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Abstract—This work seeks to extend the study of the general  In the case whenr = y, A, , becomesA,. L. Cohen [3], [4]
class of L. Cohen’s two dimensional distributions from the space developed the concept ofgeneral clasdor two dimensional

L*(R xR) to the spacel”(Zy x Zw ). This is accomplished by for- - gigyribytions. As described by L. Cohen, all time-frequenc
mulating a computational signal algebra framework which allows tati f I2(R b ,bt ined f th
the analysis and design of efficient algorithms for discrete Cohen representations, for < (R), can be obtained from the

distributions (DCDs). The problem has been addressed following canonical mag’, : R x R — L*(R x R) expressed as
techniques developed by L. Cohen centered on the use of the )
Ca(t,w) = / / Ay (T, ) (r,m)e 72 EHeT) an dr o (2)

ambiguity function as an entity generator in the formulation of

two dimensional continuous distributions. Kronecker products

algebra (KPA) was used as the mathematical language for the where the function € LQ(R x R) is termed the kernel of the
representation. Previous studies have been conductedhdor t

general class of two dimensional distributions using dfeci

formulation of all the DCD computational algorithms.
Index Terms—Discrete Cohen Distribution, Ambiguity Func-
kernel functions. Some known kernel functions are presente

tion, Time-Frequency Representation, Kronecker Products Alge

bra, pMatlab. in Table 1.

. INTRODUCTION Distribution o(T,0) o(1,1m)

In 1953, P.M. Woodward developed the concept of ambigu- Wigner 1 1

ity function. The ambiguity function (AF) plays an importan Margenau - Hill cos (10/2) cos (m7n)
role in many applications dealing with the analysis of non-| kirwood-Rihanzek e—T0/2 e TN
stationary signals [1], [2]. It is finding new roles in appli- Born - Jordan sin(76/2) sin(rr1)
cations such as the joint time-frequency analysis of mieltip — Jf(fe);» 742(7;'7 2
input multiple output (MIMO) doubly dispersive channeldan | Choi - Williams e C i
phase-coded waveform design for orthogonal frequency divilZhao-Atas-Marks | e=7 |r| S5EI0 | e—or” || =27om)

sion multiplexing (OFDM) radar sensing and communications
L. Cohen developed the general representation of a signal in
continuous time and frequencio dimensional distribution
calling it “general class” (GC).

This work is presented as follows: In Section I, we provide D ISCRETEAMBIGUITY FUNCTIONS (DAF) AND
a review of the continuous ambiguity function and the geinera DISCRETECOHEN DISTRIBUTIONS (DCD)
class of Cohen distributions. In Section Ill, we define the In [5], M. Richman, et al., presented a discrete for-
discrete ambiguity function (DAF) and formulate a generahulation for the expression given in (1). This new ex-
class of discrete Cohen distributions (DCDs). In Section I¥ression is called thediscrete ambiguity function(DAF).
we present some properties for the DAF and the DCD. IFhe DAF, for x,y € [?(Zy), defined by the map
Section V, we develop a matrix notation to describe algotith A, ,, : Zy x Zx — 1*(Zn x Zy) given by
formulations of the DAF and the DCD using Kronecker
products algebra. Finally, in Section VI, we present some
implementation results.

Table 1: Commonly Known Kernel Functions

N-1
Agylrv] = pry Y a[(l+ ) yly*[e? ¥,
=0
where the expression. ,, is defined in [5]. M. Richman, et al.,
proceeded to use finite dimensional linear operators toearri
at an operator formulation of the DAF. The procedure is as
follows:
Forz € I>(Zy), v,p € Z andn € Zy, we define the
following linear operators:
« Translation S,{z}[n] = z[(n + v)n]
« Modulation M, {z}[n] = e/ ¥ z[n]
Forx,y € 1?(Zy), {x,y) denotes their inner product and is
given by (z,y) = >, ¢z, *[nly*[n]. Using these definitions,
the operator formulation for the DAF follows from (3):

®3)

II. CONTINUOUSAMBIGUITY FUNCTIONS AND THE
GENERAL CLASS OF COHEN DISTRIBUTIONS

The continuous ambiguity functioof =,y € L%*(R) is
defined as a mapl, , : R x R — L?(R x R) given by

Agy(T,v) = ™7 /x (t+7)y* (t) e?*™dt. 1)
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The sections starts with some basis concepts and definitions
Ay y[1,V] = pro(Mu{S-{z}}, y). from Kronecker products algebra (KPA) [13], [14], [15], a
. . _branch of finite dimensional multi-linear algebra, usedtss t
This operator formulation of DAF has served as a POt athematical language to formulate the DCDs. This section,

of inspiration to develop or general class of discrete COhﬂ’i‘en, continues with the formulation of a computationahalg

distributions (DCD), expressed in canonical form in the fo'algebra framework for the discrete ambiguity function (DAF

H . 2 .
Io;/vmg manner: for: € [*(Zy), as the mag; : Zy X Zy — Finally, the section ends with a general Kronecker products
L*(Zn x Zn) as based formulation of DCDs under a unifying computational

N—1N-1 framework.
Cr[n’ k] = % Z Z pT,v<Mv{Sf{x}}7x> 4
7=0 v=0 _ (4) A Basic Concepts
P, v]e I W (kT The Kronecker producof two matrix A € CN*N andB ¢
MxM ; NMxXNM .
where ¢ is the kernel ini?*(Zy). When ¢[r,v] = 1, for C sA®BeC such that.
T,v € Zy, the DCD reduces to the discrete Wigner distri- a,B - a,B
bution (DWD) as defined in [5]. A® B = : :
Let F : Zn xZn — 1?(Zn xZy) be the symmetric discrete a,, B ay B

Fourier transform in two dimensions (2D); then, (4) defines ) NN
the symmetric discrete Fourier transform, in 2D, of procafct ~ The Hadamard producif two matricesA, B € C is

DAF and the kernel [5], i.e. A® B e CY*N such that(A ® B), ; = Aij - Bij.
Let N =ML.
Culn, k] = F{A; - ¢}k, n] ()« We define theN-point stride M permutation matri®y ¢
CN*N by the rulePY (a ® b) = b® a for a € CM and
IV. RELATING DAF AND DCD OPERATIONS be CL. Also, PN P =1Iy.

The concept of the discrete Cohen distributions of a signal® The commutation theorem of Kronecker produats-
was introduced in the previous section through equation (4) tablishes that ifA € CM** and B € C"**, then
In this section we formulate properties of the DCD based A® B = P{j(B® A)P}'.
on J. J. Benedetto and J. J. Donatelli [6], who presentedThe reshape operator[16] is the linear transformation
the following theorem for the DAF of a signal after beingVy.,, : CV**! — CV*M such that foro € CN*M:
effected by translation, modulations, and rotations dpesa

v
We first introduce the definition of the rotation operatorr Fo B ! (7, 6
x € 1?(Zy), X € C, with |\| = 1, andn € Zy, the rotation v=| 1 |, w€l(Zn), )
operatorR,{z} is defined as Unr s
R)\{LL'}[TL] _ )\LL'[TL] we obtainVN,M {U} = [1}0 UM,l]NXM-

The translationS_,{z} and modulation},{z} operators B. DAF Computational Framework
were defined in the previous section. From (3), we obtaind’, € CN*x1 gg

Theorem 1:Let z € I2(Zy), v, 11, A € Z, with|\| = 1, and A',Z’J
T,V € LN: A, =Py (PO[Iy® Fylv), (1)

—j 2Ny 2 2 2 . . .

1) As_ (a3 [m.v] :?21’” Ay [T, V] where Py~ € RM *N" is a stride by N permutation,

2) An,qaylmv] = NI AT, V] Fy € CV*X is the finite Fourier transform matrix [17], i.e.,

3) Ag,(zy[m,v] = Aylr, V] (FN)mn = el ®mn, P e CN"*1 is defined as

: _ P

From Theorem 1, and (5), we obtain the following _0 Nx1

proposition: P=1 i |, PeeC’7
Prn-1
o _ 5 :

l)\‘Pioyl).osmon l:Letx € I*(Zn) andy, pu, A\, n, k € Zx, with With Pyfn] = prn, andv e CN*%1 is defined as

1) Csfw{w} [TL, k] = CLK" +Y)N, k] vo

2) CMH{m}[nvk] :OT[nv <k7N>N] U= ) Vg ECNXIQ

3) CRA{x}[nv k} = Cr[na k] UN—1

such thatvg[n] = z[(n+ k) y|y*[n], for k,n € Zx. Then,

from (7), we obtain:
This section presents a new computational signal algebra

framework for the development of discrete Cohen distrimsi , N
prevalent in diverse applied mathematical and signal p®ce Azy =Py : ) 8)
ing applications [7], [8], [9], [10], [11], [12]. Hyn_y

V. DCD COMPUTATIONAL FRAMEWORKS

Hy



30

20
10

Time

0

Time

-10

-20

-30
30 20 10 0 10 20 30 30 20  -10 0 10 20 30
Frequency Frequency
(@) (a)
204 20 -
107 : 104 |
o0 20 o
-20 == 0-
0 20 20 Time -20 0 20 o
Frequency 20 Time
Frequency
(b) (b)
Fig. 1.  Discrete Ambiguity Function of signat(n] :cos(%ﬂn) for  Fig. 2. Discrete Cohen DistributionWigner Distributior) of signal
n € Zes z[n] = cos(2En) for n € Zgs
with Hy, € I*(Zy) such thatH}, = Pj, © Fyvy. From (8) we with © € C¥*<1 is defined as
obtain theDAF matrix A, , € CV*N as 9
i
Aw,y = VN,N{A;,y} = [H(I) H{ H§V—1]N><Na 9 ® = D
with Hj [n] = H,[k]. O
) From (9) and (12), we obtain thBAF matrix of signal
C. DAF Framework Properties modulation A, .y € CN*N as
%

Allow x =y in (3) above. By Theorem 1, then we obtain:
o Translation: Let Ay . € CN**1 such that:

AM, (o} = VN,N{AMM{QE}} = [wo ... wn_1]nxnN, (13)
with wy, = 6, ® HJ.

D. Unified DCD Computational Framework

where ¥ € CV**1, with )
From (4) we may express &, € CV *! as

Yo
L I Cr = %(Fi @ FR)PY (A, 0 ), (14)
YR -1 where F%, is conjugate matrix ofy, ® € CN*x1 as
and«, [n] = eI FI™m, From (9) and (10), we obtain the bo
DAF matrix of signal translatiomMg (.3 € CV*V as d=| : |, émec,
AS_-y{x} = VN,N{A{S',.Y{x}} = [UO uNfl]NxN( ) ¢N—1
11
i ith ¢,n[n] = ¢[n, m] (kernel). We use the Kronecker prod-
th — Yo H! Tons with ¢,,, ,
Vl\;odtjllgtiorqlﬁ'kLit A ‘e ENCN2X1 such that ucts property(fy @ Fy) = (In ® Fy)(Fy ® In), and the
¢ : My {z} commutation theorem of Kronecker products, to express (14)
/]\/Iu{l'} = (IN ® H}L)A’l,z? as

27

: P27 in 1 % 2 % 2 2
whered,, € CV*! with 0,[n] = e/ ¥rm. A}, may  C) = N ® F)PY (In @ FX)PY PY (AL © @)
be expressed also as:

_ 1 * N? * !
Moy iy =00 A, 12 = Iy @ F{) PV (Ix © F{)(4, © ). (15)



VIl. MIMO T IME-FREQUENCYDISPERSIVECHANNELS

From (15), we obtain that thBCD matrix C;, € CV** is This section discusses the potential use of DCDs, in par-
Co =V o {CL1. (16) ticular, the discrete ambiguity function (DAF), to aid ineth

characterization of multiple input multiple output (MIMO)
_ underwater time-frequency dispersive channels, also know
E. DCD Framework Properties as MIMO underwater doubly dispersive channels. In essence,
By Proposition 1, then we obtain the DAF is being used as a signal representation tool for the
characterization of scattering function of MIMO underwate
time-frequency dispersive channels, following the work3.o
! = LIy @ F} )PN2 H. Eggen [19], [20]. We proceed to present an initial matrix
S_{z} NN N+ N (17) .
N model of a MIMO underwater channel using the DAF as a
(In ® FN)(AS, {z} © ). ; ;
y signal representation tool. Thus, we assufe= SP and
From (17), we obtairDCD matrix of signal modulation N = QR, with L, M, N, S, P,Q,R € Zyn, such thatL is

« Translation: Let Cg . € CN**1 such that

Cs_ (2} € CN*N sych that the number of scattering point target¥] is the number of
, transmitter antennasy is the number of receiver antennas,
Cs_\{ay = VN,N{CS_W{m}}' (18) s is the number of transmitter array$, is the number of

antennas for each transmitter arr&yjis the number of receiver

arrays, andy is the number of antennas for each receiver array.

o, P %(IN ® FJ*\‘,)PJ{,VQ (In ® F%) We., first, begin .by considering the S|mpl_e case where t_here is
WAz Y o ) (19) a single transmitter array as well as a single receiver drray

( M, {x} : the MIMO channel configuration.

From (19), we obtairDCD matrix of signal translation
O]\/[“{z} € CN*N as

CJVIM{l’} = VN,N{Cg\/[M{r}}' (20)

« Modulation: Let C, ., € CN*x1 as

MIMO CHANNEL

VI. I MPLEMENTATION RESULTS

All of the discrete time-frequency distributions presehte
in this work, under a new computational signal algebra
framework, where developed using the numeric computation

and graphic visualization software package MATLRB
Special attention was given to the implementation of the f a Yv-nor. X i
pema. _ g p _ _ Ml -2 >0 TNDOLD e Ty
new discrete time-frequency representations presented in

equations (9), (11), (13), (16), (20) and (18). The parallflg. 3

programming environment pMatlab [18] was utilize
during the implementation of these discrete time-freqyenc )
distributions to seek further insight into the paralleluratof ~ Letz,y € C* and 4, , € C*" V" such that

the algorithm formulations. To calculate the stride peation A= (Iyy ® P[I((Z)(IKNM 2 Fr)(X 0 Y) 21)

is usedProposition 2
where X € CIVM sych that

X= || Xpm, XpeCH
N2 T
VN,N{PN ’U} = (VN,N {'U}) meZn
Proof: Let fori,j =1,..., N. Then, with X, = 1xn ® zx, Wherex;, € CK is the transmitting
signal (Figure 3)Y € CKXMN s a vector such that

Underwater Time-Frequency Dispersive ChannelHoe S = 1

Proposition 2: Let v € CN*x1 as (6). Then,

VN.N{U} = [Uo UNfl]NxN

. . Yy = Y., Y., €CEN
But, (VN,N{U})U = Uj[z] = (VNN{U})’Z; = vi[]]' On the |_| <

other hand, meim
UI K2
. 0 Ym = |_| Ynm7 Ynm eC )

PJI\YZ’U = neZn

v

N-1 Yom= || Yk, Yk, ecCk,

with v} [i] = v;[j], for i,j = 1,..., N. Then: k€Zx

where Y [I] = y:,.[(l + k)n], with | € Zg and

Vo n PN 0}y = vili] = il
VAPV )iy = vl = vild] ynm € CK is the signal at the receiver (Figure 3).



MIMO CHANNEL

y(/hll),lll,ﬂ)

Fig. 4. Underwater Time-Frequency Dispersive ChannelHoS € Zyy

We know proceed to discuss the more general MIMO chan-
nel conflguratlon described at the beginning of this section
Let A € CL*NM gych that

A= (Igrsp ® PE ) (Ikqrsp ® Fk)(X ©Y),
where X € CK’NM gych that
X=|]x., X, eCKNr
S€Ls
with ,
= || Xep, XopeCHN,
pPEZLpP

where X, , = lgny ® x5, and 12, € CX is the transmitting
signal (Figure 4); and” € CK*NM js a vector such that

Y = |_| Y:Sa Ys ECKQNP,
s€ls
with ,
}; = LJ };4n Y;p S (y{ N;
pPEZP
with )
Ysp = |_| Yn(&ﬁ)’ Y?”,(S’p) ec” Q’
r€ZR
with
K2
Yoo = L] Yoaoemr  Yeanem €CF
qEZQ
with
k K
Yoorom = L Yooemr  Yoanesm €T
kE€Z K
such that Y(’j el = Yool + k)], where

Yirq).(s.,p) € C* are receivers (Figure 4).
A series of computational steps follows in order to arrive at
the desired result in an algorithmic manner:

Step 1: LetE, € CK*NP such that
2
Es = (Igrp ® PE )(Ikgrp ® Fr)(Xs ® Yy),

thenA = | |

SEZS

Step 2: Let

B =Vi2qrr,s{A} = [Eo ... Es_1]k2Qrpxs-

Step 3: LetD; , € CK*N with

Dy, = (Igr ® PE")(Ixor ® Fi)(Xep © Ys ),

then letC,{ B} = E; such thatEls = | | ;. Ds p.

Step 4: Let
C =Vr2qr,p{Es} = [Dso ... Es p_1)lk2QRxP-
Step 5: LetJ,. (s, € CX°2 with

2
Jrsp) = UqRPE VI q@Fk)(1kQ®2sp)OYr (s.p));

then let C,{C} = D,, such that
DS»P = |—|7‘€ZR Jr,(s,p)-
Step 6: Let

Q = VKZQ,R{Ds,p} = [JO,(s,p) JR—l,(s,p)]KQQXR‘

Step 7: LetG y.q).(s.p) € C with

2
Qera). 5. = Pit (Ik®Fg)(1k®s55)OY (1), (s5.0))s

then let C,{Q} = J,(p Such that
Jr(sp) = Ugezg Gra),(s.m)-

Step 8: Let
W =V o{Jr s} = [Gr0),(s.p) -+ Glr@-1). (s K2 %

. k K \wi
Step 9: LetH(, . ;. € C™ with

H{ ) (o) = Fr (250 O Y ) (05
then let C,{W} = G(q),p Such that
G(T’q)7(5ap) = PII(( I—lkEZK H(k’!‘,q),(s,p)'
Step 10 Let

’

O =V k{G(ra).sp)} = H' sl xc

0
[Hrg),(5.p)

_ 77l
with H o) (o[l = Hiy gy (o K]

Step 11 Thus, with the vector A, the
DAF matrix of x(8,p), Y, q)(s,p),
Apspyrasp € CHOF is obtained of

Aw(&?);?/(hQ)(S,P):
Vi, k {Cq{Vir2,0{Cr{VK20,Rr

{Co{Vi20Rr,PICAVK20RrP,s{A} 1}



VIIlI. CONCLUSION
Dealing with finite length discrete holomorphic signals
This work presented a unifying computational signaljiows for introducing a finite dimensional linear operator
algebra framework for the formulation of discrete COherproach for the treatment of these signals as well as asalys
distributions under the language of Kronecker producﬁgchniqueS using signal tensor algebra. In this contertate
algebra. The work is based on the work of L. Cohegignal processing becomes a subset of signal tensor ajgebra
on the general formulation of continuous time-frequencynich, in turns, is a subset of signal tensor analytics ¢sicg).
distributions. It is also based on the work of M. Richmar];ina”y, some aspects of non-additive divergence measuees
W. Parks and R. Shenoy on discrete-time, discrete-freqtiengeing used to study information functionals in the contefxt o

time-frequency representations. Special attention Wa&8ngi jnformation-based complexity to aid in the linear time \iagy
to the work of R. Tolimieri and L. Auslander on the grouR:hannel identification process.

theoretic properties of the ambiguity function as well as th
work of J. J. Benedetto and J. J. Donatelli on vector-valued
ambiguity functions.
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