C compatible

   type - string: intn, floatn, booln, image2D, image3D

   direction - string: input, output

   endianness - string: little, big

   size - integer: elements in the array (1 for scalar)

   uuid - string: unique UUID for the attribute

   port - string: port number for source attributes

   peer - string: peer UUID for source attributes
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 Description: The DOCL-Argument element contains all the information 

pertinent to a single kernel attribute.  Typically, this element is a child of the DOCL-

Node element; however, it can be sent alone when port or peer information is updated 

or required.  Those fields provide the information required to create bulk data 

connections for passing kernel arguments during execution.  The other fields -- 

direction, endianness and size -- are used to create OpenCL memory buffers, and to 

create sample buffers for benchmarking kernels.  The uuid field is used to uniquely 

identify the argument.

 This schema is the foundation of the cluster management platform.  All inter-

node communication exists within this framework.  The System tree was omitted for 

brevity; its contents are best shown with an example system tree.  The listing provided 

in Appendix B is a sample from one of the development cluster nodes.  The opencl 

subtree contains all of the relevant information collected from the OpenCL library, 

including software versions and devices.  The device entries contain the number of 

cores, core frequency, memory sizes and maximum work items sizes.  The 

global_mem_size attribute provides the quantity of memory available to each of the 

devices.  The CPU device is special, because the global memory is the same as system 

memory.  While the relatively verbose nature of XML may seem inefficient, in 

practice it doesn’t represent a significant burden.  Most XML messages fit within a 

single 1500-byte packet.  If it were to become burdensome, the specification could be 

extended to use some form of compression.

Prepare, Run and Stop

 Children: DOCL-Node

 Description: The Prepare message is a request for the remote peer to 

initialize a kernel node for processing.  Within the prepare method, the kernel 

arguments are prepared, and the network information is derived and returned to the 

caller.  The Run message instructs the remote peer to begin processing for a kernel 
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node, and the Stop message halts execution.  These commands are described in more 

detail in the Task Scheduling Framework for Heterogeneous Computing chapter.

Results

 To quantify the actual scaling behavior with a variable number of nodes, the 

number of participating nodes was scaled from three to eight.  For each number of 

nodes, ten tests were run.  The peering process was considered complete when every 

node had peered with every other node, and the peering time was found by taking the 

delta of the completion time and the time that the first agent process was launched.  

These results are shown in Figure 18.

 The estimated time required to complete the peering process was 14 seconds 

plus five additional seconds per node after two nodes, or t = 14+max(0,5*(n-2)) where 

t is the wall-clock time and n is the number of hosts.  This estimate was derived by 

combining the constant time spent searching for published nodes and the additional 

time added for each discovered node.  This additional time does not apply for clusters 

with two nodes or less, so those cases clamp to the lower bound set by the initial 

search.  The estimated time uses the constant offsets set in the protocol, ignoring the 

random offset.  It was assumed that the random variation would average out.  In 

practice, the value of these constant delays could be tuned.  The values chosen are a 

compromise between reducing latency and ensuring complete discovery on our 

network.

 The observed completion time scaled better than predicted -- 3.37 seconds 

rather than 5 -- although the y-intercept was higher -- 15.16 rather than 14.  The likely 

cause of the shallower slope in the observed data is that although the nominal delay 

between each node publishing is 5 seconds, it includes a random variance to reduce 

the likelihood of collisions.  The effect is that the lowest delay time wins, bringing 

down the average of the total delay.  The difference in y-intercept is likely caused by 
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the overhead introduced by resolving the mDNS records and performing the 

reachability tests.
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Figure 18: Observed and predicted scaling of cluster creation time.

 While the protocol performs well on small clusters, the peering time could 

become onerous in large clusters.  Assuming that the linear trajectory holds through a 

thousand nodes, it would take approximately an hour for those nodes to peer.  

Furthermore, because each peer maintains a control connection with every other peer, 

it is possible to approach the operating system’s limit on open file descriptors for a 

single process.  While support for large clusters is outside the scope of this work, 

addressing these issues remains a topic for future work.

 In addition to creating an interconnected cluster of nodes, the XML-formatted 

system information for every peer is kept current, and an object-based in-memory 

representation is maintained.  This data is used by the task scheduler, and it may be 

used for asset inventory purposes.  The peer graph shown in Figure 19 was created by 

hand using the cluster report generated by the agent process.  A topic for future work is 

to automatically generate similar diagrams.

48



 A concrete example of the utility of this type of user feedback can be seen in 

the node description for system named “Tundra 2.”  There are two networks listed for 

this node: the 10 gigabit back-channel (172.20.64.0/24) network and the 1 gigabit 

administrative interface (128.193.64.0/21).  On all the other nodes, the administrative 

network had been intentionally disabled.  This misconfiguration would have likely 

gone unnoticed without a similar tool.

Tundra1
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Intel CPU

Compute Device 3: Nvidia GPU

Tundra3
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Intel CPU

Compute Device 3: Nvidia GPU

Tundra2
Network 1: 172.20.64.0/24

Network 2: 128.193.64.0/21
Compute Device 1: Intel CPU

Compute Device 2: Nvidia GPU
Compute Device 3: Nvidia GPU

Tundra5
Network 1: 172.20.64.0/24

Compute Device 1: Intel CPU
Compute Device 2: Nvidia GPU

Tundra6
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Intel CPU

Compute Device 3: Nvidia GPU

Tundra7
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Intel CPU

Compute Device 3: Nvidia GPU

Tundra8
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Nvidia GPU
Compute Device 3: Intel CPU

Tundra4
Network 1: 172.20.64.0/24

Compute Device 1: Intel CPU
Compute Device 2: Nvidia GPU
Compute Device 3: Nvidia GPU

Figure 19: Cluster configuration derived from the XML system report
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Automatic Network Cost Measurement
 Accurate cost metrics for computation and communication must be available to 

make good scheduling decisions.  The address resolution and reachability testing 

system described above provides quality latency measurements, but bulk data transfer 

time is dominated by throughput.  With both latency and throughput, it is possible to 

accurately estimate the total transfer time (network cost).

 Supercomputer and purpose-built clusters are designed to have either a well-

known or constant network cost structure.  A Cray system, for example, is 

interconnected with a network fabric that is either a 2D or 3D torus; latency increases 

monotonically as the geometric distance between hosts increases.  A cluster built on a 

single infiniband or ethernet switch will have constant, or near-constant, latency 

between any pair of hosts.  

 Ad hoc clusters, however, may have widely varying network costs.  If a cluster 

were constructed using idle workstations in a building, it would be difficult to predict 

the network cost between hosts.  It is common practice to have a “floor switch” for 

each floor of a building; hosts on that floor will have a relatively low and constant 

latency between them, and relatively high latency off the floor.  Throughput analysis is 

more complicated in this case.  The available bandwidth between floors is often 

constrained.  It is common for the backhaul links, from the floor switches to the core, 

to be oversubscribed ten to one.  In times of low contention, communication between 

floors will be line-rate; in times of heavy contention, it could be much less.

 It is possible to measure throughput by initiating a test transfer of either a fixed 

size measuring time, or of a fixed time measuring quantity.  The constant time method 

was chosen because it works best across orders of magnitude differences in network 

speed and allows estimates to be made about the time of completion.  A constant 

quantity benchmark would take far too long on a slow link and would be too short on a 

fast link.  Because every network session on a single interface shares the device 

throughput, it is vital to guarantee that only one throughput measurement is permitted 
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on any network interface at any time.  If this condition is violated, the apparent 

throughput of the interface will be split between each concurrent session.  If the 

sessions are equivalent, it will appear as though the throughput is approximately 1/n 

with n concurrent sessions.  An ideal protocol should maximize the number of 

concurrent benchmark operations occurring across the cluster while minimizing the 

total time required to measure the throughput through each pair of interfaces.

Theoretical Background and Previous Work

 It may be useful to define a few terms used in the analysis of graph coloring 

and computer algorithms.  The complexity of an algorithm is defined as the number of 

operations required to produce a solution and can be given using a set of bounds.  The 

most common complexity bound is “big-O,” which provides the upper bound given 

the worst-case input.  An algorithm that takes, at worst, n operations for each n input 

unit would have a bound of O(n2).  The coefficient is omitted for most complexity 

bounds, with the occasional exception of the tight bound.  Problems that have been 

solved by an algorithm that is upper-bounded by a polynomial (of a small order) are in 

the Polynomial class, or P.  

 A problem is in the Nondeterministic Polynomial, or NP, class when there isn’t 

a polynomial time algorithm that can solve it, but there is a polynomial time algorithm 

that can verify whether a solution to the problem is correct.  The nondeterministic 

qualifier is used to signify that random solutions can be chosen and verified in 

polynomial time.  The class NP-Complete is a subclass of the NP problems.  Problems 

that are shown to be NP-Complete are exactly as “hard” as any other problem in NP-

Complete because they can be transformed from one to another in polynomial time.  

Also, every problem in NP can be transformed into a problem in NP-Complete.  If a 

polynomial time solution to any problem in NP-Complete was found, every problem in 

that class could be solved in polynomial time.  This would mean that the question 

“P=NP?” is true, and it is generally assumed to be false.
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 A complete graph is a graph that includes an edge between each pair of 

vertices.  The graphs in Figure 20 are two complete graphs with 3 and 4 vertices.  The 

shorthand for a complete graph is Kn, where n is the number of vertices.  In the 

analysis of the benchmarking algorithm, the cluster is assumed to be a complete graph 

with vertices representing peers, and edges are network connections.  This will be 

referred to as a network graph.  It is safe to assume the network graph is connected 

because that is the form that nearly every cluster will take.

Figure 20: Edge coloring of complete graphs K3 and K4

 There are only a few, rare exceptions to this.  The first is routed networks that 

were specifically designed to pass mDNS traffic.  Because mDNS uses link-local 

multicast groups, normal routed multicast networks will not pass these packets.  

Without mDNS traffic, the peering process is not able to discover hosts across the 

route, and there will be no connections between these routed networks.  Allowing 

mDNS across a router requires configuring network equipment in a way that ignores 

the link-locality of the mDNS group.  This condition is assumed to be very rare, and 

even if it were to occur, it is likely that the network graph will remain fully connected.  

Firewall settings on cluster nodes could prevent network connections from other 

subnets, which would result in other network graphs.  If the network was not fully 

connected, the network benchmarking process would proceed successfully.  At no 

point in the algorithm is the structure of the graph assumed.

 The process of assigning the order of benchmark operations is an instance of 

an edge coloring of the network graph.  An edge coloring is the labeling of the edges 

of a graph such that no vertex is adjacent to more than one edge with the same label.  
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Figure 20 shows two such graphs; in each case, they are labeled with the three colors: 

dotted, dashed and solid.  The chromatic index is the number of colors required in the 

edge coloring of a graph.  The chromatic index of a complete graph is n when n is odd, 

and n-1 when n is even.  The determination of the chromatic index of general graphs is 

NP-Complete, as is finding the optimal edge coloring (Holyer 1981).

 A multigraph is a graph in which more than one edge is permitted between any 

pair of vertices.  In the context of networking, a multigraph would occur when one 

host has more than one interface, each with a different IP address, on the same 

network.  Internet Protocol networking doesn’t permit this, so we can safely ignore it.  

If there are multiple IP addresses assigned to a single physical interface (such as with 

multi-homed configurations), they will be scheduled independently, which will cause 

invalid throughput results.  Therefore, this configuration is not recommended.

 An online algorithm is one that produces output before all of the input data are 

supplied.  In contrast, offline algorithms only generate results when all of the input 

data has been read.  Offline algorithms for edge coloring that are linear in time exist.  

This is a desirable trait, and if it were possible to determine when the cluster is in a 

stable state, it would be appropriate to use one of these algorithms.  However, the 

peer-to-peer and ad hoc nature of Distributed OpenCL make it impractical to detect 

cluster stability, and once the schedule is set, adding or removing hosts would 

invalidate the solution.  It is possible that the advantage of optimality of the linear-

time solution would be lost under dynamic conditions.

 Competitive analysis is used to compare the relative performance of online and 

offline algorithms.  The optimality of the decisions made by an online algorithm is 

affected by the order in which information is presented to it.  Therefore, competitive 

analysis uses a range of input conditions.  Bar-Noy et al. found that the greedy 

algorithm is an optimal solution to the online edge coloring problem (Bar-Noy, 

Motwani, and Naor 1992).  The greedy algorithm produces solutions that use no more 

than twice the minimum colors required to color the graph.
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 As the dynamic nature of Distributed OpenCL requires the use of an online 

algorithm, it cannot attempt to find a minimum coloring of the graph before beginning 

any benchmark operations.  Because the greedy algorithm was shown to be optimal, 

that was the approach used.  As soon as a pair of nodes completes the peering process 

with one another, they are immediately scheduled.

 There are instances in the literature of similar algorithms with applications 

ranging from load balancing (Sider and Couturier 2008) to switch scheduling 

(Aggarwal et al. 2003) to wireless channel selection (Duffy, O'Connell, and 

Sapozhnikov 2008; Leith and Clifford 2006).

 Some solutions have been presented that attempt to automatically learn 

network structure.  One example, the NetInventory system, is able to learn the 

structure of networks, including subnets, routers, and devices (Breitbart et al. 2004).  

This system, like the others identified, does not collect throughput information.

 Significant work was done in Distributed OpenCL to ensure orderly operation 

and guarantee exclusive access to the interface for a single operation.  There do not 

appear to be references in the literature for a peer-to-peer network throughput 

measurement tool that behaves in this way.  The core contribution described in this 

chapter is the method for ensuring the highest possible efficiency of throughput 

benchmarking using network communication as a means for distributed coordination 

and the protection of a limited resource.

Methods

 The success of the cluster throughput measurement system was evaluated by 

comparing the observed results to the theoretical minimum amount of time required, 

assuming the minimum edge coloring of the graph.  To test the algorithm under the 

greatest possible stress, a script was developed that starts the software on each host at 

the same time.  The number of hosts was scaled from three to eight to test whether the 

completion time scaled along with theory.  Each number of hosts was tested twenty 
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times, providing enough samples for representative analysis.  As each host has two 

network interfaces (1Gbit/sec and 10Gbit/sec) that are scheduled independently, both 

results were included in the analysis.

 The empirical results were used to evaluate the success of the greedy algorithm 

and to determine the contribution of protocol overhead to total run time.  It was 

necessary to extract the contribution of each of these factors from the observed signal.  

To aid in this work, the throughput benchmark duration was set to sixty seconds which 

is a relatively large value.

 Two methods for ensuring mutually exclusive throughput measurements were 

tried.  The first method was designed to leverage the attributes of the TCP handshake 

to ensure exclusion.  This method ultimately proved unsuccessful, though illustrative.  

It failed because the TCP handshake had been written ambiguously, and it allowed for 

inconsistent implementations across commonly used operating systems.  The second 

system proved successful and relies on locally locked variables, achieving cluster 

synchronization through emergent behavior.

Mutual Exclusion using the TCP Handshake

 To explain the design strategy of this method, it is useful to briefly discuss the 

phases of the TCP handshake process and why it was used in an attempt at mutual 

exclusion.  See Figure 21 for the TCP state transition diagram, derived and simplified, 

from TCP/IP The implementation by Gary Wright and W. Richard Stevens (Wright 

and Stevens 1995).  TCP is a client-server protocol.  On the server, a well-known port 

was opened using the bind system call.  This port was used as part of the address that 

the client used to initiate a connection by calling connect.  With the newly opened 

port, a listen system call was invoked with a user-defined setting for backlog, which is 

the maximum number of clients allowed in the SYN_RCVD state.  The accept call on 

the server would have either sent the SYN, ACK response to a client in SYN_RCVD 

or blocked until the client attempted to connect.  On the client side, the connect system 
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call used an address and port number pair when it sent a SYN packet to the server.  

The connect call blocked until the SYN, ACK was received from the server.  
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Figure 21: Simplified TCP State Transition Diagram.  Derived from (Wright and 
Stevens 1995).

 Under typical TCP use cases, backlog is set to a number large enough to 

balance the dynamic variation of new clients with the speed that the accept thread can 

accept new clients.  It is common to see the backlog value set to five in early textbook 

examples (Stevens 1990; K. A. Robbins and Robbins 1995).  Now, it is more common 

to see the maximum value the system supports used; the memory required for the 

backlog structure is small relative to the amount of memory in later systems.

 Early specification texts written by W. Richard Stevens (Stevens 1990) and the 

listen man page assert that any new connection attempts will be answered with a TCP 

reset, causing the client software to receive a ECONNREFUSED error from the 

connect system call.  In practice, however, when the number of pending TCP 

handshakes is equal to or greater than the value set as backlog, behavior is essentially 

undefined.  On some systems, including BSD, MacOS, and Linux (with the default 
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behavior), the server ignores connection attempts subsequent to a full backlog.  The 

client would continue sending new connection requests (SYN packets) until the 

attempt times out, which is typically after one minute.  In 1995, Stevens along with 

Gary Wright (Wright and Stevens 1995), stated that the appropriate action is to ignore 

subsequent client connections.  Between 1990 and 1995, the recommended response to 

new clients once the backlog is full evolved from sending a TCP reset packet to 

ignoring it.  Finally, in 2004, Stevens and Fenner said this: “For seven different 

operating systems there are five distinct [...] interpretations about what backlog 

means!” (Stevens and Fenner 2004)  This inconsistency, along with the length of the 

TCP connect timeout, makes this solution unworkable.

Distributed synchronization using local locks

 The eventual solution relied on a locally protected variable to achieve a 

globally consistent state.  The protected variable is a timestamp (TS) that marks the 

time of completion of the current operation.  If there is no current operation, its value 

is null.  This variable is protected using a serial queue.  It could be protected using a 

standard synchronization primitive, such as POSIX locks or semaphores, but these can 

be a source of inefficiency.  Though the serial queue, by definition, causes a serial 

bottleneck, it is more efficient than the POSIX primitives because it doesn’t require 

kernel intervention, waking dormant threads, or system calls. Task queues are already 

widely used in the implementation of Distributed OpenCL, so they were a natural fit.  

The task queue library used in this implementation, Grand Central Dispatch (GCD), 

provides serial and parallel queues.  With parallel queues, each task is started in order 

but allowed to run in parallel.  Serial queues only permit one task from the queue to 

execute at a time.  In the flow charts presented in Figure 22 and Figure 23, the dashed 

boxes contain logic that executes on the serial queue that protects access to the TS 

variable.  The logic flow for every client occurs in parallel with every other client and 

the server.  Each peer runs both the client and server logic simultaneously.
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Figure 22: Server side logic for distributed synchronization

 Though the system is peer-to-peer, the terms server side and client side are 

used to separate the control logic for clarity.  The server side flow chart is executed 

when the TCP accept system call returns with a new client connection (a).  When this 

occurs, a code block is enqueued onto the serial queue that protects the timestamp 

(TS) variable.  This block of code checks whether TS is null (b) and, if so, sets the TS 

to the current time plus the duration of the throughput benchmark (c).  This value is 

used within the system as an estimated time of completion for whatever operation is 

using the resource.  If the TS value was non-null, the difference in time between now 

and TS is sent to the remote host (i) along with a disconnect message (j), and the 

socket is closed.  Only delta time values or durations are sent to remote hosts, 
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Figure 23: Client side logic for distributed synchronization.  Flow begins when a peer 
is dequeued.  Retries are re-enqueued, optionally after a delay.  This flow operates in 

parallel with the server side logic, and is highly multithreaded.
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removing the need for coordinated system clocks.  Once the TS variable is held, the 

benchmark is initiated (d).  When the benchmark is complete, the results are sent to 

the remote host (e), along with a disconnect message (f).  Finally, a block is enqueued 

to clear the TS variable (g), and the socket is closed.

 On the client side, when a throughput measurement is requested (a), a code 

block is scheduled on the serial queue that will check the TS value (b).  If TS is non-

null, its value is checked against the current time (j); if TS is still in the future, the 

same code block is scheduled to run again after TS elapses (j).  If the time represented 

by TS has already elapsed (the current operation overran its estimated completion 

time), the block is re-scheduled after one second (k).  If TS is null, a socket connection 

is opened to the remote host (c).  If this connection fails, the block is scheduled to run 

again after ten seconds (l).  Once the socket is open, a network read with a short 

timeout (one second) is started (d).  If the read returns with a Timed Bench command, 

which contains the benchmark duration, the TS value is set with the current time plus 

the duration (e).  If, however, the network read does not complete within the timeout 

period, another read is executed outside of the scope of the critical section (m).  This is 

to ensure that the network or remote host cannot deadlock the system.  If the Timed 

Bench command is received from the asynchronous read, a block is scheduled on the 

serial queue to test the TS variable (n), and set it if possible (o).  If an error or a 

disconnect command is received, the first block of the flow chart (a) is rescheduled 

with the delta time provided in the disconnect message if available (s), or after ten 

seconds.  If the TS value is not available after the asynchronous read, the client sends 

a disconnect message (t), closes the socket (u), and waits the duration of the local TS 

value (v).  Finally, if benchmarking is possible, it is run (f), and, when complete, the 

TS variable is cleared (g).  If the footer containing the results from the server (h) is 

available, the entity that requested the benchmark is notified (j).  If it is not available, 

the socket is closed (p), and the peer is tried again in ten seconds (q).
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 Through the interaction of the client and server side logic across a collection of 

hosts, the system reliably converged upon a shared timebase.  By sharing the estimated 

completion time with peers, unnecessary polling was eliminated.  The convergence of 

the cluster occurred within the first time step and, as shown in the results section, was 

very stable.

Results

 The success of the benchmark and distributed mutual exclusion system was 

measured by collecting benchmarks for a variable number of hosts, as explained in the 

methods section.  For each number of hosts, the test was run twenty times.  As each 

network interface is independently scheduled, the results for the 1Gbit/sec and 10Gbit/

sec interfaces were combined to yield forty instances.  The results were interpreted 

with an aim to measure system overhead as well as the optimality of the derived edge 

coloring in terms of additional colors needed (chromaticity).  Finally, the scaling of the 

algorithm is estimated using these results.

Figure 24: Histogram of total runtime mod 60 with 1 second bins, 240 samples total.

 To eliminate the contribution of the peer-to-peer clustering protocol to the 

runtime of this algorithm, time measurement began at the first instance of 
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benchmarking and ended at the time the last pair of hosts completed their benchmark.  

As the peering process is not instantaneous, and each node in the cluster completed 

peering serially, there is a small offset in time between when each node is able to 

begin benchmarking.  The implicit synchronization is able to mitigate this effect, as 

will be seen in the analysis.

 The throughput benchmark duration was set to sixty seconds to ensure that the 

contributions from overhead and chromaticity could be isolated.  A histogram of the 

total run times mod 60 is shown in Figure 24.  Runtime values were clustered near 

zero, which suggests that the cluster maintained synchronization with little variation 

from the 60-second timebase.  Thirty-seven percent (37 percent) of all tests completed 

within 1 second of a multiple of 60 seconds, and 85 percent completed within 10 

seconds.

Figure 25: Colors required over minimum versus cluster size

 Assuming that chromaticity is the most significant contribution to total run 

time, it makes sense to evaluate how well the edge coloring algorithm performs 

relative to theory.  The graph shown in Figure 25 demonstrates that the number of 

extra colors used in the edge coloring follows a roughly logarithmic curve.  As the 

cluster size grows, the number of extra colors per added host approaches zero.  

Intuitively, this relationship can be explained by considering the expansion of the 

space of edge coloring solutions for every added color, which is close to exponential.
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 Finally, in terms of wall clock time, the cost of performing the benchmarks on 

a variable size of cluster scaled linearly, matching expectations set by theory.  Figure 

26 shows the relationship between the theoretical and observed increase in runtime 

versus the size of the cluster.  In absolute terms, slope was steeper for the observed 

results than the theoretical minimum.  Omitting the results from the clusters of three 

and four hosts, as they are trivial coloring problems, the proportion of the time 

required over theory varied little from about 25 percent.
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Figure 26: Scaling performance by cluster size

 The automatic network cost measurement system functioned well and 

exhibited linear scaling.  It may possible to reduce the time required to determine 

network cost by selecting a subset of the hosts that require direct measurement.  If the 

topology of the underlying network could be inferred from early measurements, it may 

be possible to cull later measurements.  A nominal throughput value for a network 

segment could be found, and it would be necessary to only measure the throughput 

from a given host to the network.  The communication cost between a pair of hosts 

would be equal to the minimum throughput from either host to the network.  This is a 

topic for future work.
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Task Scheduling Framework for Heterogeneous Computing
 Before performing any work on a cluster, some mapping between independent 

elements of work (tasks) and the compute device they are to run on must be made.  In 

the case of MPI, this mapping is done somewhat naïvely.  The mpirun command 

assigns threads to processors in the order specified within the host file.  If there are 

five parallel tasks, the first five processors in the host file will be selected and assigned 

work.  This system works well when every cluster node is similar, and when the 

network fabric is well suited to this purpose.  With careful configuration, the network 

and computation resources can be efficiently utilized.  Unfortunately, however, the 

skills required to maximize the use of resources are often out of reach of the casual 

user or domain scientist.  Many examples of cluster software, such as the Matlab 

Distributed Computing Toolbox, function in a similar fashion.  Specialized software 

has been developed that manages this process and even allows multiple concurrent 

users of a cluster if the sum of the requested resources fits within the system’s 

capability.

 Distributed OpenCL was designed to provide the best performance possible to 

non-experts; therefore, a system had to be developed that was able to map tasks to 

resources in an efficient and easy to use way.  By defining an algorithm as a directed 

acyclic graph (DAG), the user provides the system explicit information about parallel 

regions of code, data flow, and dependencies.  This information is difficult to express 

using serial code.  OpenMP uses compiler directives such as “#pragma omp for” that 

wrap a parallel section of code.  The compiler will then assume that the loop within 

the directive is parallel and will distribute the work across several threads.  Though 

this may seem straightforward, the details often cause problems for users.  The C 

programming language was designed as an explicitly serial language and the scoping 

of variables is ambiguous when the loop iterations execute in parallel.  To address the 

scoping problem, OpenMP adds extra keywords that can define whether variables are 
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local to an instance of the loop or shared.  The simple concept of parallelizing a for-

loop is overwhelmed by the complexity of managing the scope of its variables.

Previous and Related Work

 There are several examples of systems that define and schedule work using 

task graphs.  Some of the previous work was covered in the Project Overview chapter, 

and previous work related to the user interface and graphical programming language 

will be covered in the next chapter.

 Deriving an optimal scheduling of parallel computation is widely known to be 

NP-Complete (Garey, Johnson, and Sethi 1976).  Every practical scheduling algorithm 

must therefore be an approximation.  In general, approximation algorithms are a 

tradeoff between optimality and complexity.  The work surveyed here provides context 

and demonstrates the breadth of the solutions that have been proposed.

 Wu and Gajski developed the Hypertool system to ease the user burden 

involved in programming message-passing systems (Wu and Gajski 1990).  Their 

approach was two-fold.  First, they expanded the C compiler’s pipeline to produce 

dataflow graphs, which are substantially similar to the task graphs used in Distributed 

OpenCL.  Using these dataflow graphs, they scheduled and mapped the parallel code 

segments onto a cluster of homogeneous processing elements.  They described two 

scheduling algorithms: the Modified Critical-Path Scheduling algorithm’s complexity 

is O(n2 log n), and the complexity of the Mobility-Directed Scheduling is O(n3).

 Others have written papers that address parallel scheduling at relatively fine 

scales.  Bannerjee et al. proposed a system for extracting task graph representations of 

instructions and dataflow from higher level language constructs (BanerJee et al. 1993).  

Because these automatic techniques generate parallel segments at the instruction level, 

communication costs would dominate any savings possible from parallel execution.  

Specialized scheduling strategies were developed to address this issue, such as 

clustering main segments to run serially (Kim and Browne 1988). 
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 Even machine learning techniques have been used to learn the best scheduler 

from a suite of options (Wang and O'Boyle 2009).  This technique used supervised 

learning (inferring a function using labeled input data (Duda, Hart, and Stork 2001)) to 

learn the patterns that exist between parallel code and the performance achieved 

between scheduling strategies and number of threads.
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Figure 27: Hierarchy of scheduling techniques

 Topcuoglu et al. presented an excellent survey of scheduling techniques and 

organized them into a hierarchy (Topcuoglu, Hariri, and Wu 2002).  This hierarchy is 

shown in Figure 27.  Their work effectively expresses the diversity of available 

approaches.
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Task graph representation and document format

 Before discussing the implementation of the Distributed OpenCL scheduling 

framework, the representation of the task graph, both in memory and on disk, must be 

fully described.  As with the peering messaging format, XML was chosen to structure 

the task graph representation for storage on disk.  In memory, the task graph is 

represented with a DAGModel class that contains the entire task graph.  

Task graph Classes and Structure
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Figure 28: UML27-like class diagram of the task graph representation.  Simplified for 
clarity; instance variables relating to scheduling and benchmarking omitted.
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 The DAGNode and its subclasses DAGKernelNode, DAGFileSource, and 

DAGFileSink represent the tasks within the task graph, and DAGArguments represents 

the arguments within the nodes and the links between them.  A simplified class 

diagram, with unrelated information omitted, is shown in Figure 28.  Only a subset of 

the source and sink subclasses are presented.

 The classes that represent the task graph maintain the structure of the graph 

and prevent illogical or degenerate construction.  The DAGArgument class maintains 

the size, type and direction of its data; when a connection attempt between arguments 

occurs, these qualities must match.  Conditions such as source-to-source and sink-to-

sink connections, as well as multiple sources to a single sink, are detected and 

prevented.  When a connection attempt succeeds, the Counterpart instance variable in 

each DAGArgument instance is set with a reference to the other argument; sources 

maintain an array of counterparts.  The Owner instance variable contains a reference to 

the DAGNode instance for the node that owns the argument.  Through these links, it is 

possible to traverse the task graph from any arbitrary point to any other point.  By 

performing a graph traversal, it is possible to prevent other illegal conditions such as 

isolated subgraphs and loops.

XML Document Structure

 The XML representation of the task graph is a one-to-one mapping to the in-

memory class graph.  The XML schema that can be used to validate a document file is 

presented in Appendix C; and an example XML file with the task graph it represents 

are included in Appendix D, and the structure of the XML file format is shown in 

Figure 29.  The root of the XML document is the DOCL-document element.  The 

children of the document root may either be the DOCL-node or DOCL-connection 

elements; these elements define the task graph vertices and edges, respectively.

 The DOCL-node element represents every subclass of DAGNode, including 

DAGKernelNode, DAGFileSourceNode, and DAGFileSinkNode. The type attribute is 
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used to indicate which of the subclasses is being represented.  Strictly speaking, the 

attributes used in the DAGNode element are defined by the subclasses, but name, 

location, and type are created and used by the superclass.  The DAGKernelNode 

subclass adds the globalWorkSize, localWorkSize, and buildOptions attributes.  When 

compiling the represented OpenCL kernel, the buildOptions attribute may contain 

compiler options, and the work size attributes are used when invoking the kernel to 

describe the size of the kernel’s problem space.

DOCL-document DOCL-node

Attributes:
name
location
type
globalWorkSize
localWorkSize
buildOptions
url
discardBefore
discardAfter
fieldSeperator
fileType

DOCL-connection

Attributes:
source-node
source-argument
destination-node
destination-argument

DOCL-argument

Attributes:
label
type
direction
endianness
size

Kernel source
CDATA

Figure 29: Structure of the XML task graph representation.  Subordinate entries are 

child elements.
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 The DAGFileSinkNode and DAGFileSourceNode add several fields, including 

url and fileType.  The url field contains the Uniform Resource Locator (URL) that 

references the file to be read from or written to.  The URL may use a variety of 

schemes28, including file, http, and ftp.  The current implementation limits URLs to 

local files, but removing that limitation is straightforward (and a topic for future 

work).  The discardBefore, discardAfter, and fieldSeperator attributes have variable 

meaning depending on the value for fileType.  If fileType is equal to “binary,” the 

discardBefore and discardAfter attributes set the number of bytes at the head and tail 

of the file to be ignored.  If it is equal to “ascii,” these attributes set the number of 

rows to discard.  Providing a number of fields or bytes to discard allows headers or 

footers to be removed from the data.  The fieldSeparator attribute is only used with 

ASCII29 files, and it indicates whether the fields are separated with commas or tabs.  

In ASCII files, a record is a row of one or more fields.  It is vital that the number of 

arguments set in the file sink and source nodes is equal to the number of fields in each 

record, and that the number of fields in a record is constant across the entire file.

 The DAGArgument element is responsible for representing the arguments for 

each node.  The type attribute contains the base type of the argument.  Every type 

supported by OpenCL is a valid setting for this attribute, including bool, int, float, and 

image2D.  These types may also be vector types; for example, the int type can be int2, 

int3, int4, etc.  Only the image types cannot be vectors.  The size attribute contains the 

number of elements in an array of the base type.  If the size is one, the argument is a 

scalar.  Image types may not be arrays; the size field holds the linear dimensions of the 

image argument.  The endianness field is used to ensure that the endianness of the 
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arguments across different host architectures is respected, though it is only explicitly 

set within the context of file source and sink nodes.  Finally, the direction attribute is 

used to indicate whether the argument is a source or a sink.

 To encode the connections between arguments, the root node may have several 

DOCL-connection elements.  These elements have no children, but their attributes 

provide the necessary information to recreate the links between arguments.  The 

names for nodes are unique within a document, and attributes are unique within a 

node.  All that is required, therefore, to uniquely identify a connection between any 

pair of arguments are the names of each.  The souce-node, source-argument, 

destination-node and destination-arugment attributes perform this function.

 The XML representation of the task graph is easily processed with any of the 

widely available libraries, works well with version management systems, and is 

human-readable.

Automatic Computation Cost Benchmarking

 As with communication cost measurement, it is impossible to make good 

scheduling decisions without computation cost data.  Unlike communication cost, 

however, it is not generally possible to extrapolate computation cost for unknown 

problems or processors from existing measurements.  Both the content of the task and 

the architectural details of the processor play a significant role in the duration of a unit  

of computation.  To derive accurate computation cost metrics, an automatic 

benchmarking system was developed.  The system distributes task implementations to 

every device in the cluster, generates test data for each argument, runs the task a 

number of times, and collects the statistics.

 When build or run failures occur, they are collected and returned to the user, 

providing valuable information about the number of devices that a kernel can target.  

With OpenCL, it is common for a given kernel to compile and run for some processors 

and not others.  The most salient example of this is the restriction of the maximum 
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local work item size on CPU devices, which may be a single unit, or one-dimensional.  

Devices such as GPUs typically allow two- or three-dimensional local work groups.  

The example system tree in Appendix B demonstrates this quality.  The maximum 

work group size for the CPU device is 1024 elements in one dimension, and both 

Nvidia GPUs support three-dimensional work groups 512 by 512 by 64 elements.

 As will be seen in the Graphical User Interface and Programming Language 

chapter, the OpenCL kernels within tasks are compiled during editing, providing the 

user with real-time feedback about the correctness of their code.  Compiling a kernel is 

a very fast operation, so it makes sense to do it often.  Benchmarking, in contrast, can 

take tens of seconds.  For this reason, it was decided that this operation should be on-

demand only; benchmarking is only initiated before processing, or when the user 

desires benchmark information.

 Benchmarking every task on each device is performed through a relatively 

straightforward procedure.  A small set of network transfers, which are depicted in 

Figure 30, are required.  As with all application-layer communication, the Peer class is 

used as a proxy for operations destined for remote hosts.  When the benchmark is 

requested, the DistOpenCLScheduler class sends a benchmarkKernel message to every 

Peer instance for each kernel.  Within the Peer class, the XML representation of the 

kernel is retrieved and sent to the remote host, where it is processed in the matching 

Peer instance.  At the destination, a DAGKernelNode object is instantiated from the 

XML representation and is commanded to benchmark itself.  Like network 

benchmarking, the benchmarks must run serially.  If kernels were allowed to run in 

parallel, the results would not accurately reflect the actual performance.  A serial 

dispatch queue is used to enforce this condition.  Once the results are available, the 

Peer class instances pass the data back to the caller.

 Within the DAGKernelNode instance, a sample set of input data must be 

produced for each of the arguments.  This is done with a random number generator.  It 

may be possible to provide sample set generators if the structure of the input data 
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strongly affects kernel runtime.  Each kernel is executed ten times to generate basic 

statistics.  This value is variable; however, the results are stable within ten runs.  The 

first execution of each kernel requires significantly more time than subsequent 

executions.  It isn’t clear whether this first data point should be discarded.  At the 

moment it is retained.
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Figure 30: Network flow diagram for task benchmarking.

Scheduling Framework

 Given the breadth of the field of scheduling algorithms and the dramatic effect 

the chosen algorithm can have on the result, a careful decision had to be made about 
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the implementation of scheduling in Distributed OpenCL.  It was decided that a 

modular framework for implementing schedulers should be developed rather than an 

attempt to derive an ideal solution.  The framework approach eases scheduler 

development by collecting and organizing computation and communication cost 

metrics into easily queried data structures.  To add another scheduling algorithm, a 

subclass of the DistOpenCLScheduler class could be created.  The 

schedulePendingNodes method implements the mapping between tasks and devices 

and provides an easy override point.  An example of a very simple scheduler is 

provided in Appendix E.
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Figure 31: Simplified UML-like class diagram for task scheduling.

 The information required to derive a schedule is stored within a collection of 

classes that encapsulate the scope of each schedulable entity and the costs associated 

with their interconnections.  A simplified class structure of the task graph, omitting 

structures not related to scheduling, is presented in Figure 31.

 An array of DAGKernelNodes to be scheduled is created by the 

DistOpenCLScheduler class from the user-supplied task graph.  As sink and source 
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nodes run locally to the client, they are not included in the array.  Any future 

subclasses of DAGNode are also not included in the scheduling process.  Within each 

DAGKernelNode, a collection of DAGKernelStats instances are maintained.  Each 

DAGKernelStats instance contains the mean runtime for each device and peer that 

successfully ran the kernel.

 The communication cost between, for example, peer1 and peer2 can be found 

by querying the peer1 class instance for information about peer2.  As every Peer class 

instance holds the network throughput and latency information for every other peer 

and each network, either peer’s class instance contains the required information.  A 

convenience method is included in the Peer class definition that performs this 

operation.  The results for the best network (highest throughput, then lowest latency) 

are returned.

 When the scheduler decides on a mapping between a task and device, the peer 

field of the DAGKernelNode instance is filled out with the device ID and the UUID of 

the peer that contains it.

Task Graph Execution

 Once the mapping complete is complete, execution can begin.  A topological 

ordering30 of the task graph is generated.  The numbers above each node in the input 

task graph contained in Figure 32 are an example of such an ordering.  The topological 

ordering is used to open network services used to carry data for task arguments.  The 

convention used is that source arguments open the network servers and sink arguments 

initiate connections as clients.  This convention was chosen because it is possible to 

have several sinks connected to a single source, while the converse isn’t true; 

therefore, the network programming is simplified and better follows the semantics of 

75

30 A topological ordering is defined such that the starting vertex of every edge is earlier 
in the ordering than the terminating vertex.  A topological ordering is not generally 
unique; there may be several orderings for a given DAG.



socket programming.  In the prepare method, each node is given an opportunity to 

initialize itself and prepare each argument.  At this point, the arguments’ network 

servers and sessions are opened.

 Once the preparations are complete, the port number of the source argument is 

sent back to the calling process, and this information is reflected into the sink 

arguments downstream.  Because the kernel nodes are scattered across the cluster, a 

mechanism had to be developed to perform these operations on remote peers.  The 

Peer class again acts as a proxy; when an instance of this class receives a prepare 

message, the content is encapsulated and sent across the network.  Locally to that 

remote peer, the prepare method is executed, and the port number information is 

collected and returned.  Finally, because the sink nodes always run locally, their 

prepare methods make the final network connections.  The cluster-embedded graph in 

Figure 32 describes the structure of the task graph in terms of TCP servers and 

sockets.  The directionality of every edge is reversed to match the semantics of TCP 

connections to the semantics of task graph connections.  In a task graph, multiple sinks 

can receive data from one source, whereas in TCP, multiple clients can connect to one 

server.

 If the chain of preparation completes successfully, the process is repeated with 

the run methods.  The run methods are started in reverse topological order.  The 

purpose of the run methods is to start the runloop of each kernel node, begin file 

reading in source nodes, and file writing in sink nodes.  Once the End Of File (EOF) 

marker is encountered in the file source nodes, their network sessions are closed.  The 

close events trigger the cessation of the kernel runloops and downstream session 

closures.  Finally, the sink nodes, running locally, encounter session closures, marking 

the completion of the graph execution.
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Graphical Programming Language
 Reducing the complexity of heterogeneous cluster programming requires 

careful consideration of the programming model used.  A task graph is an instance of a 

directed acyclic graph in which vertices are tasks and edges are either dependencies or 

data flow between vertices and edges.  Though the implementation details are not 

necessarily obvious by looking at a task graph image, the structure and flow are easily 

inferred.  As a user, the amount of parallelism present in an algorithm is obvious.

Previous and Related Work

Figure 33: Lego MINDSTORMS programming environment31.

 Graph-based graphical programming languages have been effectively utilized 

in a vast array of applications while targeting a wide range of user ability.  At the very 

lowest end of user skill is Lego MINDSTORMS, a robotics hardware and software 

development system intended for children ages ten and up.  The programming 

environment, shown in Figure 33, was developed in conjunction with National 

Instruments; the core of National Instruments’ LabVIEW software was used under a 

child-friendly front end.  Control of robot motion commands, asynchronous event 

handling and control flow are accessible to the novice computer user.  Detailed 
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configuration options for the tasks within the MINDSTORMS software are available 

underneath the task graph area.

 The professional software produced by National Instruments, LabVIEW, 

targets users ranging from domain scientists to electrical, prototype, and process 

engineers.  The LabVIEW software, while still based on a directed acyclic graph, is 

designed to mimic a collection of lab instruments and electrical devices rather than 

tasks.  Both the MINDSTORMS and LabVIEW packages support looping constructs 

within their environments by surrounding looping sections in a “loop” block.  This 

construct enables looped code within a graph that is explicitly loop-free (acyclic).  The 

code within the loop section executes until a stop condition is met.  LabVIEW differs 

from MINDSTORMS and most other task graph languages in that it performs the 

majority of configurations within the task graph itself.  Constant values are 

represented in the graph alongside tasks.  Some of these can be see in Figure 34; the 

blue boxes containing a number are integer constants, and the yellow boxes are 

floating point constants.

Figure 34: Sample National Instruments LabVIEW graph32
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 IBM’s DataExplorer (originally called IBMDX; it was renamed OpenDX when 

it was released under an open source license), mentioned in the Project Overview 

chapter, is a graph-based visualization tool.  OpenDX took another unique approach 

for setting constant values within the task graph interface.  Every argument associated 

with a task is represented with a small tab.  Tabs on the top of the task are inputs, and 

tabs on the bottom are outputs.  Detailed configuration is available through a separate 

UI element, like MINDSTORMS, but rather than sharing space on the same 

application window, and auxiliary window is presented.  Task arguments that are set 

with a constant value through the advanced configuration are represented by a “folded 

over” tab (Figure 35).

Figure 35: Detail of OpenDX task nodes with folded over tabs. (Source: Numerically 
Related OpenDX Tutorial33)

 Quartz Composer, also discussed in the Project Overview chapter, implements 

detailed configuration through an auxiliary window called the “inspector,” shown in 

Figure 36.  Inspector windows are a common user interface construct used in MacOS.  

The basic strategy is to separate basic and advanced configuration into separate user 

interfaces.  The inspector provides access to patch34 configuration details and input 

parameters.  Quartz Composer patches can be built-in, OpenCL kernels, or Objective-
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C plugin modules.  Quartz Composer even supports a meta patch which embeds an 

entire task graph.  The patch that is being configured in Figure 36 allows an entire 

Quartz Composer file (composition) to be imported within the patch.  The 

configuration variables set whether the composition is an input, output or intermediary 

(Processor), and the number and types of the inputs and outputs.

Figure 36: Inspector window control for a Quartz Composer patch.

 GNURadio is an open source project for software-defined radio.  It was 

implemented using C/C++ and Python35, and uses the concepts of task graph 

programming to implement software demodulators and modulators for radio 

communication.  The basic operation of the system consists of defining the task graph 

within a Python script by instantiating tasks, written in C/C++, and defining the 

connections between them.  A project that started independently from GNURadio, but 

was later integrated, is GNURadio Companion.  The GNURadio Companion software 

allows the creation of GNURadio Python scripts automatically using a visual task 

graph.  This software allows variables to be set either manually, through an external 
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editor, or through global variables indexed by name.  The object named “Variable” in 

Figure 37 is an example of such a construct.

Figure 37: GNURadio Companion implementation of a narrowband FM receiver36

Graphical Programming Language Design

 The graphical programming language developed for Distributed OpenCL was 

largely inspired by Quartz Composer.  Each of the tasks that make up the task graph is 

represented by a rounded rectangle.  The tasks are referred to as “nodes.”  The node 

name is presented in the top region of each rectangle, which is directly editable by 

clicking on it.  The arguments are presented in the lower section of the rectangle.  

Arguments can be either inputs or outputs; inputs occupy the left side of the rectangle, 

and outputs occupy the right.  The small yellow circle adjacent to each attribute is the 

click target used for creating, moving and destroying connections between attributes.  
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The connections between attributes are indicated by grey wires following a bezier 

curve between the click targets; many such wires are shown in Figure 42.  When an 

attribute has at least one connection, the click target is filled in with a green circle.  

Argument names are editable within the node inspector and are discussed in more 

detail below.

a

b

Figure 38: User interaction details; drawing a new connection (a) and selecting a node 
(b).

 User commands for modifying the graph were designed to maximize usability 

by leveraging interactions with which users should be familiar.  Examples of the 

method for performing common actions are listed below.  For the purposes of this 

discussion, it is assumed node clicks do not include clicks on the name field or 

argument click target.

• Moving a node: Click-hold on the node, drag to the destination and release.

• Removing a node: Click on the node once to select, then press the “delete” key.

• Duplicating a node: Click on the node to select, then press the “command” and “d” 

keys simultaneously.

• Creating a connection: Click-hold on the source argument click target, drag the wire 

to the destination click target, and release.

• Moving a connection: Click-hold on the destination argument click target, drag wire 

to the new argument’s click target, and release.
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• Removing a connection: The process is the same as moving a connection, but you 

release the mouse button away from an argument click target.

During wire connection operations, such as creation, movement and destruction, the 

selected wire is highlighted in green.  The color of this highlighting could be used to 

provide the user constant feedback about the validity of proposed connections before 

an explicit action is performed.  For example, the wire could be colored red while the 

terminus is not over a click target, yellow while over a click target that would result in 

an invalid connection (type mismatch or other problem) and green when the 

connection would succeed.  The stoplight color scheme, while convenient for 

discussion, would ultimately be unsuitable if accessibility for individuals with color 

blindness is desired.  A tooltip dialog that would provide diagnostic information to the 

user could be provided in cases where a connection attempt would fail.  These 

enhancements are not included in the current implementation, and further usability 

analysis is a topic of future research.

 Following the same model for advanced configuration as several of the 

graphical programming languages presented in the previous work, an external 

inspector window is provided.  The contents of the inspector window are dynamically 

loaded and modified to reflect the selected node.  Extensibility of the inspector 

interface was considered during the design phase, and the method for providing 

custom control is relatively straightforward.  The DAGNode class provides a method 

to its subclasses, loadIViewFromBundle, which loads an interface specification file 

from disk.  Subclasses can call this method while providing a filename for the 

interface.  When the subclass is instantiated, the inspector view is loaded from disk.  

Samples of the inspector window contents for a sampling of DAGNode subclasses are 

presented in Figure 39.

 The inspector interface allows users to add, remove, and edit arguments.  When 

appropriate, the user may specify as many arguments as are needed.  Editing any text 

field parameter, such as name and size, of the argument is accomplished by double-
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clicking on the text.  The type field is a drop-down selection of every type that is 

supported.  Endianness is also selected through a drop-down.  The 

DAGSourceFileNode also provides the ability to select binary and ASCII file types.  
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Figure 39: Inspector window examples; DAGKernelNode class (a), 
DAGFileSourceNode class (b).  Detail views of the type selector (c) and the ASCII file 

delimiter selection (d).

a: Inspector window views for the DAGKernelNode class of tasks



The configuration parameters are unique to the file encoding method, so a tab view 

element is used to separate the distinct, but similar, configuration values.  Images of 

each subview are provided in Figure 39; binary configuration is shown on the left (b), 

and ASCII configuration is on the right (d).

 The DAGKernelNode inspector provides a view for configuring the arguments 

as well as kernel implementation.  The OpenCL tab provides a text area to directly 

input OpenCL kernels, and the text in the bottom of the view contains the build results 

from the compilation of the kernel.  When the user finishes editing, kernel compilation 

is immediately started and the results are updated.  A macro is provided to 

automatically generate the kernel function definition.  Because the name, 

directionality and type of every argument and kernel name must match exactly, the 

automatic creation of the kernel definition should simplify kernel development.

Graphical Programming Language Implementation

 The implementation of the graphical programming language and user interface 

follows the model-view-controller strategy for user interface development.  Figure 40 

presents a simplified class model for the user interface logic in Distributed OpenCL.  

The DAGModelView and DAGNodeView classes (view) produce the on-screen 

representation and implement user interaction.  Maintenance of the task graph 

structure and correctness is the responsibility of the DAGModel and DAGNode classes 

(model).  Messages between these classes and the AppDelegate (controller) implement 

the majority of the application’s functionality.

 The AppDelegate is a common class in Cocoa-based applications.  Its purpose 

is to mediate application-level events, such as window creation and destruction, menu 

item selection and hotkey invocations.  For the purposes of the graphical programming 

language implementation, it is responsible for all those events, as well as coordinating 

the inspector window contents when the window is created and when the selected 

node changes.
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 The apparently redundant functionality between the model and view classes -- 

for example, the addNode methods -- provides entry points to these actions from 

events originating from within the models or directly from the user.  For example, 

when a node is duplicated, the majority of the processing occurs within the DAGNode 

class; the new instance is passed to the DAGModel, which informs the 

DAGModelView of the new DAGNode and DAGNodeView.  If, however, the user 

selects a node and presses “delete,” the DAGModel receives the event notification for 

that action.  In this case, the message is passed to the removeNode method in the 

DAGModel class instance, removing the node.
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DAGArgument
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connectionAttempt
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Figure 40: Simplified UML diagram of the user interface mechanics.

 When the user draws a candidate for a connection between arguments, as 

described above, the DAGModelView class tracks the mouse movements while 

87



drawing the temporary wire.  When the mouse button is released, the DAGModelView 

class iterates through the list of DAGNodeViews until the coordinates of the pointer are 

within the bounds of the candidate view.  The coordinates are then transformed into 

the local coordinate space for the node view and tested for intersection with an 

argument click target.  If a click target is selected, the argument represented with the 

target is sent an acceptConnection message with reference to the complementary 

argument.  If the connection is deemed valid, the method returns a boolean true value, 

and the connection is committed.
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Example problems solved with Distributed OpenCL

16 Channel Beamformer
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Figure 41: Diagram representing the basic functionality of a beamformer.  A planar 
wave front being applied to an array of transducers is shown.  The values of the 

steering vector are related to the phase of the wavefront at different points in space.

 A beamformer is a system for shaping the spatial response of an array of 

transducers by either manipulating the phase or gain of each transducer (Figure 41).  

Beamforming can be used in receivers or transmitters, and can be applied to acoustic 

(Beng, Teck, and Potter 2002), electromagnetic (Curtis et al. 2003), or even seismic 

(Brind, Goddard, and Whitmarsh 1998) fields.  Beamforming systems are commonly 
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implemented using analog electronics, Field Programmable Gate Arrays (FPGAs), 

Digital Signal Processors (DSPs), or software running on general purpose computers.  

The algorithms used in beamforming can be very computationally expensive, 

especially when the output of every beam is desired; steering an array to a single beam 

is relatively cheap.  Detailed technical information about beamforming is available 

(Manolakis et al. 2005).

 When a beamformer is used without a priori information about the signal 

source and collects information for a broad set of beams, it is called a Conventional 

BeamFormer (CBF).  This example problem was chosen because it has been 

implemented in three different ways within the context of this work.  Also, the CBF 

algorithm has a variety of different types of parallelism.  An FFT 37 is executed on 

each of the transducer channels, which is a relatively large granular scale of 

independent parallel work.  Each FFT includes smaller scales of parallelism, requiring 

tight coordination.  The results from the FFTs are combined into a matrix that is 

multiplied with the steering matrix.  This is a single operation, but matrix 

multiplications have internally parallel components.

 Exemplar code was provided as a Matlab script, which was first ported to a 

standard single-threaded application, written in C.  Later, the implementation in C was 

converted to use the resources of the Cell/B.E. processor.  Finally, the CBF was ported 

into the Distributed OpenCL task graph language.  The relative duration of porting 

effort is instructive.  Porting from Matlab to C took about a month of human time, and 

the majority of that time was spent learning the structure of the Matlab script.  Matlab 

treats every variable as a matrix; scalars are simply matrices that are one unit in every 

dimension.  Because every variable is a matrix, it is very easy to overlook their 

dimensionality.  For example, what may appear as a single scalar multiplication may 

90

37 The FFT, or Fast Fourier Transform, is an efficient implementation of the Discrete 
Fourier Transform, which transforms input data from the time domain to the frequency 
domain.



actually be an operation between large matrices.  This can have significant 

consequences for data flow analysis and typing.

Figure 42: 16 Channel beamformer implemented in DistributedOpenCL

 The C-based port of the CBF was used to develop a Cell/B.E. implementation.  

This work took several months.  The reason for the increase in implementation time, 

though the algorithm was already well understood, is the complexity of the Cell/B.E. 

architecture.  The Asymmetric MultiProcessing nature of the Cell/B.E. requires more 

management than typical architectures.  It is the responsibility of the user application 

to schedule tasks on the SPE processors and explicitly load memory into the SPE’s 

memory space.  The memory operations are implemented as direct commands to the 
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DMA38 system.  Every memory transfer must be a multiple of 16 bytes and aligned to 

16-byte boundaries.

 The final implementation is shown in Figure 42.  The task graph is a complete 

implementation of the CBF using Distributed OpenCL, and it took less than a week to 

produce.  The input node is responsible for providing time-domain data for each of the 

16 channels and 2048 sample packets.  The set of 16 FFT nodes perform an out-of-

place complex FFT, and each node’s input argument specifies a 2048 element array of 

float values.  The output arguments are 2048 element float2 values representing the 

complex-valued result.  The spatial filter rearranges the output from the FFTs into a 

matrix, computes a set of steering vectors, multiplies the matrix with the steering 

vectors and normalizes the result.  The output of the spatial filter is a 2D array that is 

represented as an image type and saved to disk.

Software Defined Radio

 Software Defined Radio (SDR) is a technique for processing and demodulating 

Radio Frequency (RF) signals.  As the capabilities of processors have increased, it has 

become practical to move ever-greater amounts of the RF signal chain into software.  

Moving the processing chain into software allows greater flexibility when developing 

modulation standards and techniques.

 The vast majority of SDR architectures are similar to the Direct 

DownConversion receiver depicted in top part of Figure 43.  Radio signals enter the 

antenna on the left and are split before being fed into a pair of matched mixers.  The 

mixers translate the input frequencies both up and down in frequency according to the 

Local Oscillator’s (LO) frequency.
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 If a signal of 100 MHz is presented at the RF port, and 50 MHz is on the LO 

port, the output spectra will contain a copy of the input signal at 50 MHz and at 150 

MHz (in addition to other signals, but those can be ignored for the purposes of this 

discussion).  In the case of a DDC receiver, the LO frequency is set to match (or is 

very near) the desired RF frequency.  In that case, one copy of the input signal is at (or 

near) 0 Hz, and the other is two times the LO.  The higher frequency components are 

easily filtered out.

90°

I(t)

Q(t)

fLO

LPF

LPF

ADC

ADC

Direct DownConversion (DDC) Block Diagram

Commercial receiver (flipped along the vertical axis)

Figure 43: Sample block diagram of a DDC receiver and commercial device

 The two mixers in a DDC receiver are fed with two copies of the LO, one of 

which is 90° out of phase.  The mixers transform the phase of the input signal 

according to the phase of the LO.  By providing copies of the LO that are out of phase, 

the output pair of signals has a complementary phase relationship: In-phase (I) and 

Quadrature (Q).  These signals can be used as complex numbers.  Using the properties 

of the complex plane, it is possible to isolate positive and negative spectra (on either 
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side of 0 Hz), as well as demodulate signals such as Quadrature-Amplitude 

Modulation (QAM)39.

 The low-pass filtering also limits the bandwidth of the signal entering the 

Analog-Digital Converters (ADC).  To avoid aliasing artifacts, it is vital to reduce the 

bandwidth of the input to an ADC to less than half the sample rate, in accordance with 

Nyquist-Shannon Sampling Theorem (Shannon 1948).  The output of the ADCs is the 

quantized time domain values of the in-phase and quadrature signals.  In the case of 

the commercial SDR receiver (bottom of Figure 43), these are 8-bit samples delivered 

at up to 3.2 million samples per second.

 Figure 44 represents an example application of SDR using Distributed 

OpenCL.  The raw samples are taken directly from the commercial SDR receiver and 

converted to floating point, which are output from the Raw Input task.  This data is a 2 

million sample per second stream of complex, floating point numbers.  The FM carrier 

is shifted and filtered from anywhere within the two MHz input spectra to zero Hz 

using the Frequency xlating FIR task.  This task contains a time-domain operation and 

uses the DOCL “scratchpad” feature to maintain filter state between blocks.  Next, the 

NB FM Demodulator converts the centered and filtered signal from FM to baseband.  

This signal is tapped off and sent to the audio system of the client workstation for 

monitoring.  It is also sent to a pair of band pass filters, one for 1200 Hz and the other 

for 2200 Hz.  These tones are used to indicate the presence of either a ‘one’ or a ‘zero’ 

in the input stream.  These tasks also perform an envelope detection operation, which 

outputs a DC value proportional to the amplitude of the filtered signal.  The Choose 

Max task measures the relative strength of each filter’s output and outputs a binary 

value accordingly.  Finally, as each of these processes operate in the time domain at a 
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sample rate much higher than the symbol rate of the input signal, it is useful to discard 

redundant data in the decimation block.  This output is the final, demodulated digital 

data.

Figure 44: SDR task graph for Bell 20240 demodulator over narrowband FM.

 Distributed OpenCL is a useful tool for implementing a vast array of signal 

processing tasks, as well as numerical modeling.  The bounds of what can be 

represented using this tool have yet to be fully explored; surely, it will be a challenge 

to identify applications that cannot be defined within this framework.  Furthermore, 

developing applications using DOCL is easy and rewarding.  The tedious, and 

thankless, glue code that consumes time and mental energy is produced automatically.  

Users are left to think about their own application, which they probably enjoy.
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Conclusions
 As the computing market changes by moving away from expensive, 

specialized tools in favor of cheap commodity products, new strategies for working 

must be explored.  During the period of rapidly increasing clock speeds, improving the 

performance and capacity of existing scientific models could be as simple as buying a 

new computer.  Today, as processor clock speeds are mostly constant, the only 

remaining strategy is to embrace greater parallelism.  Often, this means that existing 

applications need to be rewritten, or at least modified.  It is an expensive proposition 

to rewrite these applications, and with shrinking science budgets, it isn’t clear whether 

the necessary funding exists.  There is a distinct opportunity and need for tools that 

allow the exploitation of cheap and ubiquitous commodity hardware.  Giving domain 

scientists the tools to develop new models that can use the newest technology without 

crushing their budgets will pave the way for novel research.

 Distributed OpenCL (DOCL) addresses these issues.  The overarching goal 

was to mitigate or eliminate every source of frustration for the user while enabling 

distributed computation on an ad hoc cluster of heterogeneous nodes.  Manual cluster 

creation, configuration, and use were eliminated.  Scheduling cost metrics, such as 

communication and computation cost, were automatically collected.  The graphical 

programming language reduces the complexity of model development, eliminating the 

need for boilerplate41 code.  Several example applications were implemented using 

DOCL.

 To remain accessible to non-expert computer users, it was necessary to ensure 

that Distributed OpenCL was easy to install.  The initial implementation, which runs 

on MacOS, is contained within a single application bundle.  It appears to the user as a 

single file and can be installed by dragging and dropping it into the Applications 

folder.  Building a cluster is as easy as installing the application on several computers 
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and running it.  The careful engineering that went into the design of DOCL allows a 

novice computer user to construct a high-performance computing cluster.  DOCL even 

eliminated the need for superuser privileges; the system can be installed and used 

without any administrator passwords, which reduces the risk associated with its use.

 Unlike typical supercomputer and cluster systems, ad hoc clusters are 

inherently chaotic and diverse.  To make well-informed decisions, the task scheduler 

requires high-quality information about the time required to transport data across the 

network, as well as the time required to perform a task on each device.  To address this 

need, two solutions were developed that automatically measure these quantities.  In 

keeping with the overarching project goals, the cost metric measurement systems had 

to be configuration-free and automatic; this was achieved through the development of 

novel distributed algorithms.  The throughput benchmark scheduling system 

performed within the bounds set by theory.

 Parallel programming has always had a reputation for being a particularly 

painful activity.  This perception appears well founded when using common parallel 

programming paradigms such as OpenMP, MPI, and Pthreads.  These technologies are 

based on serial programming languages, but they allow multiple instances of the same 

program run coincidently but independently.  Assuring consistent, well-behaved access 

to system resources is a significant challenge, and it is the root of the majority of 

errors.  Graph-based parallel programming, in contrast, allows parallel execution of 

independent operations in an inherently safe way.  Many of the parallel programming 

bugs that are common using traditional techniques are not possible using a task graph.

 Many task graph implementations operate on a highly granular scale.  From a 

research perspective, this may be an appropriate course of action.  From a practical 

standpoint, however, overly detailed task graphs are visually confusing to the user and 

are difficult to efficiently translate into a machine executable representation.  A 

compromise was struck between the ease of use of a task graph and the efficiency of 

traditional, C-based coding.  Using OpenCL as the inner implementation of tasks 
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allows efficient compilation and execution across a wide variety of processor types, 

including data-parallel devices such as GPUs.  The outer representation of the task 

graph summarizes the architecture of the application and allows for automatic 

parallelization.

 The example applications provided demonstrate the power of Distributed 

OpenCL and its ability to implement complex signal processing algorithms.  The 

beamforming application is an important example of the improvement in the use of 

human time.  The original implementation of the algorithm (from exemplar Matlab 

source code) on the Cell/B.E. took several months of human time and required the 

development of a task-graph based library.  Using DOCL, the algorithm was 

developed in a few days and is able to run on a cluster.

 I believe that Distributed OpenCL has been a positive exploration of the 

problems and opportunities encountered while developing a next-generation cluster 

programming system.  Solutions were found that eliminate the complex manual tasks 

required to construct a traditional cluster, and an effective programming environment 

was developed and proven to be useful for scientific tasks.

Future Work

 Because Distributed OpenCL is a platform rather than an application, there is 

tremendous opportunity for future enhancement and development.  The current 

implementation relies upon statically linked implementations of the source and sink 

nodes in the task graph.  These nodes are vital for providing input data into the graph 

as well as performing useful work with the result.  In its current form, only a subset of 

the range of options is included.  Part of the strategy for ensuring the greatest impact 

from this work is supporting unforeseen combinations of input, output, and 

computation.  New avenues of research often begin when existing ideas are combined 

in new and interesting ways.
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 To ensure that the greatest diversity in input and output device support is 

available, a plugin architecture is proposed.  Because the inspector window used to 

configure task nodes is populated at runtime, it is possible to dynamically add 

additional functionality.  Furthermore, because the XML document file specification 

identifies the node types by their string type name, through introspection, it is also 

possible to locate class implementations at runtime, allowing for the addition of 

functionality after compilation and deployment.

 In addition to the plugin system proposed for sink and source nodes, it is 

possible to support task scheduler plugins.  The wide range of task scheduling 

strategies, and their profound effect on performance, requires flexibility within the 

scheduling system.  The provided task scheduler is a basic example intended to 

demonstrate the scheduling framework.  Future work is required to develop a suite of 

more advanced and powerful schedulers.  It is clear that task scheduling algorithm 

development is a sufficiently broad and deep area whose exploration wasn’t possible 

in this work; the most appropriate course of action was to provide the mechanics for 

later development and research.

 While the system that generates communication and computation cost 

performs well, there are enhancements that could accelerate the execution of these 

measurements.  Currently, the network cost measurement system performs a 

measurement between each pair of hosts.  This is the most complete way to determine 

a communication cost matrix for a cluster.  In many cases, however, some of these 

measurements are redundant.  It should be sufficient to model the throughput 

capability of the network itself, then measure each host’s performance relative to the 

network.  Using this method, the throughput between any pair of hosts is equal to the 

minimum throughput of each host to the network and of the network itself.  The direct 

measurement of network throughput is not possible because it is always measured 

through a host, but it can be assumed to be greater than or equal to the highest 

throughput between any pair of hosts.  It should be possible to reduce the number of 
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operations in the communication cost measurement algorithm from 42 to 

better than .

 Not only can the number of operations necessary for communication cost 

measurement be reduced, but many of the operations used in compute cost 

measurement can be culled.  In the case of computation cost, the redundant operations 

are in the form of additional benchmarks on similar devices.  The current system 

performs a benchmark on every device within the cluster.  It is likely that distinct 

instances of the same device are similar enough that only one measurement is required 

for the entire class.  There is some risk to this optimization, however; namely, that 

different systems’ configurations might affect the performance of the same device in 

differing hosts.  The sensitivity of device performance to host configuration and other 

tradeoffs would have to be investigated before this relatively simple modification 

could be made.

 There are opportunities for several other enhancements, such as real-time 

debugging of the task graph.  It should be possible to allow the user to interrogate each 

of the intermediate values as they’re passed between nodes in the task graph.  A small 

set of inspection tools would provide a wealth of valuable information to the user.  An 

oscilloscope-like graphing tool could be used to inspect scalar or vector arguments 

across time, or to graph a vector argument for each task invocation.  The same 

construct could be used after the source data is processed by an FFT.  Image and 2D 

data could be shown by directly mapping the data to the screen or presenting the data 

in a table.  More complex data, like volumetric and 3D data, could be displayed using 

a raytracing visualizer.  Some additional tools, such as triggering, breakpoints, or 

single-stepping, would have to be provided due to the volume of data that could pass 
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through the task graph.  These tools would allow the user to make sense of unexpected 

results and encourage iterative design.

 The use of MacOS as a development platform contributed to the rapid 

implementation of Distributed OpenCL.  MacOS contains the canonical 

implementations of Bonjour and OpenCL; therefore, the tools provided were available 

earlier and were arguably of higher quality.  However, the choices that Apple Inc. 

made regarding the discontinuation of their rack-mountable server (Xserve), as well as 

the stagnation of their workstation (MacPro) encourage skepticism regarding their 

continued investment in the professional product market segment.  Furthermore, as 

GPU vendors have added products that are intended for scientists and that work best in 

Linux environments, the development of a Linux version of Distributed OpenCL 

would be beneficial.  Only the cluster node agent software would need to be developed 

initially.  The user interface paradigms were designed with the MacOS use model and 

Cocoa UI libraries in mind; therefore, transitioning these elements would require more 

careful planning and a complete reimplementation.  There are no current plans to port 

the software to Microsoft Windows, but because the specification is open and relies 

upon standard technologies, it should be a straightforward exercise.

 The production of this dissertation, and its presentation to the committee, do 

not mark the termination of this work; those are merely signs that the basic foundation 

has been laid and the associated research is complete.  The presented project is capable 

of performing useful work in a wide range of scientific and data analysis scenarios, 

and these capabilities will be further enhanced.  The described future work is a narrow 

cross-section of the enormous scope of future enhancements.  Many years of work 

remain, but the end result will be nothing short of amazing.
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Appendices

Appendix A. XML Messaging Schema

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  targetNamespace="http://tundra/dist-opencl/peerSchema.xsd"
  xmlns="http://tundra.oce.orst.edu/dist-opencl/peer">

  <!-- Messages relating to DOCL system tree -->
  <xs:attributeGroup name="platform.attributes">
    <xs:attribute name="hw_vendor" type="xs:string"/>
    <xs:attribute name="hw_model" type="xs:string"/>
    <xs:attribute name="sw_vendor" type="xs:string"/>
    <xs:attribute name="sw_version" type="xs:string"/>
  </xs:attributeGroup>

  <xs:complexType name="opencl_device">
    <xs:attributeGroup ref="platform.attributes"/>
    <xs:attribute name="type" use="required"/>
    <xs:attribute name="units" type="xs:positiveInteger"/>
    <xs:attribute name="frequency" type="xs:positiveInteger"/>
    <xs:attribute name="max_workitem_size" type="xs:string"/>
    <xs:attribute name="max_workgroup_size" type="xs:string"/>
    <xs:attribute name="max_image2d_size" type="xs:string"/>
    <xs:attribute name="max_image3d_size" type="xs:string"/>
    <xs:attribute name="global_mem_size" type="xs:decimal"/>
    <xs:attribute name="local_mem_size" type="xs:decimal"/>
  </xs:complexType>

  <xs:complexType name="opencl">
    <xs:sequence>
      <xs:element ref="opencl_device"
        maxOccurs="unbounded" minOccurs="1"/>
    </xs:sequence>
    <xs:attributeGroup ref="platform.attributes"/>
    <xs:attribute name="name" type="xs:string"/>
    <xs:attribute name="profile" type="xs:string"/>
    <xs:attribute name="type" type="xs:string"/>
  </xs:complexType>

  <xs:complexType name="service">
    <xs:attribute name="address" type="xs:string"/>
    <xs:attribute name="netmask" type="xs:string"/>
    <xs:attribute name="config_method" type="xs:string"/>
  </xs:complexType>

  <xs:complexType name="interface">
    <xs:sequence>
      <xs:element ref="service"/>
    </xs:sequence>
    <xs:attribute name="name" type="xs:string"/>
  </xs:complexType> 
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  <xs:complexType name="network">
    <xs:sequence>
      <xs:element ref="interface"
        maxOccurs="unbounded" minOccurs="1"/>
    </xs:sequence>
  </xs:complexType>

  <xs:complexType name="system">
    <xs:sequence>
      <xs:element ref="opencl"/>
      <xs:element ref="network"/>
      <xs:element ref="peers"/>
    </xs:sequence>
    <xs:attributeGroup ref="platform.attributes"/>
    <xs:attribute name="timestamp" type="xs:positiveInteger"/>
    <xs:attribute name="name" type="xs:string"/>
    <xs:attribute name="uuid" type="xs:string"/>
  </xs:complexType>

  <xs:complexType name="update">
    <xs:sequence>
      <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/peer"
        processContents="skip"
        minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
    <xs:attribute name="Xpath" type="xs:string"/>
  </xs:complexType>

  <!-- Messages relating to DOCL benchmarks -->
  <xs:attributeGroup name="statistics.attributes">
    <xs:attribute name="min"     type="xs:float"/>
    <xs:attribute name="max"     type="xs:float"/>
    <xs:attribute name="st_dev"  type="xs:float"/>
    <xs:attribute name="samples" type="xs:integer"/>
  </xs:attributeGroup>

  <xs:complexType name="mean">
    <xs:simpleContent>
      <xs:extension base="xs:float">
        <xs:attributeGroup ref="statistics.attributes"/>
      </xs:extension>
    </xs:simpleContent>
  </xs:complexType>

  <xs:element name="error" type="xs:string"/>

  <xs:complexType name="device">
    <xs:choice minOccurs="1" maxOccurs="1">
      <xs:element ref="mean"/>
      <xs:element ref="error"/>
    </xs:choice>
    <xs:attribute name="type" type="xs:string"/>
    <xs:attribute name="model" type="xs:string"/>
    <xs:attribute name="index" type="xs:positiveInteger"/>
  </xs:complexType>
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  <xs:complexType name="kernel">
    <xs:sequence>
      <xs:element ref="device"/>
    </xs:sequence>
  </xs:complexType>

  <xs:complexType name="latency">
    <xs:simpleContent>
      <xs:extension base="xs:float">
        <xs:attributeGroup ref="statistics.attributes"/>
        <xs:attribute name="packet_loss" type="xs:string"/>
      </xs:extension>
    </xs:simpleContent>
  </xs:complexType>

  <xs:complexType name="throughput">
    <xs:simpleContent>
      <xs:extension base="xs:float">
        <xs:attributeGroup ref="statistics.attributes"/>
      </xs:extension>
    </xs:simpleContent>
  </xs:complexType>

  <xs:complexType name="bench">
    <xs:choice minOccurs="1" maxOccurs="2">
      <xs:element ref="latency"/>
      <xs:element ref="throughput"/>
    </xs:choice>
    <xs:attribute name="local_address" type="xs:string"/>
  <!-- Address of the host sending the benchmark message,
      or address of the localhost (in peerSubtree)-->
    <xs:attribute name="remote_address" type="xs:string"/>
  <!-- Address of the host receiving the benchmark message,
      or address of the remote host (in peerSubtree)-->
    <xs:attribute name="netmask" type="xs:string"/>
  </xs:complexType>

<!-- Messages relating to DOCL peering -->
  <xs:complexType name="peer">
    <xs:attribute name="name" type="xs:string"/>
    <xs:attribute name="uuid" type="xs:string"/>
    <xs:attribute name="client" type="xs:string"/>
  </xs:complexType>

  <xs:complexType name="peers">
    <xs:sequence>
      <xs:element ref="peer" maxOccurs="unbounded" minOccurs="0"/>
    </xs:sequence>
  </xs:complexType>

<!-- Messages relating to DOCL diagnostics -->
  <xs:complexType name="event">
    <xs:simpleContent>
      <xs:extension base="xs:string">
        <xs:attribute name="timestamp" type="xs:string"/>
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        <xs:attribute name="severity"  type="xs:string"/>
      </xs:extension>
    </xs:simpleContent>
  </xs:complexType>    

  <xs:complexType name="log">
    <xs:sequence>
      <xs:element ref="event" maxOccurs="unbounded" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="timestamp" type="xs:string"/>
  </xs:complexType>

  <xs:complexType name="logs">
    <xs:sequence>
      <xs:element ref="log" maxOccurs="unbounded" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="host" type="xs:string"/>
  </xs:complexType>    

<!-- Messages relating to DOCL preperation and execution -->
  <xs:complexType name="DOCL-node">
    <xs:choice minOccurs="1" maxOccurs="unbounded">
      <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/doc"
        minOccurs="1" maxOccurs="1"/>
    </xs:choice>
  </xs:complexType>    
    
  <xs:complexType name="prepare">
    <xs:choice minOccurs="0" maxOccurs="unbounded">
      <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/doc"
        minOccurs="1" maxOccurs="1"/>
    </xs:choice>
    <xs:attribute name="port" type="xs:integer"/>
  </xs:complexType>

  <xs:complexType name="run">
    <xs:choice minOccurs="1" maxOccurs="unbounded">
      <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/doc"
        minOccurs="1" maxOccurs="1"/>
    </xs:choice>
  </xs:complexType>

  <xs:complexType name="stop">
    <xs:choice minOccurs="1" maxOccurs="unbounded">
      <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/doc"
        minOccurs="1" maxOccurs="1"/>
    </xs:choice>
  </xs:complexType>

<!-- Messages relating to encapsulation -->
  <xs:element name="message">
    <xs:complexType>
      <xs:choice minOccurs="0" maxOccurs="unbounded">
      <xs:element ref="update"/>
      <xs:element ref="peer"/>
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      <xs:element ref="bench"/>
      <xs:element ref="prepare"/>
      <xs:element ref="run"/>
      <xs:element ref="stop"/>
      <xs:any
        namespace="http://tundra.oce.orst.edu/dist-opencl/doc"/>
      </xs:choice>
    </xs:complexType>
  </xs:element>

</xs:schema>
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Appendix B. Example Peer XML System Tree

<?xml version="1.0" encoding="UTF-8"?>

<system hw_model="MacPro4,1" hw_vendor="Apple" sw_version="85fd753"
     uuid="F184D397-BF40-5097-BF78-53C7F84BEDDA" name="Tundra2">
  <opencl vendor="Apple" version="OpenCL 1.1"
      name="Apple" profile="FULL_PROFILE">
    <opencl_device type="CPU" vendor="Intel" units="16"
        frequency="2659" max_workitem_size="1024,1,1"
        max_workgroup_size="16" max_image2d_size="8192,8192"
        max_image3d_size="2048,2048,2048" local_mem_size="32768"
        global_mem_size="6442450944">
    </opencl_device>
    <opencl_device type="GPU" vendor="NVIDIA" units="30"
        frequency="1476" max_workitem_size="512,512,64"
        max_workgroup_size="30" max_image2d_size="4096,4096"
        max_image3d_size="2048,2048,2048" local_mem_size="16384"
        global_mem_size="1073741824">
    </opencl_device>
    <opencl_device type="GPU" vendor="NVIDIA" units="4"
        frequency="1400" max_workitem_size="512,512,64"
        max_workgroup_size="4" max_image2d_size="4096,4096"
        max_image3d_size="2048,2048,2048"
        global_mem_size="536870912" local_mem_size="16384">
    </opencl_device>
  </opencl>

  <network>
    <interface name="en2">
      <service address="172.20.71.212" netmask="255.255.240.0"
          config_method="DHCP"/>
    </interface>
    <interface name="en0">
      <service address="128.193.71.212" netmask="255.255.248.0"
          config_method="DHCP"/>
    </interface>
  </network>

  <peers>
    <peer name="Tundra1"uuid="97612927-06A2-5876-BF6E-246E0AA72D89">
      <bench local_address="172.20.71.212"
            remote_address="172.20.71.211">
        <latency std_deviation="0.000115" samples="11"
            packet_loss="0.0">0.000186</latency>
        <throughput>549941888.0</throughput>
      </bench>
      <bench local_address="128.193.71.212"
            remote_address="128.193.71.211">
        <latency std_deviation="0.000103" samples="11"
            packet_loss="0.0">0.000300</latency>
        <throughput>333777024.0</throughput>
      </bench>
    </peer>
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    <peer name="Tundra3" uuid="E8443EE8-F015-5988-AE4E-0AC1B825715C">
      <bench local_address="172.20.71.212"
            remote_address="172.20.71.213">
        <latency std_deviation="0.000161" samples="11"
            packet_loss="0.0">0.000173</latency>
      </bench>
      <bench local_address="128.193.71.212"
            remote_address="128.193.71.213">
        <latency std_deviation="0.000218" samples="11"
            packet_loss="0.0">0.000338</latency>
      </bench>
    </peer>
  </peers>
</system>
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Appendix C: XML Document Schema

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
    targetNamespace="http://tundra/dist-opencl/docSchema.xsd"
    xmlns="http://tundra.oce.orst.edu/dist-opencl/doc">

  <xs:attributeGroup name="execution.attributes">
    <xs:attribute name="uuid" type="xs:string"/>
    <xs:attribute name="peer" type="xs:string"/>
    <xs:attribute name="port" type="xs:decimal"/>
  </xs:attributeGroup>

  <xs:attributeGroup name="argument.attributes">
    <xs:attribute name="label"      type="xs:string"/>
    <xs:attribute name="type"       type="xs:string"/>
    <xs:attribute name="size"       type="xs:string"/>
    <xs:attribute name="direction"  type="xs:string"/>
    <xs:attribute name="endianness" type="xs:string"/>
  </xs:attributeGroup>

  <xs:complexType name="DOCL-connection">
    <xs:attribute name="source-argument" type="xs:string"/>
    <xs:attribute name="source-node" type="xs:string"/>
    <xs:attribute name="destination-argument" type="xs:string"/>
    <xs:attribute name="destination-node" type="xs:string"/>
  </xs:complexType>

  <xs:complexType name="DOCL-argument">
    <xs:attributeGroup ref="execution.attributes"/>
    <xs:attributeGroup ref="argument.attributes"/>
  </xs:complexType>

  <xs:complexType name="DOCL-scratchpad">
    <xs:attributeGroup ref="execution.attributes"/>
    <xs:attributeGroup ref="argument.attributes"/>
  </xs:complexType>

  <xs:complexType name="DOCL-node">
    <xs:sequence>
      <xs:element ref="DOCL-argument"/>
      <xs:element ref="DOCL-connection"/>
      <xs:element ref="DOCL-scratchpad"/>
    </xs:sequence>
    <xs:attribute name="location"       type="xs:string"/>
    <xs:attribute name="name"           type="xs:string"/>
    <xs:attribute name="type"           type="xs:string"/>
    <xs:attribute name="kernelName"     type="xs:string"/>
    <xs:attribute name="localWorkSize"  type="xs:string"/>
    <xs:attribute name="globalWorkSize" type="xs:string"/>
    <xs:attributeGroup ref="execution.attributes"/>
  </xs:complexType>
</xs:schema>
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Appendix D: Example Task Graph XML representation

Task graph represented

<DOCL-document>
  <DOCL-node name="node1" location="397,288" type="DAGKernelNode"
      globalWorkSize="10,1,1" localWorkSize="100,1,1">
    <DOCL-argument label="outlet" type="Int"
        direction="Input" endianness="little" size="1"/>
    <DOCL-argument label="source" type="Int"
        direction="Output" endianness="little" size="1"/>
    <![CDATA[
// This is the kernel source for node1.
// The kernel function definition is generated automatically.
@kernel {
    int i = get_global_id(0);
    int j = get_local_id(0);

    // Do some work for i and j.

    return;
}]]>
  </DOCL-node>

  <DOCL-node name="node" location="393,142" type="DAGKernelNode"
      globalWorkSize="5,2,1" localWorkSize="10,10,10">
    <DOCL-argument label="outlet" type="Int"
        direction="Input" endianness="little" size="1">
    </DOCL-argument>
    <DOCL-argument label="source" type="Int"
        direction="Output" endianness="little" size="1">
    </DOCL-argument>
    <![CDATA[
@kernel {
    // Do some work

    return;
}]]>
  </DOCL-node>
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  <DOCL-node type="DAGFileSinkNode" name="sink" location="686,194"
      URL="file://path/to/local/resource.csv" discardBefore="0"
      discardAfter="0" fieldSeperator="comma" fileType="ascii">
    <DOCL-argument label="Input" type="Int"
        direction="input" endianness="little" size="1"/>
    <DOCL-argument label="untitled" type="Int"
        direction="input" endianness="little" size="1"/>
  </DOCL-node>

  <DOCL-node type="DAGFileSourceNode" name="src" location="59,211" 
      URL="http://somewhere.com/remote/url/resource.dat"
      discardBefore="0" discardAfter="0" fileType="binary">
    <DOCL-argument label="Output" name="Output" type="Int"
        direction="output" endianness="little" size="1"/>
  </DOCL-node>

  <DOCL-connection source-node="node"
      source-argument="source" destination-node="sink"
      destination-argument="Input"/>

  <DOCL-connection source-node="node1"
      source-argument="src" destination-node="sink"
      destination-argument="untitled"/>

  <DOCL-connection source-node="src" source-argument="Output"
      destination-node="node" destination-argument="outlet"/>

  <DOCL-connection source-node="src" source-argument="Output"
      destination-node="node1" destination-argument="outlet"/>
</DOCL-document>
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Appendix D. Simple task scheduler

- (void)schedulePendingNodes:(NSArray *)nodes
{
// This stores the current assignment (in seconds) for each device
  NSMutableDictionary *devicesDict;
  devicesDict = [[NSMutableDictionary alloc] init];

  // Preferentially schedule the longest nodes
  NSArray *sortedNodes = [nodes sortedArrayUsingComparator:
    ^NSComparisonResult(DAGKernelNode *obj1, DAGKernelNode *obj2) {

      // Find the minimum time of the first object
      float minimumTime1 = FLT_MAX;
      float minimumTime2 = FLT_MAX;
      for (DAGNodeStats *stats in [obj1 stats]) {
        float mean = [stats mean]
        minimumTime1 = (mean < minimumTime1)? mean : minimumTime1;
      }

      for (DAGNodeStats *stats in [obj2 stats]) {
        float mean = [stats mean]
        minimumTime2 = (mean < minimumTime2)? mean : minimumTime2;
      }

      if (minimumTime1 == minimumTime2) return NSOrderedSame;
      if (minimumTime1 < minimumTime2) return NSOrderedDescending;
      else return NSOrderedAscending;
    }];

// For each node in the pending nodes, set the peer UUID and
// device ID fields.  This is the mapping from nodes to peers.
  for (DAGKernelNode *node in sortedNodes) {

    DAGNodeStats *bestStat = nil;
    NSString *leastAssignedDeviceKey = nil;
    float smallestAssignment = FLT_MAX;

    for (DAGNodeStats *stat in [node stats]) {
      float mean = [stat mean];

      NSString *deviceKey = [NSString stringWithFormat:@"%@:%d",
                             [[stat peer] uuid], [stat deviceID]];
      NSNumber *num = [devicesDict objectForKey:deviceKey];

      float assignment = (num == nil)? 0 : [num floatValue];

    // Add the assignment to the mean, and see if it's the smallest
      if (mean + assignment < smallestAssignment) {
        smallestAssignment = mean + assignment;
        leastAssignedDeviceKey = deviceKey;
        bestStat = stat;
      }
    }
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  // Now, assign the node to the device
    NSNumber assignmentNumber;
    assignmentNumber = [NSNumber numberWithFloat:smallestAssignment]
    [devicesDict setObject: assignmentNumber
                    forKey:leastAssignedDeviceKey];
    [node setPeerUUID:[[bestStat peer] uuid]];
    [node setDeviceIndex:[bestStat deviceID]];
  }

  [devicesDict release];
}
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