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Abstract—This work seeks to extend the study of the general
class of L. Cohen’s two dimensional distributions from the space
L

2(R×R) to the spacel2(ZN×ZN ). This is accomplished by for-
mulating a computational signal algebra framework which allows
the analysis and design of efficient algorithms for discrete Cohen
distributions (DCDs). The problem has been addressed following
techniques developed by L. Cohen centered on the use of the
ambiguity function as an entity generator in the formulation of
two dimensional continuous distributions. Kronecker products
algebra (KPA) was used as the mathematical language for the
formulation of all the DCD computational algorithms.

Index Terms—Discrete Cohen Distribution, Ambiguity Func-
tion, Time-Frequency Representation, Kronecker Products Alge-
bra, pMatlab.

I. I NTRODUCTION

In 1953, P.M. Woodward developed the concept of ambigu-
ity function. The ambiguity function (AF) plays an important
role in many applications dealing with the analysis of non-
stationary signals [1], [2]. It is finding new roles in appli-
cations such as the joint time-frequency analysis of multiple
input multiple output (MIMO) doubly dispersive channels and
phase-coded waveform design for orthogonal frequency divi-
sion multiplexing (OFDM) radar sensing and communications.
L. Cohen developed the general representation of a signal in
continuous time and frequency (two dimensional distribution)
calling it “general class” (GC).

This work is presented as follows: In Section II, we provide
a review of the continuous ambiguity function and the general
class of Cohen distributions. In Section III, we define the
discrete ambiguity function (DAF) and formulate a general
class of discrete Cohen distributions (DCDs). In Section IV,
we present some properties for the DAF and the DCD. In
Section V, we develop a matrix notation to describe algorithm
formulations of the DAF and the DCD using Kronecker
products algebra. Finally, in Section VI, we present some
implementation results.

II. CONTINUOUS AMBIGUITY FUNCTIONS AND THE

GENERAL CLASS OFCOHEN DISTRIBUTIONS

The continuous ambiguity functionof x, y ∈ L2(R) is
defined as a mapAx,y : R× R → L2(R× R) given by

Ax,y(τ, ν) = eiπντ
∫

x (t+ τ) y∗ (t) ej2πνtdt. (1)
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In the case whenx = y,Ax,y becomesAx. L. Cohen [3], [4]
developed the concept of ageneral classfor two dimensional
distributions. As described by L. Cohen, all time-frequency
representations, forx ∈ L2(R), can be obtained from the
canonical mapCx : R× R → L2(R× R) expressed as

Cx(t, ω) =

∫ ∫

Ax(τ, η)φ(τ, η)e
−j2π(tη+ωτ) dη dτ, (2)

where the functionφ ∈ L2(R×R) is termed the kernel of the
representation. Previous studies have been conducted for the
general class of two dimensional distributions using specific
kernel functions. Some known kernel functions are presented
in Table 1.

Distribution φ(τ, θ) φ(τ, η)
Wigner 1 1

Margenau - Hill cos (τθ/2) cos (πτη)

Kirwood-Rihanzek e−τθ/2 e−τπη

Born - Jordan
sin(τθ/2)

τθ/2
sin(πτη)

πτη

Choi - Williams e−α(τθ)2 e−4α(πτη)2

Zhao-Atlas-Marks e−ατ2
|τ |

sin(αθτ)
αθτ

e−ατ2
|τ |

sin(2παητ)
2παητ

Table 1: Commonly Known Kernel Functions

III. D ISCRETEAMBIGUITY FUNCTIONS (DAF) AND

DISCRETECOHEN DISTRIBUTIONS (DCD)

In [5], M. Richman, et al., presented a discrete for-
mulation for the expression given in (1). This new ex-
pression is called thediscrete ambiguity function(DAF).
The DAF, for x, y ∈ l2(ZN ), defined by the map
Ax,y : ZN × ZN → l2(ZN × ZN ) given by

Ax,y[τ, ν] = ρτ,ν

N−1
∑

l=0

x[〈l + τ〉N ]y∗[l]ej
2π
N

νl, (3)

where the expressionρτ,ν is defined in [5]. M. Richman, et al.,
proceeded to use finite dimensional linear operators to arrive
at an operator formulation of the DAF. The procedure is as
follows:

For x ∈ l2(ZN ), γ, µ ∈ Z and n ∈ ZN , we define the
following linear operators:

• Translation: Sγ{x}[n] = x[〈n+ γ〉N ]
• Modulation: Mµ{x}[n] = ej

2π
N

µnx[n]

For x, y ∈ l2(ZN ), 〈x, y〉 denotes their inner product and is
given by 〈x, y〉 =

∑

n∈ZN
x[n]y∗[n]. Using these definitions,

the operator formulation for the DAF follows from (3):



Ax,y[τ, ν] = ρτ,υ〈Mυ{Sτ{x}}, y〉.

This operator formulation of DAF has served as a point
of inspiration to develop or general class of discrete Cohen
distributions (DCD), expressed in canonical form in the fol-
lowing manner: forx ∈ l2(ZN ), as the mapCx : ZN ×ZN →
L2(ZN × ZN ) as

Cx[n, k] =
1
N

N−1
∑

τ=0

N−1
∑

ν=0

ρτ,υ〈Mυ{Sτ{x}}, x〉

·φ[τ, ν]e−j
2π
N (nν+kτ),

(4)

where φ is the kernel inl2(ZN ). When φ[τ, υ] = 1, for
τ, υ ∈ ZN , the DCD reduces to the discrete Wigner distri-
bution (DWD) as defined in [5].

LetF : ZN×ZN → l2(ZN×ZN ) be the symmetric discrete
Fourier transform in two dimensions (2D); then, (4) defines
the symmetric discrete Fourier transform, in 2D, of productof
DAF and the kernel [5], i.e.

Cx[n, k] = F{Ax · φ}[k, n] (5)

IV. RELATING DAF AND DCD OPERATIONS

The concept of the discrete Cohen distributions of a signal
was introduced in the previous section through equation (4).
In this section we formulate properties of the DCD based
on J. J. Benedetto and J. J. Donatelli [6], who presented
the following theorem for the DAF of a signal after being
effected by translation, modulations, and rotations operators.
We first introduce the definition of the rotation operator: For
x ∈ l2(ZN ), λ ∈ C, with |λ| = 1, andn ∈ ZN , the rotation
operatorRλ{x} is defined as

Rλ{x}[n] = λx[n]

The translationS−γ{x} and modulationMµ{x} operators
were defined in the previous section.

Theorem 1:Let x ∈ l2(ZN ), γ, µ, λ ∈ Z, with|λ| = 1, and
τ, ν ∈ ZN :

1) AS−γ{x}[τ, ν] = e−j 2π
N

γνAx[τ, ν]

2) AMµ{x}[τ, ν] = ej
2π
N

µτAx[τ, ν]
3) ARλ{x}[τ, ν] = Ax[τ, ν]

From Theorem 1, and (5), we obtain the following
proposition:

Proposition 1: Let x ∈ l2(ZN ) andγ, µ, λ, n, k ∈ ZN , with
|λ| = 1:

1) CS−γ{x}[n, k] = Cx[〈n+ γ〉N , k]
2) CMµ{x}[n, k] = Cx[n, 〈k − µ〉N ]
3) CRλ{x}[n, k] = Cx[n, k]

V. DCD COMPUTATIONAL FRAMEWORKS

This section presents a new computational signal algebra
framework for the development of discrete Cohen distributions
prevalent in diverse applied mathematical and signal process-
ing applications [7], [8], [9], [10], [11], [12].

The sections starts with some basis concepts and definitions
from Kronecker products algebra (KPA) [13], [14], [15], a
branch of finite dimensional multi-linear algebra, used as the
mathematical language to formulate the DCDs. This section,
then, continues with the formulation of a computational signal
algebra framework for the discrete ambiguity function (DAF).
Finally, the section ends with a general Kronecker products
based formulation of DCDs under a unifying computational
framework.

A. Basic Concepts

The Kronecker productof two matrixA ∈ C
N×N andB ∈

C
M×M is A⊗B ∈ C

NM×NM such that:

A⊗B =







a
11
B · · · a

1N
B

... · · ·
...

a
N1
B · · · a

NN
B






.

The Hadamard productof two matricesA,B ∈ C
N×N is

A⊙B ∈ C
N×N such that:(A⊙B)i,j = Ai,j ·Bi,j .

Let N =ML.
• We define theN-point stride M permutation matrixPN

L ∈
C

N×N by the rulePN
L (a⊗ b) = b⊗ a for a ∈ C

M and
b ∈ C

L. Also, PN
L P

N
L = IN .

• The commutation theorem of Kronecker productses-
tablishes that ifA ∈ C

M×M and B ∈ C
L×L, then

A⊗B = PN
M (B ⊗A)PN

L .
The reshape operator[16] is the linear transformation

V
N,M

: CNM×1 → C
N×M such that forv ∈ C

N×M :

v =







v
0

...
v
M−1






, v

k
∈ l2(ZN ), (6)

we obtainV
N,M

{v} = [v
0
... v

M−1
]N×M .

B. DAF Computational Framework

From (3), we obtainA′
x,y ∈ C

N2×1 as

A′
x,y = PN2

N (P ⊙ [IN ⊗ FN ] v), (7)

where PN2

N ∈ R
N2×N2

is a stride byN permutation,
FN ∈ C

N×N is the finite Fourier transform matrix [17], i.e.,
(FN )m,n = ej

2π
N

mn, P ∈ C
N2×1 is defined as

P =







P0

...
PN−1






, Pk ∈ C

N×1,

with Pk[n] = ρk,n, andv ∈ C
N2×1 is defined as

v =







v0
...

vN−1






, vk ∈ C

N×1;

such thatvk[n] = x[〈n+ k〉N ]y∗[n], for k, n ∈ ZN . Then,
from (7), we obtain:

A′
x,y = PN2

N







H0

...
HN−1






, (8)



(a)

(b)

Fig. 1. Discrete Ambiguity Function of signalx[n] = cos( 2π
5
n
)

for
n ∈ Z63

with Hk ∈ l2(ZN ) such thatHk = Pk ⊙ FNvk. From (8) we
obtain theDAF matrixAx,y ∈ C

N×N as

Ax,y = V
N,N

{A′
x,y} = [H ′

0 H
′
1 ... H

′
N−1]N×N , (9)

with H ′
k[n] = Hn[k] .

C. DAF Framework Properties

Allow x = y in (3) above. By Theorem 1, then we obtain:
• Translation: Let A′

S−γ{x}
∈ C

N2×1 such that:

A′
S−γ{x}

= Ψ⊙A′
x, (10)

whereΨ ∈ C
N2×1, with

Ψ =







ψγ
0
...

ψγ
N−1






, ψγ

m ∈ C
N×1,

andψγ
m[n] = e−j 2π

N
γm. From (9) and (10), we obtain the

DAF matrix of signal translationAS−γ{x} ∈ C
N×N as

AS−γ{x} = V
N,N

{A′
S−γ{x}

} = [u0 ... uN−1]N×N ,
(11)

with uk = ψγ
k ⊙H ′

k, k ∈ ZN .
• Modulation: Let A′

Mυ{x}
∈ C

N2×1 such that

A′
Mµ{x}

= (IN ⊗ θµ)A
′
x,

whereθµ ∈ C
N×1 with θµ[n] = ej

2π
N

µn. A′
Mµ{x}

may
be expressed also as:

A′
Mµ{x}

= Θ⊙A′
x, (12)

(a)

(b)

Fig. 2. Discrete Cohen Distribution (Wigner Distribution) of signal
x[n] = cos( 2π

3
n
)

for n ∈ Z63

with Θ ∈ C
N2×1 is defined as

Θ =







θµ
...
θµ






,

From (9) and (12), we obtain theDAF matrix of signal
modulationAMµ{x} ∈ C

N×N as

AMµ{x} = V
N,N

{A′
Mµ{x}

} = [w0 ... wN−1]N×N , (13)

with wk = θµ ⊙H ′
k.

D. Unified DCD Computational Framework

From (4) we may express asC ′
x ∈ C

N2×1 as

C ′
x = 1

N (F ∗
N ⊗ F ∗

N )PN2

N (A′
x ⊙ Φ), (14)

whereF ∗
N is conjugate matrix ofFN , Φ ∈ C

N2×1 as

Φ =







φ0
...

φN−1






, φm ∈ C

N×1,

with φm[n] = φ[n,m] (kernel). We use the Kronecker prod-
ucts property(F ∗

N ⊗ F ∗
N ) = (IN ⊗ F ∗

N )(F ∗
N ⊗ IN ), and the

commutation theorem of Kronecker products, to express (14)
as

C ′
x =

1

N
(IN ⊗ F ∗

N )PN2

N (IN ⊗ F ∗
N )PN2

N PN2

N (A′
x ⊙ Φ)

=
1

N
(IN ⊗ F ∗

N )PN2

(IN ⊗ F ∗
N )(A′

x ⊙ Φ). (15)



From (15), we obtain that theDCD matrixCx ∈ C
N×N is

Cx = V
N,N

{C ′
x}. (16)

E. DCD Framework Properties

By Proposition 1, then we obtain

• Translation: Let C ′
S−γ{x}

∈ C
N2×1 such that

C ′
S−γ{x}

= 1
N (IN ⊗ F ∗

N )PN2

N

·(IN ⊗ F ∗
N )(A′

S−γ{x}
⊙ Φ).

(17)

From (17), we obtainDCD matrix of signal modulation
CS−γ{x} ∈ C

N×N such that

CS−γ{x} = V
N,N

{C ′
S−γ{x}

}. (18)

• Modulation: Let C ′
Mµ{x}

∈ C
N2×1 as

C ′
Mµ{x}

= 1
N (IN ⊗ F ∗

N )PN2

N (IN ⊗ F ∗
N )

·(A′
Mµ{x}

⊙ Φ).
(19)

From (19), we obtainDCD matrix of signal translation
CMµ{x} ∈ C

N×N as

CMµ{x} = V
N,N

{C ′
Mµ{x}

}. (20)

VI. I MPLEMENTATION RESULTS

All of the discrete time-frequency distributions presented
in this work, under a new computational signal algebra
framework, where developed using the numeric computation
and graphic visualization software package MATLABR©.
Special attention was given to the implementation of the
new discrete time-frequency representations presented in
equations (9), (11), (13), (16), (20) and (18). The parallel
programming environment pMatlab [18] was utilized
during the implementation of these discrete time-frequency
distributions to seek further insight into the parallel nature of
the algorithm formulations. To calculate the stride permutation
is usedProposition 2:

Proposition 2: Let v ∈ C
N2×1, as (6). Then,

V
N,N

{PN2

N v} = (V
N,N

{v})T

Proof: Let for i, j = 1, ..., N . Then,

V
N,N

{v} = [v
0
... v

N−1
]N×N

But, (V
N,N

{v})ij = vj [i] ⇒ (V
N,N

{v})Tij = vi[j]. On the
other hand,

PN2

N v =







v′
0

...
v′
N−1

,







with v′j [i] = vi[j], for i, j = 1, ..., N . Then:

(V
N,N

{PN2

N v})ij = v′j [i] = vi[j]

VII. MIMO T IME-FREQUENCYDISPERSIVECHANNELS

This section discusses the potential use of DCDs, in par-
ticular, the discrete ambiguity function (DAF), to aid in the
characterization of multiple input multiple output (MIMO)
underwater time-frequency dispersive channels, also known
as MIMO underwater doubly dispersive channels. In essence,
the DAF is being used as a signal representation tool for the
characterization of scattering function of MIMO underwater
time-frequency dispersive channels, following the works of T.
H. Eggen [19], [20]. We proceed to present an initial matrix
model of a MIMO underwater channel using the DAF as a
signal representation tool. Thus, we assumeM = SP and
N = QR, with L,M,N, S, P,Q,R ∈ ZMN, such thatL is
the number of scattering point targets,M is the number of
transmitter antennas,N is the number of receiver antennas,
S is the number of transmitter arrays,P is the number of
antennas for each transmitter array,R is the number of receiver
arrays, andQ is the number of antennas for each receiver array.
We, first, begin by considering the simple case where there is
a single transmitter array as well as a single receiver arrayin
the MIMO channel configuration.

Fig. 3. Underwater Time-Frequency Dispersive Channel forR = S = 1

Let x, y ∈ CK andAx,y ∈ C
K2NM such that

A = (INM ⊗ PK2

K )(IKNM ⊗ FK)(X ⊙ Y ) (21)

whereX ∈ C
LNM such that

X =
⊔

m∈ZM

Xm, Xm ∈ C
LN

with Xk = 1KN ⊗ xk, wherexk ∈ C
K is the transmitting

signal (Figure 3),Y ∈ C
KMN is a vector such that

Y =
⊔

m∈ZM

Ym, Ym ∈ C
K2N ,

Ym =
⊔

n∈ZN

Ynm, Ynm ∈ C
K2

,

Ynm =
⊔

k∈ZK

Y k
nm, Y k

nm ∈ C
K ,

where Y k
nm[l] = y∗nm[〈l + k〉N ], with l ∈ ZK and

ynm ∈ C
K is the signal at the receiver (Figure 3).



Fig. 4. Underwater Time-Frequency Dispersive Channel forR,S ∈ ZMN

We know proceed to discuss the more general MIMO chan-
nel configuration described at the beginning of this section.

Let A ∈ C
L2NM such that

A = (IQRSP ⊗ PK2

K )(IKQRSP ⊗ FK)(X ⊙ Y ),

whereX ∈ C
K2NM such that

X =
⊔

s∈ZS

Xs, Xs ∈ C
K2NP ,

with
Xs =

⊔

p∈ZP

Xs,p, Xs,p ∈ C
K2N ,

whereXs,p = 1KN ⊗ xs,p andxs,p ∈ C
K is the transmitting

signal (Figure 4); andY ∈ C
K2NM is a vector such that

Y =
⊔

s∈ZS

Ys, Ys ∈ C
K2NP ,

with
Ys =

⊔

p∈ZP

Ys,p, Ys,p ∈ C
K2N ,

with
Ys,p =

⊔

r∈ZR

Yr,(s,p), Yr,(s,p) ∈ C
K2Q,

with

Yr,(s,p) =
⊔

q∈ZQ

Y(r,q),(s,p), Y(r,q),(s,p) ∈ C
K2

,

with

Y(r,q),(s,p) =
⊔

k∈ZK

Y k
(r,q),(s,p), Y k

(r,q),(s,p) ∈ C
K ,

such that Y k
(r,q),(s,p)[l] = y∗(r,q),(s,p)[〈l + k〉K ], where

y(r,q),(s,p) ∈ C
K are receivers (Figure 4).

A series of computational steps follows in order to arrive at
the desired result in an algorithmic manner:

Step 1 : LetEs ∈ C
K2NP such that

Es = (IQRP ⊗ PK2

K )(IKQRP ⊗ FK)(Xs ⊙ Ys),

thenA =
⊔

s∈ZS
Es.

Step 2 : Let

B = VK2QRP,S{A} = [E0 ... ES−1]K2QRP×S .

Step 3 : LetDs,p ∈ C
K2N with

Ds,p = (IQR ⊗ PK2

K )(IKQR ⊗ FK)(Xs,p ⊙ Ys,p),

then letCs{B} = Es such thatEs =
⊔

p∈ZP
Ds,p.

Step 4 : Let

C = VK2QR,P {Es} = [Ds,0 ... Es,P−1)]K2QR×P .

Step 5 : LetJr,(s,p) ∈ C
K2Q with

Jr,(s,p) = (IQ⊗P
K2

K )(IKQ⊗FK)((1KQ⊗xs,p)⊙Yr,(s,p)),

then let Cp{C} = Ds,p such that
Ds,p =

⊔

r∈ZR
Jr,(s,p).

Step 6 : Let

Q = VK2Q,R{Ds,p} = [J0,(s,p) ... JR−1,(s,p)]K2Q×R.

Step 7 : LetG(r,q),(s,p) ∈ C
K2

with

Q(r,q),(s,p) = PK2

K (IK⊗FK)((1K⊗xs,p)⊙Y(r,q),(s,p)),

then let Cp{Q} = Jr,(s,p) such that
Jr,(s,p) =

⊔

q∈ZQ
G(r,q),(s,p).

Step 8 : Let

W = VK2,Q{Jr,(s,p)} = [G(r,0),(s,p) ... G(r,Q−1),(s,p)]K2×Q

Step 9 : LetHk
(r,q),(s,p) ∈ C

K with

Hk
(r,q),(s,p) = FK(xs,p ⊙ Y k

(r,q),(s,p)),

then let Cp{W} = G(r,q),(s,p) such that
G(r,q),(s,p) = PK2

K

⊔

k∈ZK
Hk

(r,q),(s,p).

Step 10: Let

O = VK,K{G(r,q),(s,p)} = [H
′0
(r,q),(s,p) ... H

′K−1
(r,q),(s,p)]K×K .

with H
′k
(r,q),(s,p)[l] = H l

(r,q),(s,p)[k].

Step 11: Thus, with the vector A, the
DAF matrix of x(s, p), y(r, q)(s, p),
Ax(s,p),y(r,q)(s,p) ∈ C

K,K is obtained of
Ax(s,p),y(r,q)(s,p)=

VK,K{Cq{VK2,Q{Cr{VK2Q,R

{Cp{VK2QR,P {Cs{VK2QRP,S{A}}}}}}}}}.



VIII. C ONCLUSION

This work presented a unifying computational signal
algebra framework for the formulation of discrete Cohen
distributions under the language of Kronecker products
algebra. The work is based on the work of L. Cohen
on the general formulation of continuous time-frequency
distributions. It is also based on the work of M. Richman,
W. Parks and R. Shenoy on discrete-time, discrete-frequency,
time-frequency representations. Special attention was given
to the work of R. Tolimieri and L. Auslander on the group
theoretic properties of the ambiguity function as well as the
work of J. J. Benedetto and J. J. Donatelli on vector-valued
ambiguity functions.

As part of future works associated with the results
presented on this article, we contemplate the formulation of
a holomorphic oriented geometric signal algebra framework
for non-Abelian signal-based information processing for
underwater communication signal processing applications.
This proposed geometric signal algebra framework intends to
shed new insights and understanding of how to characterize
information flow from MIMO underwater communication
systems, envisioned here as physical resources, to what
has been termed the underwater cyberspace infosphere
(UCI), namely, all the computational infrastructure and
informational resources available in cyberspace for underwater
surveillance monitoring under a cyber-physical systems
setting. Along these lines, the proposed work deals with the
acquisition of sensor-based underwater signals from spatially
distributed observable entities, in a generalized observational
environment.

This proposed geometric signal algebra framework tries
to inquire into a new modality for the treatment of theses
sensor-based signals in order to seek understanding of how
to combine syntactical and structural methods for underwater
signal description, such as space-time and time-frequency
representations, with semantics and semiotic aspects of the
signals, resulting in a new signal representation paradigm.
Holomorphic signals, linear operator mappings, manifolds,
and tensor fields are used as functional primitives or basic
atoms for the structural foundation of the proposed geometric
signal algebra framework.

A preliminary approach at this geometric signal algebra
framework deals with treatment of syntactic and semantic
information associated a given underwater signal model. The
syntactic information is manipulated in finite dimensional
multi-linear signal algebra spaces where space-time and
time-frequency representations become vector entities. The
semantic information is explored by retrieving qualitative
and quantitative information of these vector entities when
embedded in smooth manifolds. A first attempt at linking
syntactic and semantic information is being made by
restricting the type of underwater signals to multi-component
polynomial phase type signals which can then be modeled as
holomorphic signals.

Dealing with finite length discrete holomorphic signals
allows for introducing a finite dimensional linear operator
approach for the treatment of these signals as well as analysis
techniques using signal tensor algebra. In this context, tensor
signal processing becomes a subset of signal tensor algebra,
which, in turns, is a subset of signal tensor analytics (sigtetics).
Finally, some aspects of non-additive divergence measuresare
being used to study information functionals in the context of
information-based complexity to aid in the linear time varying
channel identification process.
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