
AN ABSTRACT OF THE DISSERTATION OF

William H. Dillon for the degree of Doctor of Philosophy in Computer Science

presented on May 29, 2012

Title: Distributed OpenCL: A platform for Distributed, Heterogeneous Computing for

Domain Scientists

Abstract approved: __

Michael J. Bailey

 It is possible to purchase, for as little as $10,000, a cluster of computers with

the capability to rival the supercomputers of only a few years ago. Now, users that

have little to no experience developing distributed applications or managing a cluster

are in a position to do so. To allow domain scientists to effectively utilize these

resources, Distributed OpenCL (DOCL) was developed. DOCL is an easy-to-use

foundation for peer-to-peer distributed computation on small to medium clusters. It is

assumed that the end-user is a domain scientist, familiar with model development in

environments such as Matlab, though inexperienced with distributed computation or

parallel programming. The scope of this work includes the definition of a peer-to-peer

protocol for discovering and establishing relationships with every node within a

multicast domain, using the concepts of Zero-Configuration Networking, multicast

DNS, and DNS Service Discovery. A problematic edge case of multicast DNS is

detailed along with a mitigation technique. An XML schema is also described for

basic peer communication and cluster management and inventory. A system for

scheduling algorithm tasks on the cluster of heterogeneous compute devices was

developed, including an automatic computation and communication cost measurement

system. Finally, a graphical programming language was designed and implemented

that allows non-expert programmers and modelers to develop new applications in a

straightforward, accessible way.

© Copyright by William H. Dillon

May 29, 2012

All Rights Reserved

Distributed OpenCL: A platform for Distributed, Heterogeneous Computing for

Domain Scientists

by

William H. Dillon

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented May 29, 2012

Commencement June 2012

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3528636

Copyright 2012 by ProQuest LLC.

UMI Number: 3528636

Doctor of Philosophy dissertation of William H. Dillon on May 29, 2012.

APPROVED:

__

Major Professor, representing Computer Science

__

Director of the School of Electrical Engineering and Computer Science

__

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my

dissertation to any reader upon request.

__

William H. Dillon, Author

ACKNOWLEDGMENTS

I would like to first thank my wife Katie for being a patient and supportive partner.

Without her support, encouragement, and love this work would have never been

completed. In addition, I must thank my mother for the many years of support and

love and the rest of my family for being there for me. Finally, I want to thank Rachel,

my sister, for graciously lending her editing skills.

Secondly, I would like thank my advisor, Mike Bailey, for the support and

encouragement over the duration of my graduate career. I would also like to recognize

all of my committee members for their time and effort.

Thirdly, I would like to thank the fantastic research computing team at CEOAS. The

help provided by Chuck Sears, Tom Leach, and Bruce Marler, was indispensable.

Toms mastery of networking protocols is rivaled only by the implementers

themselves. The unique approach to research computing management fostered an

environment that allowed this work to take place. Had the team not been flexible and

understanding, it would not have been possible to complete this work.

Finally, I want to thank Mark Abbott for supporting this work, and providing an

environment in which it could be completed, and for financial support, Terri

Paluszkiewicz and the Office of Naval Research.

...Introduction 1

..Market Changes 3

..The end of clock rate increases 7

...Parallelism is the path forward 9

......The widening gap between domain science and computer technology 11

...Distributed OpenCL Overview 13

...Architecture 15

...Previous Work 18

..Materials and Methods 23

..Peer Discovery, Resolution and Latency Measurement 29

..Peer Discovery with DNS-SD 30

.................Latency Measurement and mDNS Across Non-routed Subnets 32

...Peer To Peer Clustering 35

...Protocol Details 37

...TCP Peering protocol 38

...XML Messaging protocol and schema 40

...Results 47

..Automatic Network Cost Measurement 50

TABLE OF CONTENTS

 Page

..Theoretical Background and Previous Work 51

...Methods 54

.....................................Mutual Exclusion using the TCP Handshake 55

...................................Distributed synchronization using local locks 57

...Results 61

................................Task Scheduling Framework for Heterogeneous Computing 64

...Previous and Related Work 65

..Task graph representation and document format 67

...Task graph Classes and Structure 67

..XML Document Structure 68

...Automatic Computation Cost Benchmarking 71

...Scheduling Framework 73

...Task Graph Execution 75

..Graphical Programming Language 78

...Previous and Related Work 78

...Graphical Programming Language Design 82

...................................Graphical Programming Language Implementation 86

..Example problems solved with Distributed OpenCL 89

TABLE OF CONTENTS (Continued)

 Page

...16 Channel Beamformer 89

..Software Defined Radio 92

...Conclusions 96

...Future Work 98

..Bibliography 102

..Appendices 109

...Appendix A. XML Messaging Schema 109

..Appendix B. Example Peer XML System Tree 114

...Appendix C: XML Document Schema 116

............................Appendix D: Example Task Graph XML representation 117

..Appendix D. Simple task scheduler 119

TABLE OF CONTENTS (Continued)

 Page

..Figure 1: Cell/BE architecture 5

.....................Figure 2: Semiconductor manufacturing trends from 1962 to 1970 7

...Figure 3: Historical clock speed and transistor count 8

..Figure 4: Semiconductor feature size roadmap 10

...Figure 5: Cross-section of the Apple A4 11

..Figure 6: Distributed OpenCL task graph 13

..Figure 7: Distributed OpenCL Architectural Diagram 15

...........Figure 8: Cluster of compute devices and mapping from tasks to devices 17

..Figure 9: OpenDX user interface 20

..Figure 10: Quartz Composer user interface 21

........................Figure 11: Distributed OpenCL development cluster architecture 24

..Figure 12: Materials used 26

..Figure 13: Arista 7148SX switch architecture 27

...Figure 14: Organization of a Bonjour service name 31

.................................Figure 15: Architectural makeup of the cluster middleware 37

...Figure 16: Peering protocol flow chart 38

..Figure 17: XML Message schema hierarchy 40

.....................Figure 18: Observed and predicted scaling of cluster creation time 47

...............Figure 19: Cluster configuration derived from the XML system report 49

Figure 20: Edge coloring of complete graphs K3 and K4 52

...Figure 21: Simplified TCP State Transition Diagram 56

................................Figure 22: Server side logic for distributed synchronization 58

.................................Figure 23: Client side logic for distributed synchronization 59

..Figure 24: Histogram of total runtime 61

.............................Figure 25: Colors required over minimum versus cluster size 62

..Figure 26: Scaling performance by cluster size 63

..Figure 27: Hierarchy of scheduling techniques 67

LIST OF FIGURES

 Page

...................Figure 28: UML-like class diagram of the task graph representation 68

.................................Figure 29: Structure of the XML task graph representation 70

....................................Figure 30: Network flow diagram for task benchmarking 74

.....................Figure 31: Simplified UML-like class diagram for task scheduling 75

...........Figure 32: Comparison between input and cluster-embedded task graphs 78

.............................Figure 33: Lego MINDSTORMS programming environment 79

...................................Figure 34: Sample National Instruments LabVIEW graph 80

..........................Figure 35: Detail of OpenDX task nodes with folded-over tabs 81

....................Figure 36: Inspector window control for a Quartz Composer patch. 82

...Figure 37: GNURadio Companion 83

..Figure 38: User interaction details 84

..Figure 39: Inspector window examples 86

.................Figure 40: Simplified UML diagram of the user interface mechanics. 88

...Figure 41: Beamforming overview 90

...........Figure 42: 16 Channel beamformer implemented in Distributed OpenCL 92

.....Figure 43: Sample block diagram of a DDC receiver and commercial device 94

...........Figure 44: SDR task graph for bell 202 demodulator on narrowband FM 96

LIST OF FIGURES (Continued)

Figure Page

...Table 1: Development cluster configuration 25

..Table 2: DNS-SD TXT record field descriptions 32

..Table 3: Contents of the UDP ping packet 33

LIST OF TABLES

Table Page

Distributed OpenCL: A platform for Distributed, Heterogeneous

Computing for Domain Scientists

Introduction
 There is a growing divide between the capabilities of modern computing

devices and our ability to program them. Gabe Newell of Valve Software recently said

“If there were 500 people who could write a good game engine in the last generation,

you’re really talking 50 people who are going to be good enough to do it in the next

generation.” (Francis 2010) This is an important observation, but not just within the

context of professional software and game development. Scientific applications are, if

anything, more susceptible to falling behind the technology curve. Budgets being

allocated to maintaining existing models are limited, and there are few opportunities to

develop new models that are optimized for recently developed hardware. In addition

to limited budgets, talented programmers are enticed away from scientific computing

to industries with the higher salaries, such as gaming and financial analytics. To

advance scientific computing, solutions that address these realities must be developed.

I’ve responded by developing Distributed OpenCL; a platform that enables scientific

application development using commodity and gaming hardware.

 Advances in the computer gaming industry are increasingly relevant to any

discussion of general and scientific computing. In the 1980s and 1990s, the

computing industry was largely focused on providing high-quality tools for

professionals, and it was during this time that the majority of supercomputer research

and development took place. World governments viewed supercomputer performance

as an economic engine as well as an important area of intergovernmental competition.

The industry enjoyed the support of considerable government procurements, including

national centers and installations for classified work in agencies such as the

Department of Energy (DOE) and the Defense Advanced Research Projects Agency

(DARPA) (Gilliam 1993).

1

 Although the government remains a significant factor in the computing

industry, its ability to influence the direction of computing research and development

has been overwhelmed by the expansion of the consumer mobile and entertainment

market segments. The market intelligence firm IDC values the 2011 High

Performance Computing (HPC) market segment at $10 billion (Joseph and Shirer

2012); it estimates the global value of handheld gaming at $14.7 billion (Ward and

Shirer 2012) and the smartphone market at $157.8 billion in the same time period

(Llamas, Restivo, and Shirer 2012).

 The expansion of the gaming console and smartphone markets pushed the

computing industry to develop devices that are appropriate for these markets.

Smartphone processors are designed to maximize performance within a very tight

power budget. Gaming consoles tolerate greater power draw, but achieving maximum

performance is vital. In both cases, cost is a major factor and vendors must provide

inexpensive solutions.

 Semiconductor products enjoy economies of scale, meaning that the cost to

produce an additional unit is less than the average cost to produce all prior units. The

majority of the costs associated with a semiconductor product are one-time sunk costs

such as research and development, “tape out1,” and tooling. In consumer markets,

these costs are distributed across a large user base. Targeting the consumer market is

often a wise business decision; expensive and exotic products, targeted at high-

performance computing, are becoming less common.

 Healthy competition among vendors drives costs down while improving

performance. Microprocessor architecture licensing firms such as MIPS

2

1 Tape out is the term used to describe the process of producing the photo-
lithographical masks used to define the patterns on a semiconductor wafer during
production.

Technologies2 and ARM3 produce standard processor designs and Instruction Set

Architectures (ISAs). These companies do not manufacture physical products

themselves; instead, they license their designs to independent firms. The products

based on MIPS and ARM architectures are often compatible within their families,

allowing them to be treated as commodities. Using commodity products in scientific

applications ensures that scientists are able to pay the lowest possible price for a given

level of functionality, making the most out of their fixed budgets.

 In addition to the changes in market conditions, we are at a unique time in the

evolution of silicon technology. In terms of clock speed, Moore’s Law has broken

down. During the period of exponential clock speed improvement, software

development could remain stagnant; now that clock speeds are mostly constant,

improvements in performance must come from increased parallelism. Existing

software packages, especially those that are single-threaded, will no longer improve

with new hardware. To keep pace with these changes, new software must be

developed, and new programming techniques are needed.

Market Changes

 The consumerization and commoditization of technology began in the early

1980s, when Compaq reverse-engineered the IBM BIOS and produced the first “IBM

Compatible” computer. Competition among vendors producing interchangeable

products drove prices down, increasing the number of people who could afford home

computers. Home computers were used for entertainment purposes, including

computer games, which exploded in popularity with the advent of the personal

computer.

3

2 MIPS Technologies: http://www.mips.com/, accessed May 12, 2012

3 ARM Ltd.: http://www.arm.com/, accessed May 12, 2012

 By the mid-1990s, computer gaming had become so popular and sophisticated

that dedicated 3D graphics processors were developed for gaming. Companies such as

3dfx and Nvidia were founded with talent originating from scientific and enterprise

computing companies such as SGI, LSI Logic, Sun Microsystems and AMD. The new

3D graphics processors were the perfect combination of price and performance.

Features that were only useful for scientific applications, such as numerical precision,

were sacrificed to keep costs low.

 Intense competition among the early graphics card companies accelerated

product development. Companies were able to increase performance by moving more

of the graphics pipeline into hardware. The Transform and Lighting (T&E) engine

from the Nvidia GeForce 256 is a good example of this. The T&E engine performed

all of the linear algebra operations as well as basic fragment shading in hardware.

According to Nvidia4, this product was the first Graphics Processing Unit (GPU).

Two years later, Nvidia added programmability in the GeForce3 product. The

programs, called “shaders,” were small, extremely constrained programs that could

modify the way pixels were computed. In time, shaders were added for vertices,

geometry, and tessellation. As the rendering pipeline became more diverse, Nvidia

unified the hardware architecture of its processors, discarding the dedicated processing

for vertices, primitive assembly, rasterization, and pixels. The new architecture, called

Common Unified Device Architecture (CUDA) (Lindholm et al. 2008), uses general-

purpose compute elements that are dynamically scheduled to perform any graphics

task. In 2006, Nvidia released the CUDA programming language that allowed non-

graphics applications to take advantage of the parallel processing power of the GPU.

 By generalizing the architecture and programming model, GPUs have become

powerful co-processors. Even before general-purpose programmability was in place,

the movement toward utilizing the power of GPUs in non-graphics tasks began under

4

4 Nvidia corporate history: http://www.nvidia.com/page/corporate_timeline.html,
accessed May 12, 2012

the General Purpose GPU (GPGPU) banner. Researchers discovered ways to perform

tasks such as large matrix solvers (Bolz et al. 2003), Fourier transforms (Moreland and

Angel 2003), and fluid dynamics (Harris 2003) on GPUs by massaging the algorithms

to appear as graphics tasks. Technologies such as CUDA, and later OpenCL, allowed

algorithms not easily described as graphics tasks to take advantage of GPUs.

 The movement of the computer into the home inspired technologies that are

now used in scientific applications. Had commodity graphics hardware not been

invented, it’s hard to imagine that processor architectures inspired by GPUs would

have been invented.
p g

16B/cycle (2x)
16B/cycle

BIC

RRAC I/O

MIC

Dual
XDRTM

16B/cycle

PPU

 L1

 L2

32B/cycle

16B/cycle

EIB (up to 96B/cycle)

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

16B/cycle

64-bit Power Architecture
w/VMX for Traditional

Computation

Synergistic Processor Elements for High (Fl)ops / Watt

Figure 1: Cell/BE architecture (Chow, Fossum, and Brokenshire 2005)

 Coincident with the development of the GPUs, gaming consoles were

experiencing great growth in popularity and performance. Strong competition among

consoles encouraged rapid development of innovative technologies. In anticipation of

its next console, Sony teamed with Toshiba and IBM to found the STI Alliance.

5

Tasked with developing a “supercomputer on a chip,” they invented the Cell

Broadband Engine (Cell/B.E., Figure 1) (Buttari et al. 2007). The Cell/B.E. was a

compromise between the parallel processing throughput of a GPU and the single-

threaded performance of a CPU. The Cell/B.E. broke ranks with the powerful

processors optimized for single thread performance that were common at the time.

The new design took steps backward from the traditional tools used to improve

instruction-level parallelism, such as out-of-order execution (OOE).

 The Cell/B.E. is an Asymmetric MultiProcessor (AMP), meaning that the

individual processors are not identical to one another (in contrast to the much more

common Symmetric MultiProcessor (SMP)). The POWER Processing Element (PPE)

is substantially similar to a PowerPC 970 CPU with the OOE logic removed. In

addition to the PPE, several Synergistic Processing Elements (SPE) are married with

an Element Interconnection Bus (EIB). The SPEs are designed to be highly efficient,

vectorized, throughput-optimized processors.

 On an SMP system, the operating system can run itself or any other process on

any of the processors in the system, because they’re all identical. However, on the

Cell/B.E., the SPEs are architecturally distinct from the PPE and cannot run kernel

code. The SPEs can only run specialized code and are scheduled by an application

rather than the kernel. Processor features that are necessary for running general-

purpose code are expensive in terms of power, die area, and complexity. Discarding

these features allowed the Cell/B.E. to achieve dramatically higher throughput than

other processors available at the time. The challenge presented by this design,

however, was the significant increase in complexity presented to the programmer.

 The designers of the Cell/B.E. were ahead of their time in the sense that many

of their design choices were used in many subsequent processor designs. The Cell/

B.E. was the first in what became a shift in the strategy employed to improve

processor performance.

6

The end of clock rate increases

 Processors are physical devices; their capabilities and limitations are ultimately

dictated by the material processes used to create them. The dimensions of these

physical constraints have been explored since the beginning of semiconductor use in

electronics.

Figure 2: Semiconductor manufacturing trend from 1962 to 1970. (G. E. Moore 1965)

 In 1965, Gordon Moore wrote a paper that identified a trend in the

semiconductor industry. A widely interpreted quote from that paper is: “The

complexity for minimum component costs has [increased] at a rate of roughly a factor

of two per year.” (G. E. Moore 1965) His paper included a graph that has been

reproduced in Figure 2. The quote refers to the minimum point on each of the relative

manufacturing cost curves. There is a range of cost/complexity for silicon devices,

and the most efficient among them doubles in complexity approximately every year.

Moore assumed that the trend would continue for at least 10 years.

 Since the original paper was published, Moore has revisited the relationship

that has become known as Moore’s Law several times. In 1975, he saw that integrated

circuits had become optimal in terms of area utilization, and he reduced the slope of

the curve to a doubling every two years (G. Moore 1975). Later, in 1995, he was

7

unwilling to look to the future past 0.18 micron (10-6 meters) technology. The

lithography engineers at Intel couldn’t conceive of working at this feature size with the

techniques available at that time (G. E. Moore 1995).

 One interpretation of Moore’s Law, which he later endorsed, was that

processor speed would roughly double every two years. The two quantities are

related; as features become smaller, capacitance and propagation delay decrease.

Those properties are the primary factors that determine the maximum clock rate of a

device.

Transistors (000)
Clock Speed (MHz)
Power (W)
Perf/Clock (ILP)

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

Figure 3: Historical clock speed and transistor count (Source: Shalf et al. 2009)

 Once personal computers had standardized on the x86 processor architecture

vendors transitioned to using clock rate as a competitive metric. Intel was particularly

aggressive, and set high goals for clock rate scaling. Intel strategically architected its

processors to achieve higher clock rates than its competitors’ processors. If the

architecture and feature size are fixed, it is possible to increase clock rate by reducing

the duration of the work completed per clock interval. Increasing the number of stages

in a pipeline means each stage requires less work and clock rate can increase. Because

it isn’t possible to know the result of a logical branch condition before its operands

8

have been computed, it’s necessary to predict the outcome. When a branch is

mispredicted, all of the speculative work must be discarded. This strategy was tested

to its extreme limit by the Intel Netburst architecture, which was used in the Pentium 4

line. The yellow line in Figure 3, clock speed in KHz, shows a noticeable bump

between 1999 and 2005, caused by the Pentium 4 and Netburst. The cost of branch

mispredictions undermined any increases in performance that could have been gained;

the Pentium 4 was noticeably slower than its rivals. Since 2005, clock rates have

remained nearly constant. The fundamental limits that constrain clock rate -- power

and performance per clock (a proxy for instruction level parallelism) -- prevent further

advances in single-thread performance.

 In the future, the most reliable way to improve performance will be to increase

the number of processors in a system. This shift forces developers to change the way

they think about improving the capabilities of computer systems. It was once common

wisdom that we could continue using an existing application and expect a doubling of

its speed every 18 months. Now, it will take considerably longer to yield similar

results without modifying the application or, in extreme cases, re-architecting it from

the ground up. It is imperative that we develop applications that are able to take

advantage of the proliferation of processors in a computer while tolerating lagging

clock rates.

Parallelism is the path forward

 Processor vendors have had to embrace other methods for increasing processor

performance year after year. Without constant improvements in processor

performance, there would be little reason to purchase new products. Innovative

architectures and increasing parallelism have become the primary means for

increasing performance and driving sales. The continued advance of process

technology has enabled greater logic density, allowing for more processors in the same

space.

9

 Process technology has advanced beyond the concerns held by Moore and

Intel’s engineers in 1995. Current technology (as of this writing) is capable of

producing chips with 22 nm (.022 micron) features. The current best estimate for the

absolute scaling limit for traditional semiconductor techniques is 5 nm. It is estimated

that we will reach this limit some time after 2020 (Figure 4). After this point,

significant modifications in process technology, such as silicon nanowires and carbon

nanotubes5, will be necessary to continue to improve semiconductor density.

0

10

20

30

40

2011 2013 2015 2017 2019 2021 2023 2025

1/
2

Pi
tc

h
(n

m
)

Year of production

Flash DRAM MPU/ASIC Metal 1 (M1)

Figure 4: Semiconductor feature size roadmap (Source: ITRS 2011)

 In anticipation of the end of feature size miniaturization, and responding to the

needs of the mobile device industry, manufacturers have explored other means for

increasing logic density. Chip stacking techniques are now a common practice in

highly integrated system-on-a-chip (SoC) solutions. The success of these methods is

evident in products such as the Apple iPhone.

 The Apple A4 processor, which is an ARM derivative, contains the application

processor and Synchronous Dynamic Random Access Memory (SDRAM) in one

10

5 International Technology Roadmap for Semiconductors, ITRS 2011 report, http://
www.itrs.net/Links/2011ITRS/Home2011.htm, accessed May 15, 2012

package. The cross-section image presented in Figure 5 shows the construction of a

typical chip-stack system-in-package device. The image was created by Chipworks, in

association with iFixit.com. Shortly after the release of the Apple iPad, iFixit.com

obtained and disassembled a unit, then sent the mainboard to the Chipworks facility.

There, Chipworks cut the A4 in half and ground it smooth.

 The photograph is labeled to highlight a few items of interest. The first, label

(a), is the integrated SDRAM connected to a substrate through several bond wires, one

of which is partially visible (b). The application processor (c) is a flip-chip package

mounted to its substrate with solder balls (not labeled). The SDRAM subassembly is

electrically and physically connected to the application processor using solder balls

(d). Finally, the entire package is mounted onto the PCB using a ball-grid array (e).

The A4 is not an abnormal, or overly advanced, package. The chip stacking approach

has become common, and there are several techniques that enhance the level of

integration of these system-in-package devices (Bansal et al. 2010).

ba

c d

e

Figure 5: Cross-section of the Apple A46

The widening gap between domain science and computer technology

 With the advancement of easy-to-use numerical modeling tools such as Matlab,

R and Mathematica, it has become easier for domain scientists to describe their ideas

11

6 Ifixit.com Apple A4 teardown, http://www.ifixit.com/Teardown/Apple-A4-
Teardown/2204/1, accessed May 15, 2012

and models in computer-readable form. This opened the door for an expansion in the

number and variety of computer models and advanced the frontiers of science.

Though these tools simplify the creation of scientific models, they do little to improve

the complexity of parallel programming; they are explicitly serial. It is possible to

develop parallel, or even distributed, applications with these tools, but it is no easier

than using a language such as Fortran or C.

 Embracing parallelism is the best way to continue to improve performance

over time. Existing applications, especially those that are not multithreaded, are not

yielding the incremental increases in performance they once were. However, with

effectively utilized parallelism and GPU technologies, research that was formerly

impractical is now possible. For less than $10,000, it is possible to purchase a

computer that would rival the purpose-built supercomputers of only a few years ago

(Van der Maar and Batenburg 2009). The power is available, and affordable, but is

only useful to those who can harness it.

 A common reason for the lack of adoption of parallel and distributed

computing is the lack of appropriate training options. This knowledge is often passed

between individuals in a workgroup, and sometimes between workgroups. The

techniques of parallel and distributed programming can become a type of folk

knowledge. The formal training available is, in large part, targeted toward

professional programmers and computer science students. Students are expected to be

familiar with basic networking concepts and UNIX system administration and have

experience programming in C. Not only is the typical user unlikely to possess the

skills or prerequisites for these courses, they are also likely to gain little from them.

Their goal is not an exploration of the depth of parallel and distributed computing, but

to explore the breadth of the field and learn practical ways they can benefit from its

adoption.

12

Distributed OpenCL Overview
 Distributed OpenCL (DOCL), the product of this work, was designed to

address the issues facing scientific computing today. It is intended to bridge the gap

between domain science and computer technology. Future computing devices will be

more diverse, and CPUs and GPUs of a wide variety of architectures are already

common. As single-thread performance no longer increases at its previous rate, the

use of parallel programming is now essential. Though options exist for utilizing these

resources with current technology, they are generally not accessible to domain

scientists.

 To achieve the greatest impact, it is important to re-imagine what an effective

programming environment is. It must be capable of producing applications that can

work on a variety of new commodity architectures, and even across ad hoc clusters.

Distributed OpenCL is a model and platform that allows domain scientists to leverage

the advanced computer architectures that are now commonplace, from smartphone

processors to high-end GPUs. It was designed from the ground up to allow the

creation, management, and utilization of ad hoc clusters of commodity products.

Figure 6: Distributed OpenCL task graph

 The programming model chosen was the task graph (Figure 6). A task graph is

an explicitly parallel model for describing an algorithm. The concept is used in a

number of applications designed for end users. It is used here not only to express

parallelism, but to appeal to an intuitive understanding of the user’s application. Even

13

without knowing the details of how the tasks work, it is possible to infer the broad

form of an application simply by looking at the structure of the graph.

 It is valuable to allow the use of any available resources, even when they are

part of another computer. A great deal of manual work was required to make

distributed resources work together in a cluster. Configuring each computer,

diagnosing network issues and developing software are each involved, technical tasks.

Distributed OpenCL includes an automatic framework for configuring ad-hoc clusters

of available resources. The goal was to make the process of setting up a cluster as

easy as running an application.

 Solutions for automatically creating a cluster of many computers of greatly

differing type and configuration are widely available. These solutions, however, are

limited to embarrassingly parallel7 applications. The foremost example of this

technology, the Berkeley Open Infrastructure for Network Computing (BOINC)8, is

only appropriate for enormous problems where no communication between parallel

tasks is necessary. BOINC documentation emphasizes that only tasks with thousands

to millions of independent work elements are appropriate for this computation model.

 The utilization of ad hoc clusters can decrease the cost of computation while

improving speed of discovery. More processing power is available on the desktop

than ever before, and with the advent of programmable GPUs, it is not uncommon to

have several teraFLOPS at each workstation. Distributed OpenCL provides the tools

that enable the rapid development of scientific models that can run on a vast array of

current hardware, and it functions across an ad hoc cluster of commodity products.

The complexity of the underlying processes is hidden from users, allowing them to

think about their application rather than the infrastructure that is required to make it

function.

14

7 Embarrassingly parallel problems are those that are trivially parallelized and
typically do not require any interprocess communication.

8 BOINC, http://boinc.berkeley.edu, accessed May 14, 2012

Architecture

 Distributed OpenCL is composed as a stack of loosely coupled software

modules (Figure 7). Each module is only dependent on the layers below it. The base

layer is responsible for producing a set of network benchmarks, including average

latency, UDP packet loss, and throughput. These metrics enable upper levels of the

software stack to make informed decisions when creating the network connections

used to coordinate cluster nodes, and when opening bulk data channels for transferring

intermediate results.

Graphical Programming Language
and User Interface

Scheduler

Peer-to-Peer clustering

Network Benchmarking

Distributed OpenCL

Figure 7: Distributed OpenCL Architectural Diagram

 The next-lowest layer of the stack is the peer-to-peer clustering system, which

is responsible for opening control channels and reliably passing control messages

between peers. A protocol had to be chosen to encapsulate these messages as they are

transmitted between peers. Several strategies exist for performing this task. Only

those that are well supported by standards were considered, especially Binary

15

Encoding Rules (BER)9 and XML10. Although not always supported by a standard,

object serialization was considered for its simplicity.

 Serialization is the process of taking the information in memory (often

distributed across several separate regions) and ordering it in a given pattern. On the

receiving side, the process is reversed. Most object-oriented programming languages

provide tools to aid serialization. The downside of serialization is that the messages

are often not interchangeable among languages. This work is intended to be a

specification used to develop a suite of compatible implementations; therefore,

dependence on a single language is not desirable.

 There are standard systems for converting objects into a serial stream of data

that are suitable for transmission over a network. The Lightweight Directory Access

Protocol (LDAP)11 uses the Basic Encoding Rules (BER) for extensibly representing

structured binary data. BER is a very efficient binary protocol; however, it has

relatively few encoders and decoders (relative to XML), and it is much more difficult

to debug compared to a text-based protocol.

 The eXtensible Markup Language (XML) was decided upon as the container

format for messaging in Distributed OpenCL. Though it is inefficient relative to BER,

there are many times more implementations of the standard. Because XML is a

human-readable text format, it is easy to trace the communication between peers.

Finally, XML also includes a syntax and structure verification model. When the

document is parsed, its structure is compared to the schema12. If the verification

16

9 ITU-T X.690: OSI networking and system aspects – Abstract Syntax Notation One
(ASN.1)

10 W3C: Extensible Markup Language (XML): http://www.w3.org/XML/

11 RFC 4510: Lightweight Directory Access Protocol (LDAP): Technical Specification
Road Map

12 An XML schema is a description of the structure of an XML document.

succeeds, the structure of the document will match the expectations codified in the

schema.

 The peer-to-peer clustering framework also maintains an in-memory copy of

the pertinent statistics and configuration of every other node. This provides other

elements in the software stack easy access to the information required for scheduling

and diagnostics.

Cluster

Host 1

Host 2

Host 3

5: CPU

4: GPU

1: CPU

3: CPU

2: GPU

1 2 3 4 5

a

b

def

gh

i

a

b

e f g hd

i

Cluster compute devices Task-device mapping Input task graph

Figure 8: Hierarchal representation of a cluster of five compute devices in three hosts
(left). A sample task graph (right) and the mapping between tasks and compute

devices (center). The mapping diagram shows the relative duration of compute (box
length) and network communication (distance between boxes with dashed lines).

 The scheduling layer is responsible for mapping tasks from the user’s

algorithm to the compute devices responsible for processing them. This mapping is

many-to-one, because each task runs on exactly one compute device, and any compute

device could be assigned none to many tasks (Figure 8). This layer is extensible and

provides a straightforward method for developing new algorithms that generate this

17

mapping. It is also responsible for constructing the concrete manifestation of the

abstract representation of the user’s algorithm. This includes preparing the compute

devices on each of the peers, creating the bulk transfer network connections, and

initiating the flow of data between those peers.

 At the top of the software stack are the graphical programming language and

user interface through which users define their algorithm, monitor the cluster, and

submit and monitor jobs. The canonical implementation is written in Apple’s user

interface and application framework, called Cocoa13, but is designed so that the core

logic is as divorced as possible from the user interface logic. User project files are

written to disk in cleartext using XML, reducing the complexity of developing third

party tools and editors. Also, by using cleartext document files, it is possible to

employ standard version management systems such as Git, CSV, SVN, and Perforce.

An XML Schema is also provided to validate document files.

Previous Work

 The Message Passing Interface (MPI) (Gropp and Lusk 1993) has been

effectively used for nearly two decades. Though it is the de facto standard for cluster

computing, it poses significant challenges for new users and non-experts. For a

typical user of a community model, such as the Regional Ocean Modeling System

(ROMS) (Shchepetkin and McWilliams 2005) or NCAR’s Community Climate Model

(Kiehl et al. 1998), configuring and troubleshooting MPI is be beyond their abilities.

A study done to determine the optimal qualifications necessary for introducing the

concepts of MPI found that a course in data communications or networking was

required (Apon et al. 2001). The configuration alone of MPI can be a significant

challenge to these users, and the knowledge required to set up a cluster using MPI is

18

13 Apple Developer Documentation, Mac OS X Technology Overview, Cocoa
Application Layer: http://developer.apple.com/library/mac/navigaion

relatively minor compared with the expertise required to develop new models and

applications.

 There have been attempts to develop languages that are explicitly parallel.

One example, Sequoia (Fatahalian et al. 2006), took the novel approach of explicitly

programming to the memory hierarchy. Programmer define their application in terms

of ever smaller work units, which are designed to fit into the ever-shrinking memories

close to the processing hardware. In the Fatahalian paper, their primary example is a

large matrix multiplication. At each level, the task is decomposed into smaller matrix

multiplications. For example, a 32x32 matrix could be used as the smallest unit, and it

would be able to fit entirely into an example processor’s Level 1 cache. Not only are

they able to decompose the problem into pieces that perfectly match the underlying

hardware, but each of the blocks is intended to execute in parallel. This work

unfortunately falls into the same trap as many other programming languages: it is

intended for an advanced audience. The cluster support is implemented using MPI,

bringing with it additional complexity. Sequoia hasn’t made obvious progress in the

last six years; though it is occasionally cited in literature, it isn’t clear if it is being

used for development.

 The RapidMind platform (McCool 2008; McCool and Inc 2006) is another

explicitly parallel programming package intended to take advantage of GPUs and

other emergent massively parallel devices. It is, unfortunately, another example of a

programming language intended to reduce the complexity of these applications that

doesn’t appear to meet its goal. The actual language constructs used in RapidMind

are, if anything, more complex and obtuse than those it is intended to replace.

 There are several solutions that generate code able to run on the GPU given

existing source. Lee et al. describe a method for translating OpenMP applications into

CUDA (Lee, Min, and Eigenmann 2009). The Portland Group released a Fortran

19

compiler that can off-load repetitive tasks to the GPU14. Another company,

AccelerEyes, produced a product called Jacket15 that can run Matlab code on the GPU.

Even Mathworks, the maker of Matlab, added optional GPU support to its platform as

part of the parallel computing toolbox16 . These solutions allow existing applications

to incrementally transition to GPU programming. Though these systems simplify the

transition to GPU programming, they are limited in their ability to make the most of

the platform. Automatic code generators are rarely able to produce solutions as

efficiently as humans.

Figure 9: OpenDX user interface (opendx.org)

20

14 The Portland Group (PGI) CUDA Fortran, http://www.pgroup.com/resources/
cudafortran.htm, accessed May 14, 2012

15 Accelereyes Jacket, http://www.accelereyes.com/products/jacket, accessed May 14,
2012

16 Mathworks, Matlab Parallel Computing Toolbox, http://www.mathworks.com/
products/parallel-computing/, accessed May 14, 2012

 There are many examples of graphical programming languages; most are

intended to provide a simple and approachable method for defining visualization tasks.

OpenDX and Quartz Composer best exemplify these languages. OpenDX (Figure 9)

was written in the early 1990s at IBM (Lucas et al. 1992). IBM has since released

OpenDX under an open source license. It is intended to be used in conjunction with

other scientific tasks and is able to run in a client-server environment. The user

interface runs on a lightweight client workstation, with the heavy computation

occurring on a mainframe or even a cluster of computers communicating with MPI. It

is a powerful visualization tool able to perform complex operations on large datasets.

Approaching two decades in age, it has struggled to keep up with current technology.

It heavily leverages the X windows toolkit and is difficult for end users to install,

requiring third-party solutions. As a visualization tool, OpenDX is not appropriate for

general computing tasks; however, the graph-based programming environment is

approachable, expressive, and extensible.

Figure 10: Quartz Composer user interface (Apple)

21

 Another example of a graphical programming language for visualization is

Quartz Composer, developed by Apple17 (Figure 10). It is included in the Xcode

Integrated Development Environment (IDE) and is not designed for end users.

Quartz Composer is intended to be a tool for testing image transformation filters and

developing interactive Quicktime compositions. Like OpenDX, it allows the user to

define a task graph with independent operations and explicit dependencies. The pink

tabbed nodes (labeled 1 and 2) are output nodes and are responsible for drawing to the

screen. The green nodes (2b and 2c) are computation nodes. Finally, the blue node is

a user event node. The Quartz Composer runtime system uses this graph to construct

a system that evaluates the nodes in parallel whenever possible. OpenCL support was

added to the application; there is a node that allows the user to enter custom OpenCL

kernels. The graphical programming language used in Quartz Composer influenced

the design of the language developed for Distributed OpenCL.

 In addition to others’ independent work on scheduling algorithms for cluster

applications and graphic programming languages, I developed a task graph scheduler

for the IBM Cell/B.E. eary in my graduate career. This tool was not able to share

work across hosts, but it did serve as the inspiration for this project. The Cell/B.E.

scheduler was developed out of necessity; programming for the Cell is notoriously

difficult, and the scheduler was intended to abstract some of that complexity away.

The programming model was inherently serial, as it was implemented in C. To

describe the task graph, the programmer would have provided an SPU kernel task

implementation, callback function, and priority. The task implementation was a

reference to the compiled object file containing the SPU machine code, and the

callback function was a function pointer that was called when the task completed. The

callback function’s responsibility was to enqueue topologically dependent tasks. The

22

17 Apple Inc., Mac OS X Technology Overview, Graphics and Animation: https://
developer.apple.com/technologies/mac/graphics-and-animation.html, accessed May 14
2012

priority field was used within a priority heap data structure containing task elements

that are eligible to run. This system, while still complicated, significantly improved

programmer efficiency during Cell/B.E. software development. In addition, by

dynamically mapping tasks to SPUs, the overall efficiency of the system improved.

The improvement in system efficiency was due to the balancing effect that task

dispatching had on pipelined computation. I realized that the benefits of task graph

representations for heterogeneous multiprocessing could be extended by supporting

OpenCL and providing support for distributed computation across an ad-hoc cluster.

The previous work relating to graphical programming languages provided the

inspiration for the form of the task graph representation. Describing these structures

graphically leverages more of the human brain than text-based source code is able to.

The structure and flow of an algorithm is immediately obvious, and the detailed

implementation is available when the user needs it.

Materials and Methods

 The network used for the development and analysis of Distributed OpenCL is

pictured in Figure 11. A small cluster of Apple MacPros, each of which contains an

Intel 82598 (Oplin) 10GBase/T ethernet adapter (Figure 12c), eight 2.66Ghz Intel

Xeon cores, and between 6 and 12 GBytes of RAM running MacOS 10.7 (Lion), were

used as the ad-hoc cluster of workstations. The MacPros each contain a variety of

GPUs, including the Nvidia GeForce GTX285 (Figure 12a) and the ATI Radeon

HD4870 (Figure 12b). The configuration of each host is provided in Table 1. Housed

in a production computing facility, the machines were loaded into a standard 19-inch

computer rack (Figure 12d). Maintenance and management of the machines was

completed through Apple Remote Desktop (ARD). Using the ARD interface, it is

possible to control the system console and run scripts, either on demand or scheduled.

23

Tundra
1

CEOAS Core
Network

Forest

10Gbit Network

1Gbit Network

Tundra
2

Tundra
3

Tundra
4

Tundra
5

Tundra
6

Tundra
7

Tundra
8

Figure 11: Distributed OpenCL development cluster architecture

24

Table 1: Development cluster configuration

System Compute Devices Memory Network

Tundra1 2x Intel Xeon Quad-core
Nvidia GT120

Nvidia GTX285

6 GBytes Intel 82598 Oplin, 10Gbit

Tundra2 2x Intel Xeon Quad-core
Nvidia GT120

ATI HD4870

6 GBytes Intel 82598 Oplin, 10Gbit

Tundra3 2x Intel Xeon Quad-core
Nvidia GT120

Nvidia GTX285

6 GBytes Intel 82598 Oplin, 10Gbit

Tundra4 2x Intel Xeon Quad-core
Nvidia GT120

ATI HD4870

6 GBytes Intel 82598 Oplin, 10Gbit

Tundra5 2x Intel Xeon Quad-core
Nvidia GTX285

12 GBytes Intel 82598 Oplin, 10Gbit

Tundra6 2x Intel Xeon Quad-core
Nvidia GT120

Nvidia GTX285

12 GBytes Intel 82598 Oplin, 10Gbit

Tundra7 2x Intel Xeon Quad-core
Nvidia GT120

ATI HD4870

12 GBytes Intel 82598 Oplin, 10Gbit

Tundra8 2x Intel Xeon Quad-core
Nvidia GT120

Nvidia GTX285

12 GBytes Intel 82598 Oplin, 10Gbit

25

a

c

d

b

e

Figure 12: Materials used; (a) Nvidia GeForce GTX285, (b) AMD/ATI Radeon
HD4870, (c) Intel 10GBase-T network adapter (82598), (d) eight rack-mounted Apple

MacPro workstations, and (e) Arista 7140T-8S 10GBase-T switch.

 The 10Gbit network fabric used was provided by the Arista networks

7140T-8S 48 port 10Gbit network switch (Figure 12e). The switch has 40 ports of

10GBase-T, and 8 SFP+ module garages. Designed to be low-latency and high-

throughput, the 7140T-8S never demonstrated performance less than the 10Gbit line

rate. Port-to-port latency is specified to be less than 2.8 microseconds. The largest

contribution to the latency is the 10GBase-T physical layer circuitry, which is

responsible for producing and receiving the signal used in the twisted pair wiring

(Figure 13). Normally, the switch functions in cut-through mode, where packets are

switched from source to destination ports without buffering (non-blocking). In some

configurations, however, it is necessary to use buffering between ports (store and

forward). If there is more than 40Gbit/second throughput from one FM4224 ASIC to

26

another, the switch will transition to store-and-forward mode. To ensure the best

performance, all eight cluster nodes were attached to only one of the three ASICs. The

cross-sectional bandwidth of the ASIC was sufficient to ensure non-blocking operation

at all times.

FM4224
300 ns

FM4224
300 ns

FM4224
300 ns

1.1 μs 1.1 μs

10 GE x 4

10 GE x 410 GE x 4

Rx-10GBase-T Phy. Tx-10GBase-T Phy.

Figure 13: Arista 7040T-8S switch architecture (Source: Arista Networks)

 Figure 11 shows the architecture of the network environment used to develop

Distributed OpenCL. The architecture was designed to test the platform in a variety of

use cases. It was important to identify common scenarios that would be encountered

in real-world usage and develop test protocols to verify correct operation. As the

platform is intended for ad hoc clusters, it was important to develop a test that

demonstrates correct operation when the nodes are attached to the college network in

the way that any other workstation would be. Another use case is a purpose-built

research cluster used by one or more principal investigators. In this case, a high-speed

private network could be designated for the cluster. Cases where the client

workstation is and is not a part of this network were evaluated.

 In Figure 11, all of the 1Gbit network connections are on the Oregon State

University College of Earth, Ocean, and Atmospheric Sciences core network

infrastructure. These connections are used in the case of ad-hoc clusters and when the

10Gbit network is used only as a backhaul network. The 10Gbit connections are an

entirely private network with an un-routable subnet (172.20.64.0:255.255.240.0). This

network functions as the high-speed network that may, or may not, have client access.

27

It is vital to ensure that the peer-to-peer clustering worked in either case. As it is

unconventional to have more than one network connection on a single network node,

some protocols made assumptions that do not hold in this case.

 The fitness of the algorithms used to implement Distributed OpenCL was

evaluated through empirical testing. Whenever possible, comparisons to theoretical

best-case scenarios were used. In the case of network benchmarks, comparisons were

made against results derived by industry-standard tools, such as Netperf 18.

28

18 Netperf, http://www.netperf.org/netperf/, accessed May 15, 2012

Peer Discovery, Resolution and Latency Measurement
 Distributed OpenCL is intended to be easy to use and accessible to non-

programmers. To achieve these goals, it is important to eliminate any manual

configuration, replacing it with automatic resource discovery and configuration. Zero

configuration networking (Zeroconf) (Guttman 2001) was chosen for peer discovery

and address resolution. Zeroconf is a collection of technologies: Dynamic

Configuration of IPv4 Addresses19, multicastDNS20, and DNS21 Service Discovery

(DNS-SD) (Steinberg and Cheshire 2005). Apple markets Zeroconf under the Bonjour

trademark, and it is intended to eliminate manual configuration of network devices,

even on networks that do not have DHCP22 servers. A device can self-assign an IP

address, discover network services such as routers and printers, and resolve IP

addresses for these services without configuration or infrastructure. The ease of use

that Zeroconf networking promises, if it can be utilized, would dramatically reduce the

complexity of configuring an ad-hoc cluster. Though it was developed primarily by

Apple, libraries that implement Bonjour on Windows and Linux exist.

 Zeroconf networking was designed with consumers in mind, so assumptions

were made that are appropriate in that context but troublesome in less common

configurations. In a home environment, it is very uncommon for any network device

to have more than one IP address, either on the same or multiple network interfaces.

In the enterprise, however, this condition is much more common. For example, the

research network used during the development of Distributed OpenCL has at least two

non-routed subnets on the same VLAN. The first is the standard network that the

Internet and file sharing traffic use. The second is used for out-of-band management

29

19 RFC3927; Dynamic Configuration of IPv4 Addresses, May 2005

20Stuart Cheshire, http://www.multicastdns.org/, Accessed April 24 2012

21 RFC920; Domain Requirements, October 1984

22 RFC2131; Dynamic Host Configuration Protocol, March 1997

of servers, commonly marketed under marks such as Integrated Lights-Out

Management or Dell Remote Access Console (ILOM and DRAC, respectively). A

user that requires access to the internet and remote management networks can either

use two network adapters or configure one network adapter with two IP address, one

in each subnet. This configuration isn’t compatible with Zeroconf networking in its

native form. A workaround for this problem was identified, and is presented under the

using mDNS on a network with multiple subnets subheading.

Peer Discovery with DNS-SD

 The peer discovery and resolution processes depend on the mDNS and DNS-

SD components of Zeroconf. Normally, DNS servers are specified by the user or

automatically through DHCP. Because Zeroconf dispenses with all user configuration

and DHCP, mDNS was designed to send DNS queries to a specific multicast group.

Every Zeroconf-aware device subscribes to this multicast group and responds to every

pertinent query. All mDNS hostname entries are in the virtual domain local. and are

not accessible from outside the multicast domain. Hostname conflicts with local. are

prevented by the Zeroconf protocol by requiring new publications to first query local.

for the existence of a device of the same name. If a conflict is found, a number is

appended to the requested host name, and the process is repeated.

 In concert with mDNS, DNS-SD adds a record to DNS for service types.

DNS-SD allows clients to perform a query for services rather than hosts. See Figure

14 for the hierarchical organization of a Bonjour service name. The service type is the

unique designator for a protocol. For example, a query for _ldap._tcp.example.com is

a service discovery query for an LDAP server using TCP directed toward the

example.com DNS server. Examples of other service types are _http, _ssh, and _ipp

for the HyperText Transport Protocol (HTTP), Secure SHell (SSH), and Internet

Printing Protocol (IPP), respectively. The underscore characters are prepended to the

service type and transport protocol fields to prevent collisions with existing

30

hostnames, as an underscore is an illegal character in DNS hostnames23. The Internet

Assigned Numbers Authority (IANA) maintains a database with DNS-SD service

types24. This database is a first come, first served repository for service type

identifiers and contains contact names, protocol descriptions, and other information

for each service type. The Distributed OpenCL protocol has been registered in the

database as _dist-opencl. When used with mDNS, DNS-SD works by performing a

similar query, but within the local. virtual domain. In this case, the request would be

_ldap._tcp.local., and would result in a DNS query placed on the multicast group.

Each host participating in mDNS with a matching service would respond.

Tundra 1 Tundra 2

_distOpenCL _ldap

_tcp _udp

local com edu org

root domain (.) Domain

Service Type

Human readable
service instance name

Tu
nd

ra
 1

 .
_d

ist
Op

en
CL

 .
_t

cp
 .

lo
ca

l .

Figure 14: Organization of a Bonjour service name (Source: Apple)

 In addition to the service type, DNS-SD allows additional fields to be added to

the DNS TXT record, and this protocol defines three such fields, summarized in Table

2. The first field is named UUID and contains the Universally Unique ID (UUID) or

Globally Unique ID (GUID) of the host. This field is used to ensure that the node is

unique before peering. This field is especially important if a pair of nodes is in a race

31

23RFC2782: A DNS RR for specifying the location of services (DNS SRV)

24IANA Service Name and Transport Protocol Port Number Registry: http://
www.iana.org/assignments/service-names-port-numbers/service-names-port-
numbers.xml

condition, attempting to peer with one another at the same moment. The UUID field

allows for the detection of a duplicate peering and rejects one of them. It is not

important that the hardware UUID is used, only that it is unique and remains constant

for a given node, though it may change during system reboot.

Table 2: DNS-SD TXT record field descriptions

TXT Record field Type Note

UUID String Used to ensure unique pairing

TCPendpoint Integer Port number for TCP benchmarking

UDPendpoint Integer Port number for UDP benchmarking & reachability

 The second field added to the DNS-SD TXT record is UDPendpoint, which

provides the port number of an echo service. The echo service reflects packets back to

the sender and is necessary for calculating network latency and mitigating the issues

caused by the mDNS edge-case described in the next section. The final field is the

TCPendpoint, which is substantially similar to the UDPendpoint.

Latency Measurement and mDNS Across Non-routed Subnets

 Because it uses a multicast group rather than an assigned IP address, mDNS

makes no guarantees that a resolved IP address is actually reachable. For example, if

one machine is using 10.1.1.2 and another is using 128.193.1.2 on the same VLAN,

mDNS will produce query responses between each device, even though there may not

be a route between them. A reachability test was devised to address this issue. For

each service that is discovered, but is not yet a peer, an mDNS resolution is performed.

As IP addresses arrive, they are added to a queue. Each address is then tested for

network reachability and latency. This test consists of a series of ping-like UDP

packets sent to the UDPendpoint port designated in the DNS-SD service type

description. UDP, rather than an ICMP ping, was used because superuser privileges

are required to transmit ICMP packets (Wright and Stevens 1995). By using UDP,

32

Distributed OpenCL does not require elevated privileges, increasing security and

simplifying application installation.

Table 3: Contents of the UDP ping packet

Offset Type Name
0 uint32 ttl (network order)

4 uint64 timeStamp

12 in_addr_t localAddress

 The UDP packets contain a TTL-like field that is decremented each time the

packet is reflected. When it reaches ‘0,’ the packet is processed by the reachability

algorithm. When initiating a reachability test, this field should only be set with odd

numbers; otherwise, it will be processed by the reachability system of the host that did

not originate the packet. If this were to occur, the packet would be discarded. The

packet also contains a 64-bit, roughly nanosecond precision, time stamp. The content

of the timestamp field is flexible in terms of epoch and format. This data is used only

on the host that originated the packet, and is only required to be meaningful to that

host. Finally, the UDP packet contains an in_addr_t (32 bit integer containing the

IPv4 address in network byte order (Wright and Stevens 1995)) field. The purpose of

this field is to inform to the sender which address was used to originate the packet.

There are no portable APIs that allow user-level applications to know what routing

decisions the OS made while sending a packet. The recipient has access to this

information, however, when the packet is received; it is in the sender’s address field.

By copying this address into the data portion of the packet, we have complete and

accurate information.

 The resolution/reachability process for each address occurs in parallel. Once

one of the available addresses demonstrates a satisfactory packet loss rate, each

address is evaluated based on merit. Address resolutions that have poor packet loss

rates -- 50 percent or more was used -- are immediately canceled. Other pending

address resolutions are allowed to proceed. Once every resolution is complete, the

33

network reachability and latency service provides this information to the upper level in

the software stack.

34

Peer To Peer Clustering
 Distributed OpenCL creates compute clusters automatically, using the

principles of peer-to-peer (P2P) system design. The central tenet of P2P networking is

that the system requires no specialized master node. The definition can be stretched to

allow for master nodes, though they are often selected from among the peers.

Typically, each peer executes identical code, but masters, or super-peers, assume

greater responsibility. The Skype video conferencing system and KaZaA use super

peers (Zhang et al. 2010) in their networks. Distributed OpenCL implements a pure

peer-to-peer system; at no point are any masters or super-peers required.

 There have been other research projects exploring the applicability of P2P

systems in the context of science and high performance computing. Most of that

research was related to compute grid initiatives (Czajkowski, Foster, and Kesselman

1999). Iamnitchi et al. explored whether P2P architectures can be used for research

discovery in grid environments (Iamnitchi, Foster, and Nurmi 2002). Resource

management on grids using P2P was attempted (Uppuluri et al. 2005). Resource

discovery on grids using super peers (Mastroianni, Talia, and Verta 2005) and resource

discovery and membership management (Mastroianni et al. 2005) were explored by

Mastroianni. Clusters have also been built using the Gnutella peer-to-peer network

protocol (Ripeanu, Lamnitchi, and Foster 2002), which operates over the Internet.

 Abbes and Dubacq performed a study that evaluated the applicability of

Zeroconf (the approach used in this paper) relative to Pastry25 for service discovery in

a grid environment (Abbes and Dubacq 2009). Pastry is implemented using

Distributed Hash Tables (DHT), a common strategy for resource discovery. In their

paper, Abbes and Dubacq demonstrated that the Zeroconf architecture is an efficient

and reliable protocol for resource discovery, and that Zeroconf is capable of

discovering 100 percent of 1,000 nodes in a little as a few hundred milliseconds, easily

35

25 Free Pastry, http://www.freepastry.org/, Accessed April 24, 2012

besting DHT. Their work, however, did not include any attempt to initiate TCP

connections between each of those nodes. Because their cluster was an in-production

compute grid facility, this step wasn’t necessary, as cluster homogeneity was assumed.

Distributed OpenCL, in contrast, must not make these assumptions. It is necessary to

connect with each node to ensure that they are configured correctly, to collect system

metrics, and to open a command channel.

 By and large, the protocols and techniques in the literature were intended for

use with the compute grid initiatives or supercomputer facilities. It is clear that much

of the research to date has been to incrementally enhance the capabilities and function

of existing distributed computing models. In contrast, DOCL bridges the gap between

the complexity of cluster configuration and parallel programming and the user-

friendliness of tools such as Matlab.

 The P2P system is responsible for establishing control channels between each

system that was discovered using the Zeroconf DNS-SD system. Using these control

channels, the peers exchange information about their available resources, peers, and

network interfaces. This system lays the foundation for the upper layers in the

software stack, including cluster management, scheduling, and user interface elements

for diagnostics.

 In an effort to quantify the wall-clock efficiency of the clustering process, we

characterized the time required to complete peering with a variable number of nodes.

Theoretically, the time required to build the cluster using the P2P protocol would grow

linearly with the number of nodes. The best estimate of the total time required is 14

seconds plus 5 seconds per host after the second host, or t = 14+max(0,5*[n-2]) where

t is the wall-clock time and n is the number of hosts. It is possible to reduce the

peering time, perhaps to a log factor, but this would increase the risk of duplicate or

missed peering. Detailed analysis and empirical data are contained in the results

section.

36

Protocol Details

 The peer-to-peer clustering protocol is composed of three layers. The first is

responsible for discovering the presence of peers using multicast DNS and DNS

Service Discovery, described in the Peer Discovery, Resolution and Latency

Measurement chapter.

 The next layer is responsible for ensuring an orderly initiation of TCP

connections between nodes. It is necessary to have exactly one TCP socket open

between each pair of hosts. Reliably enforcing this constraint required the bulk of the

engineering effort of the P2P system. There were no examples of previous work

appropriate to this task available in the literature. This work likely represents the first

example of ad hoc P2P cluster construction using Zeroconf networking. The output of

this protocol is a fully connected graph of cluster nodes and TCP sockets.

 Finally, the application layer is built using XML. This layer is responsible for

ensuring reliable inter-node communication. XML was chosen because it is well

known, has many high quality implementations, and provides a mechanism for input

sanity checking.

mDNS and
DNS-SD

System 1

Peer to Peer Clustering

System 2

XML Messaging Schema

TCP - Mediated by
peering protocol

OSI Layers 1&2
Physical and Data link

OSI Layers 3-5
Network, Transport and Session

OSI Layer 6
Application

Corresponding layers
in the OSI Model

Figure 15: Architectural makeup of the cluster middleware. The software stack is
associated with the corresponding layers in the OSI model. Two peers are shown, but

any number of peers could be interconnected using the protocol.

37

TCP Peering protocol

Begin

Cancel alarm

Alarm fired

mDNS publish

Begin resolve

Reachability

Open TCP

Send <Peer>

Expect <Peer>

TCP Accept

Expect <Peer>

Send <Peer>

Unique
UUID?

yes

Reject peering

no

Host Found

Set alarm

Start query

Set alarm

Published?

Peering complete

Peering complete

Asychronous events

TCP Accept

Network communication

Control Flow

no

Unique
UUID?

Ignore

no

Set alarm

Alarm fired

yes

yes

a

r

b

k

v
c

d

e

f

g

h

i

j

l

m

n

o

p

q

s

t

u

TCP Closed?

TCP Close

Reject peering

yes no

w

x

y

Figure 16: Peering protocol flow chart. Asynchronous events are linked to the action
that initiated them with dashed lines. Network communications between peers and

their algorithm flow are indicated with dotted lines.

38

 The peering process is implemented as an algorithm that spans a pair of hosts

and includes four types of asynchronous events. The complete flowchart for the

protocol is presented in Figure 16; and the labels are used to unambiguously reference

events. Processing begins (a) with the initiation of an mDNS service type query for

_dist-opencl (b). Once the query begins, an alarm is set for an interval of fourteen

seconds plus a random offset up to five seconds (c). Within this period, when a host is

discovered (t) the alarm is canceled (l) and another is set for five seconds plus a

random interval up to five seconds (m). Reachable addresses are found using the

resolution and reachability processes described above (n,o). The lowest latency

address is chosen, and the TCP control channel is opened (p,g). The initial Peer XML

message is sent (q,h), and the UUID is checked to prevent duplicate peering (i).

Finally, the peering is confirmed with a reciprocal Peer XML message (j,s).

 These alarm intervals were used to mitigate the effects of race conditions

during cluster start-up. During development, every host was started at once. With

static intervals, every node would transition to the published state at the same time.

Newly discovered hosts are only peered with before the local host publishes (u). This

led to incomplete peering. The random offset reduced the race condition to a degree;

however, once the first host (the one with the smallest offset) published, every other

host would immediately publish, causing a second race condition. Suppression of this

race condition was achieved by deferring the publication by the second random

interval. This structure has the effect of serializing the peering process. This

serialization forces the scaling of the peering process to a linear factor, rather than

constant or logarithmic. The benefit, however, is that the consistent global state of the

cluster is maintained.

 Even with these strategies, it is still possible for two or more hosts to begin

publishing coincidentally. In this case, both nodes will be notified of the new

publication after they have stopped connecting to new hosts (v). If the UUID of the

new host is already known, it is a publication of an existing peer and is ignored (y).

39

However, if the UUID is unique, another alarm is created (w). Once this alarm fires,

the peering process begins as normal (x).

XML Messaging protocol and schema

Message

Bench

Latency

kernel

update

*

system

network

peers

opencl opencl_device

peer bench

interface service

peer

Logs Log Event

DOCL-node DOCL-argument

DOCL-argument

Diagnostics

Benchmarks

Peering

OpenCL Scheduling and Execution

Throughput

device

mean

prepare

run

stop

DOCL-node

DOCL-node

DOCL-node

error

Figure 17: XML Message schema hierarchy. The * node is a wildcard and can contain
any node descendant from, and including, the System node.

 Once the peer nodes are discovered and TCP control connections are open, it is

necessary to define an application layer protocol. XML was chosen for this task

because it is sufficiently established and has many robust implementations on virtually

40

every platform, and it is possible to validate XML messages against a reference

schema. A side benefit of XML is that the messages are human-readable, even when

using packet tracing, simplifying debugging tasks.

 The basic vocabulary and hierarchy of the XML messages begins with a

message node. This node is the parent of every message sent between nodes. A

message node may have a collection of child nodes, as shown in the hierarchy in

Figure 17.

 The details of the XML messaging protocol are best illustrated with a brief

description of each message and element type. Arbitrary messages can be composed,

provided these rules are followed. A value of null in the child field indicates that this

element can be sent without children. In this case, it could be interpreted with distinct

meaning from the variant that contains children. Both meanings, if applicable, are

provided in the description.

Logs

 Children: Log, null

 Attributes: host - string: the Bonjour host name

 Description: The Logs message is a request for the logs from the receiving

host if it has no children. In the case where the Log child is provided, it is either a

response to a previous Logs message or an un-prompted update.

Log

 Children: Event

 Attributes: timestamp - string: time the log was created

 Description: This element is the parent to every log entry. It is best to

consider it the console log in its entirety.

Event

 Children: String element containing the log entry text

41

 Attributes: severity - string: Failure, Warning, Information, or Debug

 timestamp - string: time the event occurred

 Description: This element encapsulates a single event. The timestamp

attribute allows for accurate reconstruction of the sequence of events, assuming the

hosts’ clocks are synchronized. The severity attributes allow the logs to be filtered.

Bench

 Children: Throughput, Latency, Kernel

 Description: The Bench element contains one or more children. The child

elements contain benchmark information relating to their type.

Throughput

 Children: String element representing the mean throughput (MB/Sec)

 Attributes: local_address - string: IPv4 address of the sending interface

 remote_address - string: IPv4 address of the receiving interface

 Description: This element contains the results of a complete throughput

benchmark operation. The local and remote addresses are from the perspective of the

sender.

Latency

 Children: String element representing the mean latency (in seconds)

 Attributes: local_address - string: IPv4 address of the sending interface

 remote_address - string: IPv4 address of the receiving interface

 std_deviation - float: Standard deviation of benchmark samples

 packet_loss - float: Observed rate of packet loss

 Description: This element contains the results of a complete latency

benchmark. In general, this element will be included with the initial Peer element in

the first message to a remote host. The data represented is likely to be collected

during the resolution/reachability testing.

42

Kernel

 Children: Device

 Attributes: uuid - string: UUID of the kernel being benchmarked

 Description: This element contains a collection of benchmark results for a

single OpenCL kernel. When a kernel update is sent using the DOCL-Node element, it

is benchmarked on every OpenCL compute device in the local system. These results

are added as children to this element. A unique UUID is generated for every kernel.

This information is provided when the kernel is updated, and the same value is used in

the uuid attribute.

Device

 Children: Stats, string: Type of error; argument, build, enqueue, etc.

 Attributes: type - string: type of the OpenCL device: GPU, CPU

 model - string: device model name as reported by OpenCL

 index - integer: OpenCL device index (unique ID)

 Description: This element contains basic information about the OpenCL

device for a given kernel benchmark. The type and model strings allow the user

interface to display relevant context for the results, and a subset of similar models can

be benchmarked to save time. The index is used during scheduling to uniquely

identify an OpenCL device on a remote machine. If the kernel is unable to run on the

given device, the error type is provided as a string element. Reasons for failure

include argument, build, enqueue, or unknown failures. If the benchmark is

successful, the relevant statistics are provided in the Stats child element.

Stats

 Children: float: mean runtime for the kernel

 Attributes: min - float: minimum observed runtime for a single instance

 max - float: maximum observed runtime for a single instance

43

 std_deviation - float: sample standard deviation

 samples - integer: number of runs used in the sample

 Description: This element contains a digest of the results from a kernel

benchmark on a single device.

Peer

 Attributes: name - string: Bonjour name for the peer

 uuid - string: UUID of the peer

 Description: The peer element is either a peering request or an

acknowledgement. If the recipient has not yet sent a peer message to the sender, it is a

peering request. If the recipient has sent a peer message to the sender, it is a peering

acknowledgement.

Update

 Children: System (or any child thereof), string: error

 Attributes: Xpath - string: Xpath for the update pull or push

 Description: The update element allows the peers to transfer their system

tree. The system tree contains basic inventory statistics, network information, and

cluster data from the remote peer’s perspective. The peers structure in the system tree

contains a list of every peer the remote system is associated with, including their

network benchmark information. This message contains an Xpath26 attribute that

allows subtrees to be updated in place, thus increasing efficiency. If this node has no

children, it is considered an update request, or pull. An unsolicited update message

containing children is an update push.

DOCL-Node

 Children: DOCL-Argument

44

26 http://www.w3.org/TR/xpath/

 Attributes: type - string: class name for node type

 name - string: node name

 uuid - string: unique UUID for node

 globalWorkSize - string: kernel global work dimension

 localWorkSize - string: kernel local work dimension

 kernelName - string: OpenCL kernel name (may equal name)

 buildOptions - string: Build options for the OpenCL compiler

 Description: A DOCL-Node element is an XML representation of an

OpenCL kernel node. The type attribute specifies the class name of potential

subclasses. For now, only DAGKernelNode is implemented. The name is the human

readable name of the node; kernelName is the name of the OpenCL kernel in the

source code, and it may or may not be the same as name. The uuid attribute is the

UUID that uniquely identifies the kernel. The localWorkSize and globalWorkSize

attributes specify the size and dimensions of the problem space. These will be

described in more detail in the graphical programming language chapter, but they are a

3-tuple of the size of the x, y and z dimensional size of the problem. This is used in

OpenCL to spawn work threads.

DOCL-Argument

 Attributes: label - string: name for the attribute, must be C compatible

 type - string: intn, floatn, booln, image2D, image3D

 direction - string: input, output

 endianness - string: little, big

 size - integer: elements in the array (1 for scalar)

 uuid - string: unique UUID for the attribute

 port - string: port number for source attributes

 peer - string: peer UUID for source attributes

45

 Description: The DOCL-Argument element contains all the information

pertinent to a single kernel attribute. Typically, this element is a child of the DOCL-

Node element; however, it can be sent alone when port or peer information is updated

or required. Those fields provide the information required to create bulk data

connections for passing kernel arguments during execution. The other fields --

direction, endianness and size -- are used to create OpenCL memory buffers, and to

create sample buffers for benchmarking kernels. The uuid field is used to uniquely

identify the argument.

 This schema is the foundation of the cluster management platform. All inter-

node communication exists within this framework. The System tree was omitted for

brevity; its contents are best shown with an example system tree. The listing provided

in Appendix B is a sample from one of the development cluster nodes. The opencl

subtree contains all of the relevant information collected from the OpenCL library,

including software versions and devices. The device entries contain the number of

cores, core frequency, memory sizes and maximum work items sizes. The

global_mem_size attribute provides the quantity of memory available to each of the

devices. The CPU device is special, because the global memory is the same as system

memory. While the relatively verbose nature of XML may seem inefficient, in

practice it doesn’t represent a significant burden. Most XML messages fit within a

single 1500-byte packet. If it were to become burdensome, the specification could be

extended to use some form of compression.

Prepare, Run and Stop

 Children: DOCL-Node

 Description: The Prepare message is a request for the remote peer to

initialize a kernel node for processing. Within the prepare method, the kernel

arguments are prepared, and the network information is derived and returned to the

caller. The Run message instructs the remote peer to begin processing for a kernel

46

node, and the Stop message halts execution. These commands are described in more

detail in the Task Scheduling Framework for Heterogeneous Computing chapter.

Results

 To quantify the actual scaling behavior with a variable number of nodes, the

number of participating nodes was scaled from three to eight. For each number of

nodes, ten tests were run. The peering process was considered complete when every

node had peered with every other node, and the peering time was found by taking the

delta of the completion time and the time that the first agent process was launched.

These results are shown in Figure 18.

 The estimated time required to complete the peering process was 14 seconds

plus five additional seconds per node after two nodes, or t = 14+max(0,5*(n-2)) where

t is the wall-clock time and n is the number of hosts. This estimate was derived by

combining the constant time spent searching for published nodes and the additional

time added for each discovered node. This additional time does not apply for clusters

with two nodes or less, so those cases clamp to the lower bound set by the initial

search. The estimated time uses the constant offsets set in the protocol, ignoring the

random offset. It was assumed that the random variation would average out. In

practice, the value of these constant delays could be tuned. The values chosen are a

compromise between reducing latency and ensuring complete discovery on our

network.

 The observed completion time scaled better than predicted -- 3.37 seconds

rather than 5 -- although the y-intercept was higher -- 15.16 rather than 14. The likely

cause of the shallower slope in the observed data is that although the nominal delay

between each node publishing is 5 seconds, it includes a random variance to reduce

the likelihood of collisions. The effect is that the lowest delay time wins, bringing

down the average of the total delay. The difference in y-intercept is likely caused by

47

the overhead introduced by resolving the mDNS records and performing the

reachability tests.

0

10

20

30

40

50

1 2 3 4 5 6 7 8

y = 3.3707x + 15.159

R² = 0.9586

Peering time vs. Node count
Se

co
nd

s

Predicted Observed Linear Fit

Figure 18: Observed and predicted scaling of cluster creation time.

 While the protocol performs well on small clusters, the peering time could

become onerous in large clusters. Assuming that the linear trajectory holds through a

thousand nodes, it would take approximately an hour for those nodes to peer.

Furthermore, because each peer maintains a control connection with every other peer,

it is possible to approach the operating system’s limit on open file descriptors for a

single process. While support for large clusters is outside the scope of this work,

addressing these issues remains a topic for future work.

 In addition to creating an interconnected cluster of nodes, the XML-formatted

system information for every peer is kept current, and an object-based in-memory

representation is maintained. This data is used by the task scheduler, and it may be

used for asset inventory purposes. The peer graph shown in Figure 19 was created by

hand using the cluster report generated by the agent process. A topic for future work is

to automatically generate similar diagrams.

48

 A concrete example of the utility of this type of user feedback can be seen in

the node description for system named “Tundra 2.” There are two networks listed for

this node: the 10 gigabit back-channel (172.20.64.0/24) network and the 1 gigabit

administrative interface (128.193.64.0/21). On all the other nodes, the administrative

network had been intentionally disabled. This misconfiguration would have likely

gone unnoticed without a similar tool.

Tundra1
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Intel CPU

Compute Device 3: Nvidia GPU

Tundra3
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Intel CPU

Compute Device 3: Nvidia GPU

Tundra2
Network 1: 172.20.64.0/24

Network 2: 128.193.64.0/21
Compute Device 1: Intel CPU

Compute Device 2: Nvidia GPU
Compute Device 3: Nvidia GPU

Tundra5
Network 1: 172.20.64.0/24

Compute Device 1: Intel CPU
Compute Device 2: Nvidia GPU

Tundra6
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Intel CPU

Compute Device 3: Nvidia GPU

Tundra7
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Intel CPU

Compute Device 3: Nvidia GPU

Tundra8
Network 1: 172.20.64.0/24

Compute Device 1: Nvidia GPU
Compute Device 2: Nvidia GPU
Compute Device 3: Intel CPU

Tundra4
Network 1: 172.20.64.0/24

Compute Device 1: Intel CPU
Compute Device 2: Nvidia GPU
Compute Device 3: Nvidia GPU

Figure 19: Cluster configuration derived from the XML system report

49

Automatic Network Cost Measurement
 Accurate cost metrics for computation and communication must be available to

make good scheduling decisions. The address resolution and reachability testing

system described above provides quality latency measurements, but bulk data transfer

time is dominated by throughput. With both latency and throughput, it is possible to

accurately estimate the total transfer time (network cost).

 Supercomputer and purpose-built clusters are designed to have either a well-

known or constant network cost structure. A Cray system, for example, is

interconnected with a network fabric that is either a 2D or 3D torus; latency increases

monotonically as the geometric distance between hosts increases. A cluster built on a

single infiniband or ethernet switch will have constant, or near-constant, latency

between any pair of hosts.

 Ad hoc clusters, however, may have widely varying network costs. If a cluster

were constructed using idle workstations in a building, it would be difficult to predict

the network cost between hosts. It is common practice to have a “floor switch” for

each floor of a building; hosts on that floor will have a relatively low and constant

latency between them, and relatively high latency off the floor. Throughput analysis is

more complicated in this case. The available bandwidth between floors is often

constrained. It is common for the backhaul links, from the floor switches to the core,

to be oversubscribed ten to one. In times of low contention, communication between

floors will be line-rate; in times of heavy contention, it could be much less.

 It is possible to measure throughput by initiating a test transfer of either a fixed

size measuring time, or of a fixed time measuring quantity. The constant time method

was chosen because it works best across orders of magnitude differences in network

speed and allows estimates to be made about the time of completion. A constant

quantity benchmark would take far too long on a slow link and would be too short on a

fast link. Because every network session on a single interface shares the device

throughput, it is vital to guarantee that only one throughput measurement is permitted

50

on any network interface at any time. If this condition is violated, the apparent

throughput of the interface will be split between each concurrent session. If the

sessions are equivalent, it will appear as though the throughput is approximately 1/n

with n concurrent sessions. An ideal protocol should maximize the number of

concurrent benchmark operations occurring across the cluster while minimizing the

total time required to measure the throughput through each pair of interfaces.

Theoretical Background and Previous Work

 It may be useful to define a few terms used in the analysis of graph coloring

and computer algorithms. The complexity of an algorithm is defined as the number of

operations required to produce a solution and can be given using a set of bounds. The

most common complexity bound is “big-O,” which provides the upper bound given

the worst-case input. An algorithm that takes, at worst, n operations for each n input

unit would have a bound of O(n2). The coefficient is omitted for most complexity

bounds, with the occasional exception of the tight bound. Problems that have been

solved by an algorithm that is upper-bounded by a polynomial (of a small order) are in

the Polynomial class, or P.

 A problem is in the Nondeterministic Polynomial, or NP, class when there isn’t

a polynomial time algorithm that can solve it, but there is a polynomial time algorithm

that can verify whether a solution to the problem is correct. The nondeterministic

qualifier is used to signify that random solutions can be chosen and verified in

polynomial time. The class NP-Complete is a subclass of the NP problems. Problems

that are shown to be NP-Complete are exactly as “hard” as any other problem in NP-

Complete because they can be transformed from one to another in polynomial time.

Also, every problem in NP can be transformed into a problem in NP-Complete. If a

polynomial time solution to any problem in NP-Complete was found, every problem in

that class could be solved in polynomial time. This would mean that the question

“P=NP?” is true, and it is generally assumed to be false.

51

 A complete graph is a graph that includes an edge between each pair of

vertices. The graphs in Figure 20 are two complete graphs with 3 and 4 vertices. The

shorthand for a complete graph is Kn, where n is the number of vertices. In the

analysis of the benchmarking algorithm, the cluster is assumed to be a complete graph

with vertices representing peers, and edges are network connections. This will be

referred to as a network graph. It is safe to assume the network graph is connected

because that is the form that nearly every cluster will take.

Figure 20: Edge coloring of complete graphs K3 and K4

 There are only a few, rare exceptions to this. The first is routed networks that

were specifically designed to pass mDNS traffic. Because mDNS uses link-local

multicast groups, normal routed multicast networks will not pass these packets.

Without mDNS traffic, the peering process is not able to discover hosts across the

route, and there will be no connections between these routed networks. Allowing

mDNS across a router requires configuring network equipment in a way that ignores

the link-locality of the mDNS group. This condition is assumed to be very rare, and

even if it were to occur, it is likely that the network graph will remain fully connected.

Firewall settings on cluster nodes could prevent network connections from other

subnets, which would result in other network graphs. If the network was not fully

connected, the network benchmarking process would proceed successfully. At no

point in the algorithm is the structure of the graph assumed.

 The process of assigning the order of benchmark operations is an instance of

an edge coloring of the network graph. An edge coloring is the labeling of the edges

of a graph such that no vertex is adjacent to more than one edge with the same label.

52

Figure 20 shows two such graphs; in each case, they are labeled with the three colors:

dotted, dashed and solid. The chromatic index is the number of colors required in the

edge coloring of a graph. The chromatic index of a complete graph is n when n is odd,

and n-1 when n is even. The determination of the chromatic index of general graphs is

NP-Complete, as is finding the optimal edge coloring (Holyer 1981).

 A multigraph is a graph in which more than one edge is permitted between any

pair of vertices. In the context of networking, a multigraph would occur when one

host has more than one interface, each with a different IP address, on the same

network. Internet Protocol networking doesn’t permit this, so we can safely ignore it.

If there are multiple IP addresses assigned to a single physical interface (such as with

multi-homed configurations), they will be scheduled independently, which will cause

invalid throughput results. Therefore, this configuration is not recommended.

 An online algorithm is one that produces output before all of the input data are

supplied. In contrast, offline algorithms only generate results when all of the input

data has been read. Offline algorithms for edge coloring that are linear in time exist.

This is a desirable trait, and if it were possible to determine when the cluster is in a

stable state, it would be appropriate to use one of these algorithms. However, the

peer-to-peer and ad hoc nature of Distributed OpenCL make it impractical to detect

cluster stability, and once the schedule is set, adding or removing hosts would

invalidate the solution. It is possible that the advantage of optimality of the linear-

time solution would be lost under dynamic conditions.

 Competitive analysis is used to compare the relative performance of online and

offline algorithms. The optimality of the decisions made by an online algorithm is

affected by the order in which information is presented to it. Therefore, competitive

analysis uses a range of input conditions. Bar-Noy et al. found that the greedy

algorithm is an optimal solution to the online edge coloring problem (Bar-Noy,

Motwani, and Naor 1992). The greedy algorithm produces solutions that use no more

than twice the minimum colors required to color the graph.

53

 As the dynamic nature of Distributed OpenCL requires the use of an online

algorithm, it cannot attempt to find a minimum coloring of the graph before beginning

any benchmark operations. Because the greedy algorithm was shown to be optimal,

that was the approach used. As soon as a pair of nodes completes the peering process

with one another, they are immediately scheduled.

 There are instances in the literature of similar algorithms with applications

ranging from load balancing (Sider and Couturier 2008) to switch scheduling

(Aggarwal et al. 2003) to wireless channel selection (Duffy, O'Connell, and

Sapozhnikov 2008; Leith and Clifford 2006).

 Some solutions have been presented that attempt to automatically learn

network structure. One example, the NetInventory system, is able to learn the

structure of networks, including subnets, routers, and devices (Breitbart et al. 2004).

This system, like the others identified, does not collect throughput information.

 Significant work was done in Distributed OpenCL to ensure orderly operation

and guarantee exclusive access to the interface for a single operation. There do not

appear to be references in the literature for a peer-to-peer network throughput

measurement tool that behaves in this way. The core contribution described in this

chapter is the method for ensuring the highest possible efficiency of throughput

benchmarking using network communication as a means for distributed coordination

and the protection of a limited resource.

Methods

 The success of the cluster throughput measurement system was evaluated by

comparing the observed results to the theoretical minimum amount of time required,

assuming the minimum edge coloring of the graph. To test the algorithm under the

greatest possible stress, a script was developed that starts the software on each host at

the same time. The number of hosts was scaled from three to eight to test whether the

completion time scaled along with theory. Each number of hosts was tested twenty

54

times, providing enough samples for representative analysis. As each host has two

network interfaces (1Gbit/sec and 10Gbit/sec) that are scheduled independently, both

results were included in the analysis.

 The empirical results were used to evaluate the success of the greedy algorithm

and to determine the contribution of protocol overhead to total run time. It was

necessary to extract the contribution of each of these factors from the observed signal.

To aid in this work, the throughput benchmark duration was set to sixty seconds which

is a relatively large value.

 Two methods for ensuring mutually exclusive throughput measurements were

tried. The first method was designed to leverage the attributes of the TCP handshake

to ensure exclusion. This method ultimately proved unsuccessful, though illustrative.

It failed because the TCP handshake had been written ambiguously, and it allowed for

inconsistent implementations across commonly used operating systems. The second

system proved successful and relies on locally locked variables, achieving cluster

synchronization through emergent behavior.

Mutual Exclusion using the TCP Handshake

 To explain the design strategy of this method, it is useful to briefly discuss the

phases of the TCP handshake process and why it was used in an attempt at mutual

exclusion. See Figure 21 for the TCP state transition diagram, derived and simplified,

from TCP/IP The implementation by Gary Wright and W. Richard Stevens (Wright

and Stevens 1995). TCP is a client-server protocol. On the server, a well-known port

was opened using the bind system call. This port was used as part of the address that

the client used to initiate a connection by calling connect. With the newly opened

port, a listen system call was invoked with a user-defined setting for backlog, which is

the maximum number of clients allowed in the SYN_RCVD state. The accept call on

the server would have either sent the SYN, ACK response to a client in SYN_RCVD

or blocked until the client attempted to connect. On the client side, the connect system

55

call used an address and port number pair when it sent a SYN packet to the server.

The connect call blocked until the SYN, ACK was received from the server.

CLOSED

LISTEN

SYN_RCVD

ESTABLISHED

SYN_SENT

rec
v:

SYN, A
CK

sen
d:

ACK
recv: ACK

send: nothing

rec
v:

RST

rec
v:

SYN; se
nd

: S
YN, A

CK

appl: connect

send: SYN

appl: send data

send: SYN

timeout
send: RST

appl: Close or timeout
send: RST

appl: listen
send: nothing

Figure 21: Simplified TCP State Transition Diagram. Derived from (Wright and
Stevens 1995).

 Under typical TCP use cases, backlog is set to a number large enough to

balance the dynamic variation of new clients with the speed that the accept thread can

accept new clients. It is common to see the backlog value set to five in early textbook

examples (Stevens 1990; K. A. Robbins and Robbins 1995). Now, it is more common

to see the maximum value the system supports used; the memory required for the

backlog structure is small relative to the amount of memory in later systems.

 Early specification texts written by W. Richard Stevens (Stevens 1990) and the

listen man page assert that any new connection attempts will be answered with a TCP

reset, causing the client software to receive a ECONNREFUSED error from the

connect system call. In practice, however, when the number of pending TCP

handshakes is equal to or greater than the value set as backlog, behavior is essentially

undefined. On some systems, including BSD, MacOS, and Linux (with the default

56

behavior), the server ignores connection attempts subsequent to a full backlog. The

client would continue sending new connection requests (SYN packets) until the

attempt times out, which is typically after one minute. In 1995, Stevens along with

Gary Wright (Wright and Stevens 1995), stated that the appropriate action is to ignore

subsequent client connections. Between 1990 and 1995, the recommended response to

new clients once the backlog is full evolved from sending a TCP reset packet to

ignoring it. Finally, in 2004, Stevens and Fenner said this: “For seven different

operating systems there are five distinct [...] interpretations about what backlog

means!” (Stevens and Fenner 2004) This inconsistency, along with the length of the

TCP connect timeout, makes this solution unworkable.

Distributed synchronization using local locks

 The eventual solution relied on a locally protected variable to achieve a

globally consistent state. The protected variable is a timestamp (TS) that marks the

time of completion of the current operation. If there is no current operation, its value

is null. This variable is protected using a serial queue. It could be protected using a

standard synchronization primitive, such as POSIX locks or semaphores, but these can

be a source of inefficiency. Though the serial queue, by definition, causes a serial

bottleneck, it is more efficient than the POSIX primitives because it doesn’t require

kernel intervention, waking dormant threads, or system calls. Task queues are already

widely used in the implementation of Distributed OpenCL, so they were a natural fit.

The task queue library used in this implementation, Grand Central Dispatch (GCD),

provides serial and parallel queues. With parallel queues, each task is started in order

but allowed to run in parallel. Serial queues only permit one task from the queue to

execute at a time. In the flow charts presented in Figure 22 and Figure 23, the dashed

boxes contain logic that executes on the serial queue that protects access to the TS

variable. The logic flow for every client occurs in parallel with every other client and

the server. Each peer runs both the client and server logic simultaneously.

57

no

Socket Close

Socket Accept

Set TS to now +
duration

Yes

TS == null?

Benchmark

Send Disconnect

Clear timer

Send Result
Socket error

Socket Close

Send Disconnect

Send delta time

a

b

c

d

e

f

g

i

j

Figure 22: Server side logic for distributed synchronization

 Though the system is peer-to-peer, the terms server side and client side are

used to separate the control logic for clarity. The server side flow chart is executed

when the TCP accept system call returns with a new client connection (a). When this

occurs, a code block is enqueued onto the serial queue that protects the timestamp

(TS) variable. This block of code checks whether TS is null (b) and, if so, sets the TS

to the current time plus the duration of the throughput benchmark (c). This value is

used within the system as an estimated time of completion for whatever operation is

using the resource. If the TS value was non-null, the difference in time between now

and TS is sent to the remote host (i) along with a disconnect message (j), and the

socket is closed. Only delta time values or durations are sent to remote hosts,

58

59

Figure 23: Client side logic for distributed synchronization. Flow begins when a peer
is dequeued. Retries are re-enqueued, optionally after a delay. This flow operates in

parallel with the server side logic, and is highly multithreaded.

Socket
Connected

Wait 10 seconds
yes

Send Disconnect

Notify caller (async)

no or
error

Socket Close

Set TS to now +
duration

Timed Bench

Benchmark

Footer received?

Set TS = null

TS == null Wait until TSno

TS == null no

yes

Read w/ timeout

Set TS to now +
duration

Async. read

timeout

Timed Bench

Disconnect

Disconnect

no
Wait 10 seconds

Begin TCP Benchmark

Async events

Critical section for TS

Control flow

Network command

logic event

Wait until TS

Socket close

Wait provided duration
or 10 seconds

Socket close

a

b

c

d

e

f

g

h

i

j

l

m

n

o

p

q

s

t

u

v

TS Elapsed? no

Wait 1 second
k

r

yes

removing the need for coordinated system clocks. Once the TS variable is held, the

benchmark is initiated (d). When the benchmark is complete, the results are sent to

the remote host (e), along with a disconnect message (f). Finally, a block is enqueued

to clear the TS variable (g), and the socket is closed.

 On the client side, when a throughput measurement is requested (a), a code

block is scheduled on the serial queue that will check the TS value (b). If TS is non-

null, its value is checked against the current time (j); if TS is still in the future, the

same code block is scheduled to run again after TS elapses (j). If the time represented

by TS has already elapsed (the current operation overran its estimated completion

time), the block is re-scheduled after one second (k). If TS is null, a socket connection

is opened to the remote host (c). If this connection fails, the block is scheduled to run

again after ten seconds (l). Once the socket is open, a network read with a short

timeout (one second) is started (d). If the read returns with a Timed Bench command,

which contains the benchmark duration, the TS value is set with the current time plus

the duration (e). If, however, the network read does not complete within the timeout

period, another read is executed outside of the scope of the critical section (m). This is

to ensure that the network or remote host cannot deadlock the system. If the Timed

Bench command is received from the asynchronous read, a block is scheduled on the

serial queue to test the TS variable (n), and set it if possible (o). If an error or a

disconnect command is received, the first block of the flow chart (a) is rescheduled

with the delta time provided in the disconnect message if available (s), or after ten

seconds. If the TS value is not available after the asynchronous read, the client sends

a disconnect message (t), closes the socket (u), and waits the duration of the local TS

value (v). Finally, if benchmarking is possible, it is run (f), and, when complete, the

TS variable is cleared (g). If the footer containing the results from the server (h) is

available, the entity that requested the benchmark is notified (j). If it is not available,

the socket is closed (p), and the peer is tried again in ten seconds (q).

60

 Through the interaction of the client and server side logic across a collection of

hosts, the system reliably converged upon a shared timebase. By sharing the estimated

completion time with peers, unnecessary polling was eliminated. The convergence of

the cluster occurred within the first time step and, as shown in the results section, was

very stable.

Results

 The success of the benchmark and distributed mutual exclusion system was

measured by collecting benchmarks for a variable number of hosts, as explained in the

methods section. For each number of hosts, the test was run twenty times. As each

network interface is independently scheduled, the results for the 1Gbit/sec and 10Gbit/

sec interfaces were combined to yield forty instances. The results were interpreted

with an aim to measure system overhead as well as the optimality of the derived edge

coloring in terms of additional colors needed (chromaticity). Finally, the scaling of the

algorithm is estimated using these results.

Figure 24: Histogram of total runtime mod 60 with 1 second bins, 240 samples total.

 To eliminate the contribution of the peer-to-peer clustering protocol to the

runtime of this algorithm, time measurement began at the first instance of

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

02000000000000103200202020
563444

111
17119

10
26610

20
10

95

C
ou

nt

Seconds

61

benchmarking and ended at the time the last pair of hosts completed their benchmark.

As the peering process is not instantaneous, and each node in the cluster completed

peering serially, there is a small offset in time between when each node is able to

begin benchmarking. The implicit synchronization is able to mitigate this effect, as

will be seen in the analysis.

 The throughput benchmark duration was set to sixty seconds to ensure that the

contributions from overhead and chromaticity could be isolated. A histogram of the

total run times mod 60 is shown in Figure 24. Runtime values were clustered near

zero, which suggests that the cluster maintained synchronization with little variation

from the 60-second timebase. Thirty-seven percent (37 percent) of all tests completed

within 1 second of a multiple of 60 seconds, and 85 percent completed within 10

seconds.

Figure 25: Colors required over minimum versus cluster size

 Assuming that chromaticity is the most significant contribution to total run

time, it makes sense to evaluate how well the edge coloring algorithm performs

relative to theory. The graph shown in Figure 25 demonstrates that the number of

extra colors used in the edge coloring follows a roughly logarithmic curve. As the

cluster size grows, the number of extra colors per added host approaches zero.

Intuitively, this relationship can be explained by considering the expansion of the

space of edge coloring solutions for every added color, which is close to exponential.

0

0.5

1.0

1.5

2.0

3 4 5 6 7 8

Co
lo

rs
 u

se
d

ov
er

 m
ini

m
um

Cluster Size

62

 Finally, in terms of wall clock time, the cost of performing the benchmarks on

a variable size of cluster scaled linearly, matching expectations set by theory. Figure

26 shows the relationship between the theoretical and observed increase in runtime

versus the size of the cluster. In absolute terms, slope was steeper for the observed

results than the theoretical minimum. Omitting the results from the clusters of three

and four hosts, as they are trivial coloring problems, the proportion of the time

required over theory varied little from about 25 percent.

0

150

300

450

600

3 4 5 6 7 8
0%

25.00%

50.00%

75.00%

100.00%

Se
co

nd
s

Cluster Size
Minimum Average Proportion

Figure 26: Scaling performance by cluster size

 The automatic network cost measurement system functioned well and

exhibited linear scaling. It may possible to reduce the time required to determine

network cost by selecting a subset of the hosts that require direct measurement. If the

topology of the underlying network could be inferred from early measurements, it may

be possible to cull later measurements. A nominal throughput value for a network

segment could be found, and it would be necessary to only measure the throughput

from a given host to the network. The communication cost between a pair of hosts

would be equal to the minimum throughput from either host to the network. This is a

topic for future work.

63

Task Scheduling Framework for Heterogeneous Computing
 Before performing any work on a cluster, some mapping between independent

elements of work (tasks) and the compute device they are to run on must be made. In

the case of MPI, this mapping is done somewhat naïvely. The mpirun command

assigns threads to processors in the order specified within the host file. If there are

five parallel tasks, the first five processors in the host file will be selected and assigned

work. This system works well when every cluster node is similar, and when the

network fabric is well suited to this purpose. With careful configuration, the network

and computation resources can be efficiently utilized. Unfortunately, however, the

skills required to maximize the use of resources are often out of reach of the casual

user or domain scientist. Many examples of cluster software, such as the Matlab

Distributed Computing Toolbox, function in a similar fashion. Specialized software

has been developed that manages this process and even allows multiple concurrent

users of a cluster if the sum of the requested resources fits within the system’s

capability.

 Distributed OpenCL was designed to provide the best performance possible to

non-experts; therefore, a system had to be developed that was able to map tasks to

resources in an efficient and easy to use way. By defining an algorithm as a directed

acyclic graph (DAG), the user provides the system explicit information about parallel

regions of code, data flow, and dependencies. This information is difficult to express

using serial code. OpenMP uses compiler directives such as “#pragma omp for” that

wrap a parallel section of code. The compiler will then assume that the loop within

the directive is parallel and will distribute the work across several threads. Though

this may seem straightforward, the details often cause problems for users. The C

programming language was designed as an explicitly serial language and the scoping

of variables is ambiguous when the loop iterations execute in parallel. To address the

scoping problem, OpenMP adds extra keywords that can define whether variables are

64

local to an instance of the loop or shared. The simple concept of parallelizing a for-

loop is overwhelmed by the complexity of managing the scope of its variables.

Previous and Related Work

 There are several examples of systems that define and schedule work using

task graphs. Some of the previous work was covered in the Project Overview chapter,

and previous work related to the user interface and graphical programming language

will be covered in the next chapter.

 Deriving an optimal scheduling of parallel computation is widely known to be

NP-Complete (Garey, Johnson, and Sethi 1976). Every practical scheduling algorithm

must therefore be an approximation. In general, approximation algorithms are a

tradeoff between optimality and complexity. The work surveyed here provides context

and demonstrates the breadth of the solutions that have been proposed.

 Wu and Gajski developed the Hypertool system to ease the user burden

involved in programming message-passing systems (Wu and Gajski 1990). Their

approach was two-fold. First, they expanded the C compiler’s pipeline to produce

dataflow graphs, which are substantially similar to the task graphs used in Distributed

OpenCL. Using these dataflow graphs, they scheduled and mapped the parallel code

segments onto a cluster of homogeneous processing elements. They described two

scheduling algorithms: the Modified Critical-Path Scheduling algorithm’s complexity

is O(n2 log n), and the complexity of the Mobility-Directed Scheduling is O(n3).

 Others have written papers that address parallel scheduling at relatively fine

scales. Bannerjee et al. proposed a system for extracting task graph representations of

instructions and dataflow from higher level language constructs (BanerJee et al. 1993).

Because these automatic techniques generate parallel segments at the instruction level,

communication costs would dominate any savings possible from parallel execution.

Specialized scheduling strategies were developed to address this issue, such as

clustering main segments to run serially (Kim and Browne 1988).

65

 Even machine learning techniques have been used to learn the best scheduler

from a suite of options (Wang and O'Boyle 2009). This technique used supervised

learning (inferring a function using labeled input data (Duda, Hart, and Stork 2001)) to

learn the patterns that exist between parallel code and the performance achieved

between scheduling strategies and number of threads.

Task-Scheduling Algorithms

G
enetic A

lgorithm
s

Sim
ulated A

nnealing

Local Search Technique

List Scheduling ClusteringTask Duplication
C

ritical Path Fast D
uplication

D
uplication Scheduling

B
ottom

-U
p Top-D

ow
n D

uplicatio

D
uplication first and R

eduction N
ext

M
obility D

irected

D
om

inant Sequence

Linear C
lustering

M
odified C

ritical Path

D
ynam

ic C
ritical Path

D
ynam

ic Level Scheduling

M
apping H

euristic

Guided Random Search

Heurstic

Figure 27: Hierarchy of scheduling techniques

 Topcuoglu et al. presented an excellent survey of scheduling techniques and

organized them into a hierarchy (Topcuoglu, Hariri, and Wu 2002). This hierarchy is

shown in Figure 27. Their work effectively expresses the diversity of available

approaches.

66

Task graph representation and document format

 Before discussing the implementation of the Distributed OpenCL scheduling

framework, the representation of the task graph, both in memory and on disk, must be

fully described. As with the peering messaging format, XML was chosen to structure

the task graph representation for storage on disk. In memory, the task graph is

represented with a DAGModel class that contains the entire task graph.

Task graph Classes and Structure

DAGModel

AddNode
RemoveNode
InitWithXML

Nodes DAGNode

AddArgument
RemoveArgument
InitWithXML

Model

Arguments

UUID

DAGKernelNode

AddArgument
RemoveArgument
InitWithXML

Model

Arguments

UUID

Source

Subclasses of DAGNode

DAGArgument

InitWithXML

Size

Type

IsSource

Counterpart

Owner

UUID

DAGFileNode

AddArgument
RemoveArgument
InitWithXML

URL

FileHandle

FileType

FieldSeparator

UUID

Figure 28: UML27-like class diagram of the task graph representation. Simplified for
clarity; instance variables relating to scheduling and benchmarking omitted.

67

27 UML is a trademark of the Object Management Group, http://www.uml.org/

 The DAGNode and its subclasses DAGKernelNode, DAGFileSource, and

DAGFileSink represent the tasks within the task graph, and DAGArguments represents

the arguments within the nodes and the links between them. A simplified class

diagram, with unrelated information omitted, is shown in Figure 28. Only a subset of

the source and sink subclasses are presented.

 The classes that represent the task graph maintain the structure of the graph

and prevent illogical or degenerate construction. The DAGArgument class maintains

the size, type and direction of its data; when a connection attempt between arguments

occurs, these qualities must match. Conditions such as source-to-source and sink-to-

sink connections, as well as multiple sources to a single sink, are detected and

prevented. When a connection attempt succeeds, the Counterpart instance variable in

each DAGArgument instance is set with a reference to the other argument; sources

maintain an array of counterparts. The Owner instance variable contains a reference to

the DAGNode instance for the node that owns the argument. Through these links, it is

possible to traverse the task graph from any arbitrary point to any other point. By

performing a graph traversal, it is possible to prevent other illegal conditions such as

isolated subgraphs and loops.

XML Document Structure

 The XML representation of the task graph is a one-to-one mapping to the in-

memory class graph. The XML schema that can be used to validate a document file is

presented in Appendix C; and an example XML file with the task graph it represents

are included in Appendix D, and the structure of the XML file format is shown in

Figure 29. The root of the XML document is the DOCL-document element. The

children of the document root may either be the DOCL-node or DOCL-connection

elements; these elements define the task graph vertices and edges, respectively.

 The DOCL-node element represents every subclass of DAGNode, including

DAGKernelNode, DAGFileSourceNode, and DAGFileSinkNode. The type attribute is

68

used to indicate which of the subclasses is being represented. Strictly speaking, the

attributes used in the DAGNode element are defined by the subclasses, but name,

location, and type are created and used by the superclass. The DAGKernelNode

subclass adds the globalWorkSize, localWorkSize, and buildOptions attributes. When

compiling the represented OpenCL kernel, the buildOptions attribute may contain

compiler options, and the work size attributes are used when invoking the kernel to

describe the size of the kernel’s problem space.

DOCL-document DOCL-node

Attributes:
name
location
type
globalWorkSize
localWorkSize
buildOptions
url
discardBefore
discardAfter
fieldSeperator
fileType

DOCL-connection

Attributes:
source-node
source-argument
destination-node
destination-argument

DOCL-argument

Attributes:
label
type
direction
endianness
size

Kernel source
CDATA

Figure 29: Structure of the XML task graph representation. Subordinate entries are

child elements.

69

 The DAGFileSinkNode and DAGFileSourceNode add several fields, including

url and fileType. The url field contains the Uniform Resource Locator (URL) that

references the file to be read from or written to. The URL may use a variety of

schemes28, including file, http, and ftp. The current implementation limits URLs to

local files, but removing that limitation is straightforward (and a topic for future

work). The discardBefore, discardAfter, and fieldSeperator attributes have variable

meaning depending on the value for fileType. If fileType is equal to “binary,” the

discardBefore and discardAfter attributes set the number of bytes at the head and tail

of the file to be ignored. If it is equal to “ascii,” these attributes set the number of

rows to discard. Providing a number of fields or bytes to discard allows headers or

footers to be removed from the data. The fieldSeparator attribute is only used with

ASCII29 files, and it indicates whether the fields are separated with commas or tabs.

In ASCII files, a record is a row of one or more fields. It is vital that the number of

arguments set in the file sink and source nodes is equal to the number of fields in each

record, and that the number of fields in a record is constant across the entire file.

 The DAGArgument element is responsible for representing the arguments for

each node. The type attribute contains the base type of the argument. Every type

supported by OpenCL is a valid setting for this attribute, including bool, int, float, and

image2D. These types may also be vector types; for example, the int type can be int2,

int3, int4, etc. Only the image types cannot be vectors. The size attribute contains the

number of elements in an array of the base type. If the size is one, the argument is a

scalar. Image types may not be arrays; the size field holds the linear dimensions of the

image argument. The endianness field is used to ensure that the endianness of the

70

28 A scheme is the portion of a URL that defines the protocol used to access the
resource. The scheme is presented before the :// in a URL; for example, http in the
URL: “http://example.com/path/to/resource.html”

29 The American Standard Code for Information Interchange (ASCII) character code is
the most widely used binary representation for text data.

arguments across different host architectures is respected, though it is only explicitly

set within the context of file source and sink nodes. Finally, the direction attribute is

used to indicate whether the argument is a source or a sink.

 To encode the connections between arguments, the root node may have several

DOCL-connection elements. These elements have no children, but their attributes

provide the necessary information to recreate the links between arguments. The

names for nodes are unique within a document, and attributes are unique within a

node. All that is required, therefore, to uniquely identify a connection between any

pair of arguments are the names of each. The souce-node, source-argument,

destination-node and destination-arugment attributes perform this function.

 The XML representation of the task graph is easily processed with any of the

widely available libraries, works well with version management systems, and is

human-readable.

Automatic Computation Cost Benchmarking

 As with communication cost measurement, it is impossible to make good

scheduling decisions without computation cost data. Unlike communication cost,

however, it is not generally possible to extrapolate computation cost for unknown

problems or processors from existing measurements. Both the content of the task and

the architectural details of the processor play a significant role in the duration of a unit

of computation. To derive accurate computation cost metrics, an automatic

benchmarking system was developed. The system distributes task implementations to

every device in the cluster, generates test data for each argument, runs the task a

number of times, and collects the statistics.

 When build or run failures occur, they are collected and returned to the user,

providing valuable information about the number of devices that a kernel can target.

With OpenCL, it is common for a given kernel to compile and run for some processors

and not others. The most salient example of this is the restriction of the maximum

71

local work item size on CPU devices, which may be a single unit, or one-dimensional.

Devices such as GPUs typically allow two- or three-dimensional local work groups.

The example system tree in Appendix B demonstrates this quality. The maximum

work group size for the CPU device is 1024 elements in one dimension, and both

Nvidia GPUs support three-dimensional work groups 512 by 512 by 64 elements.

 As will be seen in the Graphical User Interface and Programming Language

chapter, the OpenCL kernels within tasks are compiled during editing, providing the

user with real-time feedback about the correctness of their code. Compiling a kernel is

a very fast operation, so it makes sense to do it often. Benchmarking, in contrast, can

take tens of seconds. For this reason, it was decided that this operation should be on-

demand only; benchmarking is only initiated before processing, or when the user

desires benchmark information.

 Benchmarking every task on each device is performed through a relatively

straightforward procedure. A small set of network transfers, which are depicted in

Figure 30, are required. As with all application-layer communication, the Peer class is

used as a proxy for operations destined for remote hosts. When the benchmark is

requested, the DistOpenCLScheduler class sends a benchmarkKernel message to every

Peer instance for each kernel. Within the Peer class, the XML representation of the

kernel is retrieved and sent to the remote host, where it is processed in the matching

Peer instance. At the destination, a DAGKernelNode object is instantiated from the

XML representation and is commanded to benchmark itself. Like network

benchmarking, the benchmarks must run serially. If kernels were allowed to run in

parallel, the results would not accurately reflect the actual performance. A serial

dispatch queue is used to enforce this condition. Once the results are available, the

Peer class instances pass the data back to the caller.

 Within the DAGKernelNode instance, a sample set of input data must be

produced for each of the arguments. This is done with a random number generator. It

may be possible to provide sample set generators if the structure of the input data

72

strongly affects kernel runtime. Each kernel is executed ten times to generate basic

statistics. This value is variable; however, the results are stable within ten runs. The

first execution of each kernel requires significantly more time than subsequent

executions. It isn’t clear whether this first data point should be discarded. At the

moment it is retained.

Host 1 ... Host nClient

Send kernel 1

Collect results

DOCLNode
elements with

source

Send kernel ...

Send kernel n

build kernel build kernel build kernel

build kernel build kernel build kernel

build kernel build kernel build kernel

run kernel

run kernel

run kernel

run kernel run kernel

run kernel run kernel

run kernel run kernel

send results send results send results

Finished

Begin

DOCLNode
elements
with stats

DOCLNode
elements with

source

DOCLNode
elements with

source

Figure 30: Network flow diagram for task benchmarking.

Scheduling Framework

 Given the breadth of the field of scheduling algorithms and the dramatic effect

the chosen algorithm can have on the result, a careful decision had to be made about

73

the implementation of scheduling in Distributed OpenCL. It was decided that a

modular framework for implementing schedulers should be developed rather than an

attempt to derive an ideal solution. The framework approach eases scheduler

development by collecting and organizing computation and communication cost

metrics into easily queried data structures. To add another scheduling algorithm, a

subclass of the DistOpenCLScheduler class could be created. The

schedulePendingNodes method implements the mapping between tasks and devices

and provides an easy override point. An example of a very simple scheduler is

provided in Appendix E.

DAGKernelNode

Benchmark
Prepare
Run

Stats

Arguments

DAGArgument

Prepare

Peer

Port

Sessions

Counterpart

Owner

OSUNetworkSession

Peer

Benchmark
Prepare
Run

Stats OSUBenchStats

Mean

Remote_address

DAGKernelStats

Mean

Device ID

Peer

Figure 31: Simplified UML-like class diagram for task scheduling.

 The information required to derive a schedule is stored within a collection of

classes that encapsulate the scope of each schedulable entity and the costs associated

with their interconnections. A simplified class structure of the task graph, omitting

structures not related to scheduling, is presented in Figure 31.

 An array of DAGKernelNodes to be scheduled is created by the

DistOpenCLScheduler class from the user-supplied task graph. As sink and source

74

nodes run locally to the client, they are not included in the array. Any future

subclasses of DAGNode are also not included in the scheduling process. Within each

DAGKernelNode, a collection of DAGKernelStats instances are maintained. Each

DAGKernelStats instance contains the mean runtime for each device and peer that

successfully ran the kernel.

 The communication cost between, for example, peer1 and peer2 can be found

by querying the peer1 class instance for information about peer2. As every Peer class

instance holds the network throughput and latency information for every other peer

and each network, either peer’s class instance contains the required information. A

convenience method is included in the Peer class definition that performs this

operation. The results for the best network (highest throughput, then lowest latency)

are returned.

 When the scheduler decides on a mapping between a task and device, the peer

field of the DAGKernelNode instance is filled out with the device ID and the UUID of

the peer that contains it.

Task Graph Execution

 Once the mapping complete is complete, execution can begin. A topological

ordering30 of the task graph is generated. The numbers above each node in the input

task graph contained in Figure 32 are an example of such an ordering. The topological

ordering is used to open network services used to carry data for task arguments. The

convention used is that source arguments open the network servers and sink arguments

initiate connections as clients. This convention was chosen because it is possible to

have several sinks connected to a single source, while the converse isn’t true;

therefore, the network programming is simplified and better follows the semantics of

75

30 A topological ordering is defined such that the starting vertex of every edge is earlier
in the ordering than the terminating vertex. A topological ordering is not generally
unique; there may be several orderings for a given DAG.

socket programming. In the prepare method, each node is given an opportunity to

initialize itself and prepare each argument. At this point, the arguments’ network

servers and sessions are opened.

 Once the preparations are complete, the port number of the source argument is

sent back to the calling process, and this information is reflected into the sink

arguments downstream. Because the kernel nodes are scattered across the cluster, a

mechanism had to be developed to perform these operations on remote peers. The

Peer class again acts as a proxy; when an instance of this class receives a prepare

message, the content is encapsulated and sent across the network. Locally to that

remote peer, the prepare method is executed, and the port number information is

collected and returned. Finally, because the sink nodes always run locally, their

prepare methods make the final network connections. The cluster-embedded graph in

Figure 32 describes the structure of the task graph in terms of TCP servers and

sockets. The directionality of every edge is reversed to match the semantics of TCP

connections to the semantics of task graph connections. In a task graph, multiple sinks

can receive data from one source, whereas in TCP, multiple clients can connect to one

server.

 If the chain of preparation completes successfully, the process is repeated with

the run methods. The run methods are started in reverse topological order. The

purpose of the run methods is to start the runloop of each kernel node, begin file

reading in source nodes, and file writing in sink nodes. Once the End Of File (EOF)

marker is encountered in the file source nodes, their network sessions are closed. The

close events trigger the cessation of the kernel runloops and downstream session

closures. Finally, the sink nodes, running locally, encounter session closures, marking

the completion of the graph execution.

76

sourceNode1

Argument1

Argument2

kernelNode1

output1

output2

input1

input2

kernelNode2

output1

output2

input1

input2

sourceNode2

Argument1

sinkNode

input1

input2

input3

input4

TCP Servers

TCP Socket
connections

sourceNode1

Argument1

Argument2

kernelNode1

output1

output2

input1

input2

kernelNode2

output1

output2

input1

input2

sourceNode2

Argument1

sinkNode

input1

input2

input3

input4

Argument Connections

Input task graph schematic

Cluster-embedding of the task graph

1

2

3

4

5

Tasks assigned to peer compute devices

TCP Clients

User specified task graph

Figure 32: Comparison between input and cluster-embedded task graphs

77

Graphical Programming Language
 Reducing the complexity of heterogeneous cluster programming requires

careful consideration of the programming model used. A task graph is an instance of a

directed acyclic graph in which vertices are tasks and edges are either dependencies or

data flow between vertices and edges. Though the implementation details are not

necessarily obvious by looking at a task graph image, the structure and flow are easily

inferred. As a user, the amount of parallelism present in an algorithm is obvious.

Previous and Related Work

Figure 33: Lego MINDSTORMS programming environment31.

 Graph-based graphical programming languages have been effectively utilized

in a vast array of applications while targeting a wide range of user ability. At the very

lowest end of user skill is Lego MINDSTORMS, a robotics hardware and software

development system intended for children ages ten and up. The programming

environment, shown in Figure 33, was developed in conjunction with National

Instruments; the core of National Instruments’ LabVIEW software was used under a

child-friendly front end. Control of robot motion commands, asynchronous event

handling and control flow are accessible to the novice computer user. Detailed

78

31 National Instruments, http://zone.ni.com/devzone/cda/pub/p/id/8

configuration options for the tasks within the MINDSTORMS software are available

underneath the task graph area.

 The professional software produced by National Instruments, LabVIEW,

targets users ranging from domain scientists to electrical, prototype, and process

engineers. The LabVIEW software, while still based on a directed acyclic graph, is

designed to mimic a collection of lab instruments and electrical devices rather than

tasks. Both the MINDSTORMS and LabVIEW packages support looping constructs

within their environments by surrounding looping sections in a “loop” block. This

construct enables looped code within a graph that is explicitly loop-free (acyclic). The

code within the loop section executes until a stop condition is met. LabVIEW differs

from MINDSTORMS and most other task graph languages in that it performs the

majority of configurations within the task graph itself. Constant values are

represented in the graph alongside tasks. Some of these can be see in Figure 34; the

blue boxes containing a number are integer constants, and the yellow boxes are

floating point constants.

Figure 34: Sample National Instruments LabVIEW graph32

79

32 National Instruments, Hardware-in-the-loop Evaluation of Vehicle Components with
LabView, http://www.ni.com/white-paper/3415/en, accessed May 25, 2012

 IBM’s DataExplorer (originally called IBMDX; it was renamed OpenDX when

it was released under an open source license), mentioned in the Project Overview

chapter, is a graph-based visualization tool. OpenDX took another unique approach

for setting constant values within the task graph interface. Every argument associated

with a task is represented with a small tab. Tabs on the top of the task are inputs, and

tabs on the bottom are outputs. Detailed configuration is available through a separate

UI element, like MINDSTORMS, but rather than sharing space on the same

application window, and auxiliary window is presented. Task arguments that are set

with a constant value through the advanced configuration are represented by a “folded

over” tab (Figure 35).

Figure 35: Detail of OpenDX task nodes with folded over tabs. (Source: Numerically
Related OpenDX Tutorial33)

 Quartz Composer, also discussed in the Project Overview chapter, implements

detailed configuration through an auxiliary window called the “inspector,” shown in

Figure 36. Inspector windows are a common user interface construct used in MacOS.

The basic strategy is to separate basic and advanced configuration into separate user

interfaces. The inspector provides access to patch34 configuration details and input

parameters. Quartz Composer patches can be built-in, OpenCL kernels, or Objective-

80

33 http://www.numerically-related.com/tutorials/opendx/opendx_tutorial4.html,
accessed May 15, 2012

34 In Quartz Composer, the tasks are called “patches.”

C plugin modules. Quartz Composer even supports a meta patch which embeds an

entire task graph. The patch that is being configured in Figure 36 allows an entire

Quartz Composer file (composition) to be imported within the patch. The

configuration variables set whether the composition is an input, output or intermediary

(Processor), and the number and types of the inputs and outputs.

Figure 36: Inspector window control for a Quartz Composer patch.

 GNURadio is an open source project for software-defined radio. It was

implemented using C/C++ and Python35, and uses the concepts of task graph

programming to implement software demodulators and modulators for radio

communication. The basic operation of the system consists of defining the task graph

within a Python script by instantiating tasks, written in C/C++, and defining the

connections between them. A project that started independently from GNURadio, but

was later integrated, is GNURadio Companion. The GNURadio Companion software

allows the creation of GNURadio Python scripts automatically using a visual task

graph. This software allows variables to be set either manually, through an external

81

35 Python programming language; http://www.python.org/, Accessed May 3, 2012

editor, or through global variables indexed by name. The object named “Variable” in

Figure 37 is an example of such a construct.

Figure 37: GNURadio Companion implementation of a narrowband FM receiver36

Graphical Programming Language Design

 The graphical programming language developed for Distributed OpenCL was

largely inspired by Quartz Composer. Each of the tasks that make up the task graph is

represented by a rounded rectangle. The tasks are referred to as “nodes.” The node

name is presented in the top region of each rectangle, which is directly editable by

clicking on it. The arguments are presented in the lower section of the rectangle.

Arguments can be either inputs or outputs; inputs occupy the left side of the rectangle,

and outputs occupy the right. The small yellow circle adjacent to each attribute is the

click target used for creating, moving and destroying connections between attributes.

82

36 http://www.oz9aec.net/index.php/gnu-radio/grc-examples, Accessed May 3, 2012

The connections between attributes are indicated by grey wires following a bezier

curve between the click targets; many such wires are shown in Figure 42. When an

attribute has at least one connection, the click target is filled in with a green circle.

Argument names are editable within the node inspector and are discussed in more

detail below.

a

b

Figure 38: User interaction details; drawing a new connection (a) and selecting a node
(b).

 User commands for modifying the graph were designed to maximize usability

by leveraging interactions with which users should be familiar. Examples of the

method for performing common actions are listed below. For the purposes of this

discussion, it is assumed node clicks do not include clicks on the name field or

argument click target.

• Moving a node: Click-hold on the node, drag to the destination and release.

• Removing a node: Click on the node once to select, then press the “delete” key.

• Duplicating a node: Click on the node to select, then press the “command” and “d”

keys simultaneously.

• Creating a connection: Click-hold on the source argument click target, drag the wire

to the destination click target, and release.

• Moving a connection: Click-hold on the destination argument click target, drag wire

to the new argument’s click target, and release.

83

• Removing a connection: The process is the same as moving a connection, but you

release the mouse button away from an argument click target.

During wire connection operations, such as creation, movement and destruction, the

selected wire is highlighted in green. The color of this highlighting could be used to

provide the user constant feedback about the validity of proposed connections before

an explicit action is performed. For example, the wire could be colored red while the

terminus is not over a click target, yellow while over a click target that would result in

an invalid connection (type mismatch or other problem) and green when the

connection would succeed. The stoplight color scheme, while convenient for

discussion, would ultimately be unsuitable if accessibility for individuals with color

blindness is desired. A tooltip dialog that would provide diagnostic information to the

user could be provided in cases where a connection attempt would fail. These

enhancements are not included in the current implementation, and further usability

analysis is a topic of future research.

 Following the same model for advanced configuration as several of the

graphical programming languages presented in the previous work, an external

inspector window is provided. The contents of the inspector window are dynamically

loaded and modified to reflect the selected node. Extensibility of the inspector

interface was considered during the design phase, and the method for providing

custom control is relatively straightforward. The DAGNode class provides a method

to its subclasses, loadIViewFromBundle, which loads an interface specification file

from disk. Subclasses can call this method while providing a filename for the

interface. When the subclass is instantiated, the inspector view is loaded from disk.

Samples of the inspector window contents for a sampling of DAGNode subclasses are

presented in Figure 39.

 The inspector interface allows users to add, remove, and edit arguments. When

appropriate, the user may specify as many arguments as are needed. Editing any text

field parameter, such as name and size, of the argument is accomplished by double-

84

clicking on the text. The type field is a drop-down selection of every type that is

supported. Endianness is also selected through a drop-down. The

DAGSourceFileNode also provides the ability to select binary and ASCII file types.

85

b
c

d

Figure 39: Inspector window examples; DAGKernelNode class (a),
DAGFileSourceNode class (b). Detail views of the type selector (c) and the ASCII file

delimiter selection (d).

a: Inspector window views for the DAGKernelNode class of tasks

The configuration parameters are unique to the file encoding method, so a tab view

element is used to separate the distinct, but similar, configuration values. Images of

each subview are provided in Figure 39; binary configuration is shown on the left (b),

and ASCII configuration is on the right (d).

 The DAGKernelNode inspector provides a view for configuring the arguments

as well as kernel implementation. The OpenCL tab provides a text area to directly

input OpenCL kernels, and the text in the bottom of the view contains the build results

from the compilation of the kernel. When the user finishes editing, kernel compilation

is immediately started and the results are updated. A macro is provided to

automatically generate the kernel function definition. Because the name,

directionality and type of every argument and kernel name must match exactly, the

automatic creation of the kernel definition should simplify kernel development.

Graphical Programming Language Implementation

 The implementation of the graphical programming language and user interface

follows the model-view-controller strategy for user interface development. Figure 40

presents a simplified class model for the user interface logic in Distributed OpenCL.

The DAGModelView and DAGNodeView classes (view) produce the on-screen

representation and implement user interaction. Maintenance of the task graph

structure and correctness is the responsibility of the DAGModel and DAGNode classes

(model). Messages between these classes and the AppDelegate (controller) implement

the majority of the application’s functionality.

 The AppDelegate is a common class in Cocoa-based applications. Its purpose

is to mediate application-level events, such as window creation and destruction, menu

item selection and hotkey invocations. For the purposes of the graphical programming

language implementation, it is responsible for all those events, as well as coordinating

the inspector window contents when the window is created and when the selected

node changes.

86

 The apparently redundant functionality between the model and view classes --

for example, the addNode methods -- provides entry points to these actions from

events originating from within the models or directly from the user. For example,

when a node is duplicated, the majority of the processing occurs within the DAGNode

class; the new instance is passed to the DAGModel, which informs the

DAGModelView of the new DAGNode and DAGNodeView. If, however, the user

selects a node and presses “delete,” the DAGModel receives the event notification for

that action. In this case, the message is passed to the removeNode method in the

DAGModel class instance, removing the node.

DAGNode

addArgument
removeArgument
acceptConnection

model

arguments

inspectorView

DAGArgument

owner

DAGNodeView

addArgument
removeArgument
modelChanged
connectionAttempt

model

inspectorView

DAGModelView

addNode
removeNode
duplicateNode

model

nodesViews

selectedNode

DAGModel

AddNode
RemoveNode
InitWithXML

nodes

view

InspectorWindow

setContentView

contentView

appDelegate

AppDelegate

selectionChanged

inspectorWindow

dagModel

Figure 40: Simplified UML diagram of the user interface mechanics.

 When the user draws a candidate for a connection between arguments, as

described above, the DAGModelView class tracks the mouse movements while

87

drawing the temporary wire. When the mouse button is released, the DAGModelView

class iterates through the list of DAGNodeViews until the coordinates of the pointer are

within the bounds of the candidate view. The coordinates are then transformed into

the local coordinate space for the node view and tested for intersection with an

argument click target. If a click target is selected, the argument represented with the

target is sent an acceptConnection message with reference to the complementary

argument. If the connection is deemed valid, the method returns a boolean true value,

and the connection is committed.

88

Example problems solved with Distributed OpenCL

16 Channel Beamformer

-7

-1

7

-8

7

-4

0

Wave front

Waves

St
ee

rin
g

Ve
ct

or

Transducers

Figure 41: Diagram representing the basic functionality of a beamformer. A planar
wave front being applied to an array of transducers is shown. The values of the

steering vector are related to the phase of the wavefront at different points in space.

 A beamformer is a system for shaping the spatial response of an array of

transducers by either manipulating the phase or gain of each transducer (Figure 41).

Beamforming can be used in receivers or transmitters, and can be applied to acoustic

(Beng, Teck, and Potter 2002), electromagnetic (Curtis et al. 2003), or even seismic

(Brind, Goddard, and Whitmarsh 1998) fields. Beamforming systems are commonly

89

implemented using analog electronics, Field Programmable Gate Arrays (FPGAs),

Digital Signal Processors (DSPs), or software running on general purpose computers.

The algorithms used in beamforming can be very computationally expensive,

especially when the output of every beam is desired; steering an array to a single beam

is relatively cheap. Detailed technical information about beamforming is available

(Manolakis et al. 2005).

 When a beamformer is used without a priori information about the signal

source and collects information for a broad set of beams, it is called a Conventional

BeamFormer (CBF). This example problem was chosen because it has been

implemented in three different ways within the context of this work. Also, the CBF

algorithm has a variety of different types of parallelism. An FFT 37 is executed on

each of the transducer channels, which is a relatively large granular scale of

independent parallel work. Each FFT includes smaller scales of parallelism, requiring

tight coordination. The results from the FFTs are combined into a matrix that is

multiplied with the steering matrix. This is a single operation, but matrix

multiplications have internally parallel components.

 Exemplar code was provided as a Matlab script, which was first ported to a

standard single-threaded application, written in C. Later, the implementation in C was

converted to use the resources of the Cell/B.E. processor. Finally, the CBF was ported

into the Distributed OpenCL task graph language. The relative duration of porting

effort is instructive. Porting from Matlab to C took about a month of human time, and

the majority of that time was spent learning the structure of the Matlab script. Matlab

treats every variable as a matrix; scalars are simply matrices that are one unit in every

dimension. Because every variable is a matrix, it is very easy to overlook their

dimensionality. For example, what may appear as a single scalar multiplication may

90

37 The FFT, or Fast Fourier Transform, is an efficient implementation of the Discrete
Fourier Transform, which transforms input data from the time domain to the frequency
domain.

actually be an operation between large matrices. This can have significant

consequences for data flow analysis and typing.

Figure 42: 16 Channel beamformer implemented in DistributedOpenCL

 The C-based port of the CBF was used to develop a Cell/B.E. implementation.

This work took several months. The reason for the increase in implementation time,

though the algorithm was already well understood, is the complexity of the Cell/B.E.

architecture. The Asymmetric MultiProcessing nature of the Cell/B.E. requires more

management than typical architectures. It is the responsibility of the user application

to schedule tasks on the SPE processors and explicitly load memory into the SPE’s

memory space. The memory operations are implemented as direct commands to the

91

DMA38 system. Every memory transfer must be a multiple of 16 bytes and aligned to

16-byte boundaries.

 The final implementation is shown in Figure 42. The task graph is a complete

implementation of the CBF using Distributed OpenCL, and it took less than a week to

produce. The input node is responsible for providing time-domain data for each of the

16 channels and 2048 sample packets. The set of 16 FFT nodes perform an out-of-

place complex FFT, and each node’s input argument specifies a 2048 element array of

float values. The output arguments are 2048 element float2 values representing the

complex-valued result. The spatial filter rearranges the output from the FFTs into a

matrix, computes a set of steering vectors, multiplies the matrix with the steering

vectors and normalizes the result. The output of the spatial filter is a 2D array that is

represented as an image type and saved to disk.

Software Defined Radio

 Software Defined Radio (SDR) is a technique for processing and demodulating

Radio Frequency (RF) signals. As the capabilities of processors have increased, it has

become practical to move ever-greater amounts of the RF signal chain into software.

Moving the processing chain into software allows greater flexibility when developing

modulation standards and techniques.

 The vast majority of SDR architectures are similar to the Direct

DownConversion receiver depicted in top part of Figure 43. Radio signals enter the

antenna on the left and are split before being fed into a pair of matched mixers. The

mixers translate the input frequencies both up and down in frequency according to the

Local Oscillator’s (LO) frequency.

92

38 Direct Memory Access is a system that allows memory transfers to occur without
the direct coordination of the main processor. DMA transfers are initiated by
providing the bounds of the desired transfer to the DMA processor along with a
transfer command. The memory transfer occurs in parallel to other processing and
completes asynchronously.

 If a signal of 100 MHz is presented at the RF port, and 50 MHz is on the LO

port, the output spectra will contain a copy of the input signal at 50 MHz and at 150

MHz (in addition to other signals, but those can be ignored for the purposes of this

discussion). In the case of a DDC receiver, the LO frequency is set to match (or is

very near) the desired RF frequency. In that case, one copy of the input signal is at (or

near) 0 Hz, and the other is two times the LO. The higher frequency components are

easily filtered out.

90°

I(t)

Q(t)

fLO

LPF

LPF

ADC

ADC

Direct DownConversion (DDC) Block Diagram

Commercial receiver (flipped along the vertical axis)

Figure 43: Sample block diagram of a DDC receiver and commercial device

 The two mixers in a DDC receiver are fed with two copies of the LO, one of

which is 90° out of phase. The mixers transform the phase of the input signal

according to the phase of the LO. By providing copies of the LO that are out of phase,

the output pair of signals has a complementary phase relationship: In-phase (I) and

Quadrature (Q). These signals can be used as complex numbers. Using the properties

of the complex plane, it is possible to isolate positive and negative spectra (on either

93

side of 0 Hz), as well as demodulate signals such as Quadrature-Amplitude

Modulation (QAM)39.

 The low-pass filtering also limits the bandwidth of the signal entering the

Analog-Digital Converters (ADC). To avoid aliasing artifacts, it is vital to reduce the

bandwidth of the input to an ADC to less than half the sample rate, in accordance with

Nyquist-Shannon Sampling Theorem (Shannon 1948). The output of the ADCs is the

quantized time domain values of the in-phase and quadrature signals. In the case of

the commercial SDR receiver (bottom of Figure 43), these are 8-bit samples delivered

at up to 3.2 million samples per second.

 Figure 44 represents an example application of SDR using Distributed

OpenCL. The raw samples are taken directly from the commercial SDR receiver and

converted to floating point, which are output from the Raw Input task. This data is a 2

million sample per second stream of complex, floating point numbers. The FM carrier

is shifted and filtered from anywhere within the two MHz input spectra to zero Hz

using the Frequency xlating FIR task. This task contains a time-domain operation and

uses the DOCL “scratchpad” feature to maintain filter state between blocks. Next, the

NB FM Demodulator converts the centered and filtered signal from FM to baseband.

This signal is tapped off and sent to the audio system of the client workstation for

monitoring. It is also sent to a pair of band pass filters, one for 1200 Hz and the other

for 2200 Hz. These tones are used to indicate the presence of either a ‘one’ or a ‘zero’

in the input stream. These tasks also perform an envelope detection operation, which

outputs a DC value proportional to the amplitude of the filtered signal. The Choose

Max task measures the relative strength of each filter’s output and outputs a binary

value accordingly. Finally, as each of these processes operate in the time domain at a

94

39 QAM modulation uses both the phase and amplitude to super-impose layers of
information onto a single “symbol.” An analog form of this modulation was used to
add color information to NTSC television. The phase and amplitude of the color
carrier were used to encode hue and saturation, respectively {Richman:1954hh}.

sample rate much higher than the symbol rate of the input signal, it is useful to discard

redundant data in the decimation block. This output is the final, demodulated digital

data.

Figure 44: SDR task graph for Bell 20240 demodulator over narrowband FM.

 Distributed OpenCL is a useful tool for implementing a vast array of signal

processing tasks, as well as numerical modeling. The bounds of what can be

represented using this tool have yet to be fully explored; surely, it will be a challenge

to identify applications that cannot be defined within this framework. Furthermore,

developing applications using DOCL is easy and rewarding. The tedious, and

thankless, glue code that consumes time and mental energy is produced automatically.

Users are left to think about their own application, which they probably enjoy.

95

40 The Bell 202 modulation scheme was used in 600/1200 baud modems, and is
substantially similar to V.23, http://www.itu.int/rec/T-REC-V.23-198811-I/en, accessed
May 14, 2012.

Conclusions
 As the computing market changes by moving away from expensive,

specialized tools in favor of cheap commodity products, new strategies for working

must be explored. During the period of rapidly increasing clock speeds, improving the

performance and capacity of existing scientific models could be as simple as buying a

new computer. Today, as processor clock speeds are mostly constant, the only

remaining strategy is to embrace greater parallelism. Often, this means that existing

applications need to be rewritten, or at least modified. It is an expensive proposition

to rewrite these applications, and with shrinking science budgets, it isn’t clear whether

the necessary funding exists. There is a distinct opportunity and need for tools that

allow the exploitation of cheap and ubiquitous commodity hardware. Giving domain

scientists the tools to develop new models that can use the newest technology without

crushing their budgets will pave the way for novel research.

 Distributed OpenCL (DOCL) addresses these issues. The overarching goal

was to mitigate or eliminate every source of frustration for the user while enabling

distributed computation on an ad hoc cluster of heterogeneous nodes. Manual cluster

creation, configuration, and use were eliminated. Scheduling cost metrics, such as

communication and computation cost, were automatically collected. The graphical

programming language reduces the complexity of model development, eliminating the

need for boilerplate41 code. Several example applications were implemented using

DOCL.

 To remain accessible to non-expert computer users, it was necessary to ensure

that Distributed OpenCL was easy to install. The initial implementation, which runs

on MacOS, is contained within a single application bundle. It appears to the user as a

single file and can be installed by dragging and dropping it into the Applications

folder. Building a cluster is as easy as installing the application on several computers

96

41 Boilerplate code is necessary, but tedious, code that configures the operating system
and its APIs, but isn’t relevant to the actual task at hand.

and running it. The careful engineering that went into the design of DOCL allows a

novice computer user to construct a high-performance computing cluster. DOCL even

eliminated the need for superuser privileges; the system can be installed and used

without any administrator passwords, which reduces the risk associated with its use.

 Unlike typical supercomputer and cluster systems, ad hoc clusters are

inherently chaotic and diverse. To make well-informed decisions, the task scheduler

requires high-quality information about the time required to transport data across the

network, as well as the time required to perform a task on each device. To address this

need, two solutions were developed that automatically measure these quantities. In

keeping with the overarching project goals, the cost metric measurement systems had

to be configuration-free and automatic; this was achieved through the development of

novel distributed algorithms. The throughput benchmark scheduling system

performed within the bounds set by theory.

 Parallel programming has always had a reputation for being a particularly

painful activity. This perception appears well founded when using common parallel

programming paradigms such as OpenMP, MPI, and Pthreads. These technologies are

based on serial programming languages, but they allow multiple instances of the same

program run coincidently but independently. Assuring consistent, well-behaved access

to system resources is a significant challenge, and it is the root of the majority of

errors. Graph-based parallel programming, in contrast, allows parallel execution of

independent operations in an inherently safe way. Many of the parallel programming

bugs that are common using traditional techniques are not possible using a task graph.

 Many task graph implementations operate on a highly granular scale. From a

research perspective, this may be an appropriate course of action. From a practical

standpoint, however, overly detailed task graphs are visually confusing to the user and

are difficult to efficiently translate into a machine executable representation. A

compromise was struck between the ease of use of a task graph and the efficiency of

traditional, C-based coding. Using OpenCL as the inner implementation of tasks

97

allows efficient compilation and execution across a wide variety of processor types,

including data-parallel devices such as GPUs. The outer representation of the task

graph summarizes the architecture of the application and allows for automatic

parallelization.

 The example applications provided demonstrate the power of Distributed

OpenCL and its ability to implement complex signal processing algorithms. The

beamforming application is an important example of the improvement in the use of

human time. The original implementation of the algorithm (from exemplar Matlab

source code) on the Cell/B.E. took several months of human time and required the

development of a task-graph based library. Using DOCL, the algorithm was

developed in a few days and is able to run on a cluster.

 I believe that Distributed OpenCL has been a positive exploration of the

problems and opportunities encountered while developing a next-generation cluster

programming system. Solutions were found that eliminate the complex manual tasks

required to construct a traditional cluster, and an effective programming environment

was developed and proven to be useful for scientific tasks.

Future Work

 Because Distributed OpenCL is a platform rather than an application, there is

tremendous opportunity for future enhancement and development. The current

implementation relies upon statically linked implementations of the source and sink

nodes in the task graph. These nodes are vital for providing input data into the graph

as well as performing useful work with the result. In its current form, only a subset of

the range of options is included. Part of the strategy for ensuring the greatest impact

from this work is supporting unforeseen combinations of input, output, and

computation. New avenues of research often begin when existing ideas are combined

in new and interesting ways.

98

 To ensure that the greatest diversity in input and output device support is

available, a plugin architecture is proposed. Because the inspector window used to

configure task nodes is populated at runtime, it is possible to dynamically add

additional functionality. Furthermore, because the XML document file specification

identifies the node types by their string type name, through introspection, it is also

possible to locate class implementations at runtime, allowing for the addition of

functionality after compilation and deployment.

 In addition to the plugin system proposed for sink and source nodes, it is

possible to support task scheduler plugins. The wide range of task scheduling

strategies, and their profound effect on performance, requires flexibility within the

scheduling system. The provided task scheduler is a basic example intended to

demonstrate the scheduling framework. Future work is required to develop a suite of

more advanced and powerful schedulers. It is clear that task scheduling algorithm

development is a sufficiently broad and deep area whose exploration wasn’t possible

in this work; the most appropriate course of action was to provide the mechanics for

later development and research.

 While the system that generates communication and computation cost

performs well, there are enhancements that could accelerate the execution of these

measurements. Currently, the network cost measurement system performs a

measurement between each pair of hosts. This is the most complete way to determine

a communication cost matrix for a cluster. In many cases, however, some of these

measurements are redundant. It should be sufficient to model the throughput

capability of the network itself, then measure each host’s performance relative to the

network. Using this method, the throughput between any pair of hosts is equal to the

minimum throughput of each host to the network and of the network itself. The direct

measurement of network throughput is not possible because it is always measured

through a host, but it can be assumed to be greater than or equal to the highest

throughput between any pair of hosts. It should be possible to reduce the number of

99

operations in the communication cost measurement algorithm from 42 to

better than .

 Not only can the number of operations necessary for communication cost

measurement be reduced, but many of the operations used in compute cost

measurement can be culled. In the case of computation cost, the redundant operations

are in the form of additional benchmarks on similar devices. The current system

performs a benchmark on every device within the cluster. It is likely that distinct

instances of the same device are similar enough that only one measurement is required

for the entire class. There is some risk to this optimization, however; namely, that

different systems’ configurations might affect the performance of the same device in

differing hosts. The sensitivity of device performance to host configuration and other

tradeoffs would have to be investigated before this relatively simple modification

could be made.

 There are opportunities for several other enhancements, such as real-time

debugging of the task graph. It should be possible to allow the user to interrogate each

of the intermediate values as they’re passed between nodes in the task graph. A small

set of inspection tools would provide a wealth of valuable information to the user. An

oscilloscope-like graphing tool could be used to inspect scalar or vector arguments

across time, or to graph a vector argument for each task invocation. The same

construct could be used after the source data is processed by an FFT. Image and 2D

data could be shown by directly mapping the data to the screen or presenting the data

in a table. More complex data, like volumetric and 3D data, could be displayed using

a raytracing visualizer. Some additional tools, such as triggering, breakpoints, or

single-stepping, would have to be provided due to the volume of data that could pass

100

42 A θ bound is a tight bound, which is similar to an O bound, except that it is bounded
both above and below asymptotically.

through the task graph. These tools would allow the user to make sense of unexpected

results and encourage iterative design.

 The use of MacOS as a development platform contributed to the rapid

implementation of Distributed OpenCL. MacOS contains the canonical

implementations of Bonjour and OpenCL; therefore, the tools provided were available

earlier and were arguably of higher quality. However, the choices that Apple Inc.

made regarding the discontinuation of their rack-mountable server (Xserve), as well as

the stagnation of their workstation (MacPro) encourage skepticism regarding their

continued investment in the professional product market segment. Furthermore, as

GPU vendors have added products that are intended for scientists and that work best in

Linux environments, the development of a Linux version of Distributed OpenCL

would be beneficial. Only the cluster node agent software would need to be developed

initially. The user interface paradigms were designed with the MacOS use model and

Cocoa UI libraries in mind; therefore, transitioning these elements would require more

careful planning and a complete reimplementation. There are no current plans to port

the software to Microsoft Windows, but because the specification is open and relies

upon standard technologies, it should be a straightforward exercise.

 The production of this dissertation, and its presentation to the committee, do

not mark the termination of this work; those are merely signs that the basic foundation

has been laid and the associated research is complete. The presented project is capable

of performing useful work in a wide range of scientific and data analysis scenarios,

and these capabilities will be further enhanced. The described future work is a narrow

cross-section of the enormous scope of future enhancements. Many years of work

remain, but the end result will be nothing short of amazing.

101

Bibliography
Abbes, Heithem, and Jean-Christophe Dubacq. 2009. “Analysis of Peer-to-Peer

Protocols Performance for Establishing a Decentralized Desktop Grid

Middleware.” Euro-Par 2008 Workshops-Parallel Processing. doi:

10.1007/978-3-642-00955-6_28.

Aggarwal, G, R Motwani, D Shah, and An Zhu. 2003. “Switch Scheduling via

Randomized Edge Coloring.” In, 502–512. doi:10.1109/SFCS.

2003.1238223.

Apon, A, R Buyya, H Jin, and J Mache. 2001. “Cluster Computing in the Classroom:

Topics, Guidelines, and Experiences.” In, 476.

BanerJee, Uptal, Rudolf Eigenmann, Alexandru Nicolau, and David A Padua. 1993.

“Automatic Program Parallelization.” Proceedings of the IEEE 81 (2)

(February 5): 211.

Bansal, Samta, Juan C Rey, Andrew Yang, Myung-Soo Jang, LC Lu, Philippe

Magarshack, Marchal Pol, and Riko Radojcic. 2010. “3-D Stacked Die:

Now or Future?.” In. ACM. doi:10.1145/1837274.1837350.

Bar-Noy, Amotz, Rajeev Motwani, and Joseph Naor. 1992. “The Greedy Algorithm Is

Optimal for on-Line Edge Coloring.” Information Processing Letters

44 (5) (December): 251–253. doi:10.1016/0020-0190(92)90209-E.

Beng, Koay Teong, Tan Eng Teck, and J.R Potter. 2002. “A Portable, Self-Contained,

5MSa/S Data Acquisition System for Broadband, High Frequency

Acoustic Beamforming.” Oceans '02 Mts/Ieee 1: 369–378. doi:10.1109/

OCEANS.2002.1193300.

Bolz, Jeff, Ian Farmer, Eitan Grinspun, Peter Schröoder, Jeff Bolz, Ian Farmer, Eitan

Grinspun, and Peter Schröoder. 2003. Sparse Matrix Solvers on the

GPU: Conjugate Gradients and Multigrid. ACM Transactions on

Graphics (TOG). Vol. 22. Conjugate Gradients and Multigrid. New

York, New York, USA: ACM. doi:10.1145/882262.882364.

102

Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, A. Silberschatz, Topology

discovery in heterogeneous IP networks: the NetInventory system,

Networking, IEEE/ACM Transactions on. 12 (2004) 401–414.

Brind, R.J, N.J Goddard, and R.B Whitmarsh. 1998. “Beamforming Performance of an

Array of Sea-Bed Geophone Sensors.” In, 2:687–693. doi:10.1109/

OCEANS.1998.724326.

Buttari, Alfredo, Piotr Luszczek, Jakub Kurzak, Jack Dongarra, and George Bosilca.

2007. “A Rough Guide to Scientific Computing on the Playstation

3” (May 11).

Chow, Alex Chunghen, Gordon C. Fossum, and Daniel A. Brokenshire. 2005. “A

Programming Example: Large FFT on the Cell BE” (September 21).

Curtis, D.D, R.W Thomas, W.J Payne, W.H Weedon, and M.A Deaett. 2003. “32-

Channel X-Band Digital Beamforming Plug-and-Play Receive Array.”

In, 205–210. doi:10.1109/PAST.2003.1256982.

Czajkowski, Karl, Ian Foster, and Carl Kesselman. 1999. “Resource Co-Allocation in

Computational Grids.” Proc. 10th IEEE International Symposium on

High- Performance Distributed Computing.

Duda, Richard O., Peter E Hart, and David G. Stork. 2001. Pattern Classification.

Second. John Willey & Sons.

Duffy, K R, N. O. O'Connell, and A Sapozhnikov. 2008. “Complexity Analysis of a

Decentralised Graph Colouring Algorithm.” Information Processing

Letters 107 (2) (July 16): 60–63. doi:10.1016/j.ipl.2008.01.002.

Fatahalian, K, D Horn, T Knight, and L Leem. 2006. “Sequoia: Programming the

Memory Hierarchy.” Supercomputing ’06.

Francis, Tom. 2010. “Gabe Newell: Next-Gen Game Engines Will Be Ten Times

Harder.” Pcgamer.com. http://www.pcgamer.com/2010/09/13/gabe-

newell-next-gen-game-engines-will-be-ten-times-harder/.

103

Garey, M.R., D. S. Johnson, and Ravi Sethi. 1976. “The Complexity of Flowshop and

Jobshop Scheduling.” Mathematics of Operations Research 1 (2)

(May): 117–129.

Gilliam, D. 1993. The Supercomputer Industry Development, Government

Involvement, and Implications for the Future. Ndu.Edu. The Industrial

College of the Armed Forces, National Defense University.

Gropp, William, and Ewing Lusk. 1993. “The MPI Communication Library: Its

Design and a Portable Implementation.” Scalable Parallel Libraries

Conference (October): 160–165. doi:10.1109/SPLC.1993.365571.

Guttman, Erik. 2001. “Autoconfiguration for IP Networking: Enabling Local

Communication.” Internet Computing 5 (3) (June): 81–86. doi:

10.1109/4236.935181.

Harris, MJ. 2003. “Real-Time Cloud Simulation and Rendering.”

Holyer, I. 1981. “The NP-Completeness of Edge-Colouring.” Siam Journal of

Computing.

Iamnitchi, A, I Foster, and D Nurmi. 2002. “A Peer-to-Peer Approach to Resource

Discovery in Grid Environments.” IEEE High Performance Distributed

Computing.

Joseph, Earl, and Michael Shirer. 2012. “HPC Server Market Delivers Record

Revenues and 8.4% Growth in 2011.” Idc.com.

Kiehl, J, J Hack, G Bonan, and B Boville. 1998. “The National Center for

Atmospheric Research Community Climate Model: CCM3*.” Journal

of Climate 11 (6) (June): 1131–1149. doi:

10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.

Kim, SJ, and JC Browne. 1988. “A General Approach to Mapping of Parallel

Computation Upon Multiprocessor Architectures.” International

Conference on Parallel Processing 3 (August 3): 1–9.

104

Lee, S, S Min, and R Eigenmann. 2009. “OpenMP to GPGPU: a Compiler Framework

for Automatic Translation and Optimization.” PPoPP '09: Proceedings

of the 14th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (February 1).

Leith, D.J, and P Clifford. 2006. “A Self-Managed Distributed Channel Selection

Algorithm for WLANs.” Modeling and Optimization in Mobile, Ad

Hoc and Wireless Networks, 2006 4th International Symposium on: 1–

9. doi:10.1109/WIOPT.2006.1666484.

Lindholm, E, J Nickolls, S Oberman, and J Montrym. 2008. “NVIDIA Tesla: a Unified

Graphics and Computing Architecture.” Micro, IEEE 28 (2) (March 1):

39–55. doi:10.1109/MM.2008.31.

Llamas, Ramone, Kevin Restivo, and Michael Shirer. 2012. “Smartphone Market Hits

All-Time Quarterly High Due to Seasonal Strength and Wider Variety

of Offerings.” Idc.com.

Lucas, Bruce, Gregory D. Abram, Nancy S. Collins, David A. Epstein, Donna L.

Gresh, and Kevin P. McAuliffe. 1992. An Architecture for a Scientific

Visualization System. IEEE Computer Society Press.

Manolakis, Dimitris G, Dimitris Manolakis, Vinay K Ingle, and Stephen M Kogon.

2005. Statistical and Adaptive Signal Processing: Spectral Estimation,

Signal Modeling, Adaptive Filtering and Array Processing (Artech

House Signal Processing Library). Artech House Print on Demand.

Mastroianni, C, D Talia, O Verta, and C ICAR. 2005. “A P2P Approach for

Membership Management and Resource Discovery in Grids.”

Information Technology: Coding and Computing.

Mastroianni, Carlo, Domenico Talia, and Oreste Verta. 2005. “A Super-Peer Model for

Building Resource Discovery Services in Grids: Design and Simulation

Analysis.” Ed. Sloot et al. Lecture Notes in Computer Science: 132–

143.

105

McCool, M. 2008. “Scalable Programming Models for Massively Multicore

Processors.” Proceedings of the IEEE 96 (5) (May 1): 816–831. doi:

10.1109/JPROC.2008.917731.

McCool, M, and R Inc. 2006. “Data-Parallel Programming on the Cell BE and the

GPU Using the RapidMind Development Platform.” GSPx Multicore

Applications Conference.

Moore, GE. 1975. “IEEE Xplore - Abstract Page.” Electron Devices Meeting.

Moore, Gordon E. 1965. “Cramming More Components Onto Integrated Circuits.”

Electronics Magazine. http://ftp://download.intel.com/museum/

Moores_Law/Articles-Press_Releases/

Gordon_Moore_1965_Article.pdf.

Moore, Gordon E. 1995. “Proceedings of SPIE.” In, 2438:2–17. SPIE. doi:

10.1117/12.210341.

Moreland, Kenneth, and Edward Angel. 2003. The FFT on a GPU. Eurographics

Association.

Ripeanu, Matei, Adriana Lamnitchi, and Ian Foster. 2002. “Mapping the Gnutella

Network.” IEEE Internet Computing 6 (1) (January).

Robbins, Kay A., and Steven Robbins. 1995. Practical UNIX Programming: a Guide

to Concurrency, Communication, and Multithreading. Practical UNIX

Programming: A Guide to Concurrency, Communication, and

Multithre.

Shalf, John, Jon Bashor, Dave Patterson, Krste Asanovic, Katherine Yelick, Kurt

Keutzer, and Tim Mattson. 2009. “MULTICORE COMPUTING: the

Manycore Revolution: Will HPC Lead or Follow?.” Scidacreview.org.

SciDAC Review 14. http://www.scidacreview.org/0904/html/

multicore.html.

Shannon, CE. 1948. “A Mathematical Theory of Communication.” Bell System

Technical Journal 27 (July 28): 379–423, 623–656.

106

Shchepetkin, Alexander F., and James C. McWilliams. 2005. “The Regional Oceanic

Modeling System (ROMS): a Split-Explicit, Free-Surface, Topography-

Following-Coordinate Oceanic Model.” Ocean Modelling. doi:10.1016/

j.ocemod.2004.08.002.

Sider, Abderrahmane, and Raphaël Couturier. 2008. “Fast Load Balancing with the

Most to Least Loaded Policy in Dynamic Networks.” The Journal of

Supercomputing 49 (3) (October 9): 291–317. doi:10.1007/

s11227-008-0238-5.

Steinberg, Daniel, and Stuart Cheshire. 2005. Zero Configuration Networking: the

Definitive Guide. 1st ed. O'Reilly Media.

Stevens, W. Richard. 1990. UNIX Network Programming. 1st ed. Prentice Hall.

Stevens, WR, and B Fenner. 2004. UNIX Network Programming: the Sockets

Networking API. Addison-Wesley Professional.

Topcuoglu, H, S Hariri, and M Wu. 2002. “Performance-Effective and Low-

Complexity Task Scheduling for Heterogeneous Computing.” Ieee

Transactions on Parallel and Distributed Systems.

Uppuluri, Prem, Narendranadh Jabisetti, Uday Joshi, and Yugyung Lee. 2005. “P2P

Grid: Service Oriented Framework for Distributed Resource

Management.” Services Computing.

Van der Maar, S, and K Batenburg. 2009. “Experiences with Cell-BE and GPU for

Tomography.” Proceedings of the 9th International Workshop on

Embedded Computer Systems: Architectures, Modelling, and

Simulation: 298–307.

Wang, Z, and MFP O'Boyle. 2009. “Mapping Parallelism to Multi-Cores: a Machine

Learning Based Approach.” PPoPP '09: Proceedings of the 14th ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming (February 1).

107

Ward, Lewis, and Michael Shirer. 2012. “Nintendo 3DS and Sony PlayStation Vita

Poised to ‘Make Some Noise’ in Gaming in 2012.” Idc.com.

Wright, Gary R., and W. Richard Stevens. 1995. TCP/IP Illustrated, Vol. 2: the

Implementation. 1st ed. Addison-Wesley Professional.

Wu, M, and D Gajski. 1990. “Hypertool: a Programming Aid for Message-Passing

Systems.” Parallel and Distributed Systems, IEEE Transactions on 1

(3) (July 1): 330–343. doi:10.1109/71.80160.

Zhang, Dongyan, Chao Zheng, Hongli Zhang, and Hongliang Yu. 2010. “Identification

and Analysis of Skype Peer-to-Peer Traffic.” In, 200–206. doi:10.1109/

ICIW.2010.36.

108

Appendices

Appendix A. XML Messaging Schema

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://tundra/dist-opencl/peerSchema.xsd"
 xmlns="http://tundra.oce.orst.edu/dist-opencl/peer">

 <!-- Messages relating to DOCL system tree -->
 <xs:attributeGroup name="platform.attributes">
 <xs:attribute name="hw_vendor" type="xs:string"/>
 <xs:attribute name="hw_model" type="xs:string"/>
 <xs:attribute name="sw_vendor" type="xs:string"/>
 <xs:attribute name="sw_version" type="xs:string"/>
 </xs:attributeGroup>

 <xs:complexType name="opencl_device">
 <xs:attributeGroup ref="platform.attributes"/>
 <xs:attribute name="type" use="required"/>
 <xs:attribute name="units" type="xs:positiveInteger"/>
 <xs:attribute name="frequency" type="xs:positiveInteger"/>
 <xs:attribute name="max_workitem_size" type="xs:string"/>
 <xs:attribute name="max_workgroup_size" type="xs:string"/>
 <xs:attribute name="max_image2d_size" type="xs:string"/>
 <xs:attribute name="max_image3d_size" type="xs:string"/>
 <xs:attribute name="global_mem_size" type="xs:decimal"/>
 <xs:attribute name="local_mem_size" type="xs:decimal"/>
 </xs:complexType>

 <xs:complexType name="opencl">
 <xs:sequence>
 <xs:element ref="opencl_device"
 maxOccurs="unbounded" minOccurs="1"/>
 </xs:sequence>
 <xs:attributeGroup ref="platform.attributes"/>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="profile" type="xs:string"/>
 <xs:attribute name="type" type="xs:string"/>
 </xs:complexType>

 <xs:complexType name="service">
 <xs:attribute name="address" type="xs:string"/>
 <xs:attribute name="netmask" type="xs:string"/>
 <xs:attribute name="config_method" type="xs:string"/>
 </xs:complexType>

 <xs:complexType name="interface">
 <xs:sequence>
 <xs:element ref="service"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>

109

 <xs:complexType name="network">
 <xs:sequence>
 <xs:element ref="interface"
 maxOccurs="unbounded" minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="system">
 <xs:sequence>
 <xs:element ref="opencl"/>
 <xs:element ref="network"/>
 <xs:element ref="peers"/>
 </xs:sequence>
 <xs:attributeGroup ref="platform.attributes"/>
 <xs:attribute name="timestamp" type="xs:positiveInteger"/>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="uuid" type="xs:string"/>
 </xs:complexType>

 <xs:complexType name="update">
 <xs:sequence>
 <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/peer"
 processContents="skip"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Xpath" type="xs:string"/>
 </xs:complexType>

 <!-- Messages relating to DOCL benchmarks -->
 <xs:attributeGroup name="statistics.attributes">
 <xs:attribute name="min" type="xs:float"/>
 <xs:attribute name="max" type="xs:float"/>
 <xs:attribute name="st_dev" type="xs:float"/>
 <xs:attribute name="samples" type="xs:integer"/>
 </xs:attributeGroup>

 <xs:complexType name="mean">
 <xs:simpleContent>
 <xs:extension base="xs:float">
 <xs:attributeGroup ref="statistics.attributes"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:element name="error" type="xs:string"/>

 <xs:complexType name="device">
 <xs:choice minOccurs="1" maxOccurs="1">
 <xs:element ref="mean"/>
 <xs:element ref="error"/>
 </xs:choice>
 <xs:attribute name="type" type="xs:string"/>
 <xs:attribute name="model" type="xs:string"/>
 <xs:attribute name="index" type="xs:positiveInteger"/>
 </xs:complexType>

110

 <xs:complexType name="kernel">
 <xs:sequence>
 <xs:element ref="device"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="latency">
 <xs:simpleContent>
 <xs:extension base="xs:float">
 <xs:attributeGroup ref="statistics.attributes"/>
 <xs:attribute name="packet_loss" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="throughput">
 <xs:simpleContent>
 <xs:extension base="xs:float">
 <xs:attributeGroup ref="statistics.attributes"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="bench">
 <xs:choice minOccurs="1" maxOccurs="2">
 <xs:element ref="latency"/>
 <xs:element ref="throughput"/>
 </xs:choice>
 <xs:attribute name="local_address" type="xs:string"/>
 <!-- Address of the host sending the benchmark message,
 or address of the localhost (in peerSubtree)-->
 <xs:attribute name="remote_address" type="xs:string"/>
 <!-- Address of the host receiving the benchmark message,
 or address of the remote host (in peerSubtree)-->
 <xs:attribute name="netmask" type="xs:string"/>
 </xs:complexType>

<!-- Messages relating to DOCL peering -->
 <xs:complexType name="peer">
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="uuid" type="xs:string"/>
 <xs:attribute name="client" type="xs:string"/>
 </xs:complexType>

 <xs:complexType name="peers">
 <xs:sequence>
 <xs:element ref="peer" maxOccurs="unbounded" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

<!-- Messages relating to DOCL diagnostics -->
 <xs:complexType name="event">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="timestamp" type="xs:string"/>

111

 <xs:attribute name="severity" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="log">
 <xs:sequence>
 <xs:element ref="event" maxOccurs="unbounded" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="timestamp" type="xs:string"/>
 </xs:complexType>

 <xs:complexType name="logs">
 <xs:sequence>
 <xs:element ref="log" maxOccurs="unbounded" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="host" type="xs:string"/>
 </xs:complexType>

<!-- Messages relating to DOCL preperation and execution -->
 <xs:complexType name="DOCL-node">
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/doc"
 minOccurs="1" maxOccurs="1"/>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="prepare">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/doc"
 minOccurs="1" maxOccurs="1"/>
 </xs:choice>
 <xs:attribute name="port" type="xs:integer"/>
 </xs:complexType>

 <xs:complexType name="run">
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/doc"
 minOccurs="1" maxOccurs="1"/>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="stop">
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:any namespace="http://tundra.oce.orst.edu/dist-opencl/doc"
 minOccurs="1" maxOccurs="1"/>
 </xs:choice>
 </xs:complexType>

<!-- Messages relating to encapsulation -->
 <xs:element name="message">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="update"/>
 <xs:element ref="peer"/>

112

 <xs:element ref="bench"/>
 <xs:element ref="prepare"/>
 <xs:element ref="run"/>
 <xs:element ref="stop"/>
 <xs:any
 namespace="http://tundra.oce.orst.edu/dist-opencl/doc"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

</xs:schema>

113

Appendix B. Example Peer XML System Tree

<?xml version="1.0" encoding="UTF-8"?>

<system hw_model="MacPro4,1" hw_vendor="Apple" sw_version="85fd753"
 uuid="F184D397-BF40-5097-BF78-53C7F84BEDDA" name="Tundra2">
 <opencl vendor="Apple" version="OpenCL 1.1"
 name="Apple" profile="FULL_PROFILE">
 <opencl_device type="CPU" vendor="Intel" units="16"
 frequency="2659" max_workitem_size="1024,1,1"
 max_workgroup_size="16" max_image2d_size="8192,8192"
 max_image3d_size="2048,2048,2048" local_mem_size="32768"
 global_mem_size="6442450944">
 </opencl_device>
 <opencl_device type="GPU" vendor="NVIDIA" units="30"
 frequency="1476" max_workitem_size="512,512,64"
 max_workgroup_size="30" max_image2d_size="4096,4096"
 max_image3d_size="2048,2048,2048" local_mem_size="16384"
 global_mem_size="1073741824">
 </opencl_device>
 <opencl_device type="GPU" vendor="NVIDIA" units="4"
 frequency="1400" max_workitem_size="512,512,64"
 max_workgroup_size="4" max_image2d_size="4096,4096"
 max_image3d_size="2048,2048,2048"
 global_mem_size="536870912" local_mem_size="16384">
 </opencl_device>
 </opencl>

 <network>
 <interface name="en2">
 <service address="172.20.71.212" netmask="255.255.240.0"
 config_method="DHCP"/>
 </interface>
 <interface name="en0">
 <service address="128.193.71.212" netmask="255.255.248.0"
 config_method="DHCP"/>
 </interface>
 </network>

 <peers>
 <peer name="Tundra1"uuid="97612927-06A2-5876-BF6E-246E0AA72D89">
 <bench local_address="172.20.71.212"
 remote_address="172.20.71.211">
 <latency std_deviation="0.000115" samples="11"
 packet_loss="0.0">0.000186</latency>
 <throughput>549941888.0</throughput>
 </bench>
 <bench local_address="128.193.71.212"
 remote_address="128.193.71.211">
 <latency std_deviation="0.000103" samples="11"
 packet_loss="0.0">0.000300</latency>
 <throughput>333777024.0</throughput>
 </bench>
 </peer>

114

 <peer name="Tundra3" uuid="E8443EE8-F015-5988-AE4E-0AC1B825715C">
 <bench local_address="172.20.71.212"
 remote_address="172.20.71.213">
 <latency std_deviation="0.000161" samples="11"
 packet_loss="0.0">0.000173</latency>
 </bench>
 <bench local_address="128.193.71.212"
 remote_address="128.193.71.213">
 <latency std_deviation="0.000218" samples="11"
 packet_loss="0.0">0.000338</latency>
 </bench>
 </peer>
 </peers>
</system>

115

Appendix C: XML Document Schema

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://tundra/dist-opencl/docSchema.xsd"
 xmlns="http://tundra.oce.orst.edu/dist-opencl/doc">

 <xs:attributeGroup name="execution.attributes">
 <xs:attribute name="uuid" type="xs:string"/>
 <xs:attribute name="peer" type="xs:string"/>
 <xs:attribute name="port" type="xs:decimal"/>
 </xs:attributeGroup>

 <xs:attributeGroup name="argument.attributes">
 <xs:attribute name="label" type="xs:string"/>
 <xs:attribute name="type" type="xs:string"/>
 <xs:attribute name="size" type="xs:string"/>
 <xs:attribute name="direction" type="xs:string"/>
 <xs:attribute name="endianness" type="xs:string"/>
 </xs:attributeGroup>

 <xs:complexType name="DOCL-connection">
 <xs:attribute name="source-argument" type="xs:string"/>
 <xs:attribute name="source-node" type="xs:string"/>
 <xs:attribute name="destination-argument" type="xs:string"/>
 <xs:attribute name="destination-node" type="xs:string"/>
 </xs:complexType>

 <xs:complexType name="DOCL-argument">
 <xs:attributeGroup ref="execution.attributes"/>
 <xs:attributeGroup ref="argument.attributes"/>
 </xs:complexType>

 <xs:complexType name="DOCL-scratchpad">
 <xs:attributeGroup ref="execution.attributes"/>
 <xs:attributeGroup ref="argument.attributes"/>
 </xs:complexType>

 <xs:complexType name="DOCL-node">
 <xs:sequence>
 <xs:element ref="DOCL-argument"/>
 <xs:element ref="DOCL-connection"/>
 <xs:element ref="DOCL-scratchpad"/>
 </xs:sequence>
 <xs:attribute name="location" type="xs:string"/>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="type" type="xs:string"/>
 <xs:attribute name="kernelName" type="xs:string"/>
 <xs:attribute name="localWorkSize" type="xs:string"/>
 <xs:attribute name="globalWorkSize" type="xs:string"/>
 <xs:attributeGroup ref="execution.attributes"/>
 </xs:complexType>
</xs:schema>

116

Appendix D: Example Task Graph XML representation

Task graph represented

<DOCL-document>
 <DOCL-node name="node1" location="397,288" type="DAGKernelNode"
 globalWorkSize="10,1,1" localWorkSize="100,1,1">
 <DOCL-argument label="outlet" type="Int"
 direction="Input" endianness="little" size="1"/>
 <DOCL-argument label="source" type="Int"
 direction="Output" endianness="little" size="1"/>
 <![CDATA[
// This is the kernel source for node1.
// The kernel function definition is generated automatically.
@kernel {
 int i = get_global_id(0);
 int j = get_local_id(0);

 // Do some work for i and j.

 return;
}]]>
 </DOCL-node>

 <DOCL-node name="node" location="393,142" type="DAGKernelNode"
 globalWorkSize="5,2,1" localWorkSize="10,10,10">
 <DOCL-argument label="outlet" type="Int"
 direction="Input" endianness="little" size="1">
 </DOCL-argument>
 <DOCL-argument label="source" type="Int"
 direction="Output" endianness="little" size="1">
 </DOCL-argument>
 <![CDATA[
@kernel {
 // Do some work

 return;
}]]>
 </DOCL-node>

117

 <DOCL-node type="DAGFileSinkNode" name="sink" location="686,194"
 URL="file://path/to/local/resource.csv" discardBefore="0"
 discardAfter="0" fieldSeperator="comma" fileType="ascii">
 <DOCL-argument label="Input" type="Int"
 direction="input" endianness="little" size="1"/>
 <DOCL-argument label="untitled" type="Int"
 direction="input" endianness="little" size="1"/>
 </DOCL-node>

 <DOCL-node type="DAGFileSourceNode" name="src" location="59,211"
 URL="http://somewhere.com/remote/url/resource.dat"
 discardBefore="0" discardAfter="0" fileType="binary">
 <DOCL-argument label="Output" name="Output" type="Int"
 direction="output" endianness="little" size="1"/>
 </DOCL-node>

 <DOCL-connection source-node="node"
 source-argument="source" destination-node="sink"
 destination-argument="Input"/>

 <DOCL-connection source-node="node1"
 source-argument="src" destination-node="sink"
 destination-argument="untitled"/>

 <DOCL-connection source-node="src" source-argument="Output"
 destination-node="node" destination-argument="outlet"/>

 <DOCL-connection source-node="src" source-argument="Output"
 destination-node="node1" destination-argument="outlet"/>
</DOCL-document>

118

Appendix D. Simple task scheduler

- (void)schedulePendingNodes:(NSArray *)nodes
{
// This stores the current assignment (in seconds) for each device
 NSMutableDictionary *devicesDict;
 devicesDict = [[NSMutableDictionary alloc] init];

 // Preferentially schedule the longest nodes
 NSArray *sortedNodes = [nodes sortedArrayUsingComparator:
 ^NSComparisonResult(DAGKernelNode *obj1, DAGKernelNode *obj2) {

 // Find the minimum time of the first object
 float minimumTime1 = FLT_MAX;
 float minimumTime2 = FLT_MAX;
 for (DAGNodeStats *stats in [obj1 stats]) {
 float mean = [stats mean]
 minimumTime1 = (mean < minimumTime1)? mean : minimumTime1;
 }

 for (DAGNodeStats *stats in [obj2 stats]) {
 float mean = [stats mean]
 minimumTime2 = (mean < minimumTime2)? mean : minimumTime2;
 }

 if (minimumTime1 == minimumTime2) return NSOrderedSame;
 if (minimumTime1 < minimumTime2) return NSOrderedDescending;
 else return NSOrderedAscending;
 }];

// For each node in the pending nodes, set the peer UUID and
// device ID fields. This is the mapping from nodes to peers.
 for (DAGKernelNode *node in sortedNodes) {

 DAGNodeStats *bestStat = nil;
 NSString *leastAssignedDeviceKey = nil;
 float smallestAssignment = FLT_MAX;

 for (DAGNodeStats *stat in [node stats]) {
 float mean = [stat mean];

 NSString *deviceKey = [NSString stringWithFormat:@"%@:%d",
 [[stat peer] uuid], [stat deviceID]];
 NSNumber *num = [devicesDict objectForKey:deviceKey];

 float assignment = (num == nil)? 0 : [num floatValue];

 // Add the assignment to the mean, and see if it's the smallest
 if (mean + assignment < smallestAssignment) {
 smallestAssignment = mean + assignment;
 leastAssignedDeviceKey = deviceKey;
 bestStat = stat;
 }
 }

119

 // Now, assign the node to the device
 NSNumber assignmentNumber;
 assignmentNumber = [NSNumber numberWithFloat:smallestAssignment]
 [devicesDict setObject: assignmentNumber
 forKey:leastAssignedDeviceKey];
 [node setPeerUUID:[[bestStat peer] uuid]];
 [node setDeviceIndex:[bestStat deviceID]];
 }

 [devicesDict release];
}

120

