FPGA-based Discrete Ambiguity Function for Stochastic Linear Time-Variant Channels

D. Márquez, A. Polo, D. Rodríguez, & M. Jiménez

Electrical & Computer Engineering Department University of Puerto Rico at Mayagüez Mayagüez, PR 00680

> MWSCAS 2012 Aug 7, 2012

Outline

Justification

- Stochastic Linear Time-Variant Channels (LTVC)
 - Characterization using the Discrete Ambiguity Function (DAF)
- DAF Formulation & Implementation
- FPGA Implementation Results
- Conclusions

Justification

The Discrete Ambiguity Function (DAF)

- Instrumental for the characterization of the scattering function of randomly time-varying linear underwater acoustic channels (UWACs).
- The scattering function is used to model the delay-Doppler spread function.
- This work presents a novel signal processing algorithm framework for the FPGA implementation of the DAF.

Stochastic Linear Time-Variant Channels

The parameters τ_1 , f_1 describe the state of an stochastic LTV channel at an specific instant of time.

The parameters τ_1 , f_1 are estimated through the maximum of the expression:

$$A_{x,y}(t,f) = \int_{-\infty}^{+\infty} x(t)y^*(t+\tau)e^{-j2\pi ft}$$

Stochastic LTV Channels Characterization

Discrete Ambiguity Function (DAF) Characterization

$$A: l^2(Z_N) \times l^2(Z_N) \to l^2(Z_N \times Z_N)$$

 $(F,G) \to A(F,G)$

where,

$$A_{(F,G)}[m,k] = \sum_{n \in \mathbb{Z}_N} F[n] G^*[\langle n+m \rangle_N] e^{-j2\pi kn/N}; m,k \in \mathbb{Z}_N$$

DAF Implementation Formulation

$$\mathcal{A}_{f,g}[m,k] = \sum_{n \in Z_N} f[n] g^* [\langle n+m \rangle_N] e^{-j\frac{2\pi}{N}kn}$$

$$\mathcal{A}_{f,g}[m,k] \Leftrightarrow (I_N \otimes F_N) v$$

$$= \begin{bmatrix} F_N & & \\ & \ddots & \\ & & F_N \end{bmatrix}_{N^2 \times N^2} \begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_{N-1} \end{bmatrix}_{N^2 \times 1} = \begin{bmatrix} F_N h_0 \\ F_N h_1 \\ \vdots \\ F_N h_{N-1} \end{bmatrix}_{N^2 \times 1} = \begin{bmatrix} H_0 \\ H_1 \\ \vdots \\ H_{N-1} \end{bmatrix}_{N^2 \times 1}$$

$$(I_N \otimes F_N) v \to \begin{bmatrix} H_0 & H_1 & \dots & H_{N-1} \end{bmatrix}_{N \times N} = \mathcal{A}_{f,g}[m,k]$$

$$\text{Let } h_m [n] = f[n] g^* [\langle n+m \rangle_N] = v$$

$$\text{Then, } \mathcal{A}_{f,g}[m,k] = \sum_{n \in Z_N} h_m [n] W_N^{kn}, \text{ where } W_N^{kn} = e^{-j\frac{2\pi}{N}kn}$$

Algorithm for the DAF Implementation

DAF Implementation in System Generator

Institute for Computing and Informatics Studies

Proposed FFT for the DAF Computation

Proposed FFT in System Generator for DAF Computation

FFT

Set of BlackBox for proposed FFT Xilinx System Generator for DSP

Integrated Hardware/Software Approach

LATENCY CYCLES FOR DAF USING XILINX FFT VS PROPOSED FFT				
Number of Points	DAF-Xilinx FFT	DAF-proposed FFT	Improvement %	
128	717	650	9.34	
256	1,415	1,363	3.67	
512	3,011	2,908	3.42	
1024	6,359	6,245	1.79	
2048	13,547	13,422	0.92	
4096	28,939	28,791	0.51	
8192	61,728	61,568	0.26	
16384	131,380	131,250	0.10	
32768	278,860	278,670	0.07	

COMPUTATION CYCLES FOR DAF USING XILINX FFT VS PROPOSED FFT				
Number of Points	DAF-Xilinx FFT	DAF-proposed FFT	Improvement %	
128	106,382	90,503	14.93	
256	424,206	379,911	10.44	
512	1,796,622	1,616,391	10.03	
1024	7,545,870	6,912,007	8.40	
2048	31,909,902	29,571,079	7.33	
4096	135,254,030	126,287,879	6.63	
8192	572,702,730	537,837,578	6.09	
16384	2,420,834,312	2,283,176,024	5.69	
32768	10,210,902,032	9,668,460,540	5.31	

Number of Points

Number of Points

Institute for Computing and Informatics Studies

Conclusions

- The potential use of DAFs, to aid in the characterization of multiple input multiple output underwater time-frequency dispersive channels, also known as MIMO underwater doubly dispersive channels was demonstrated.
- An FPGA DAF implementation was described, comparing design results using Xilinx's FFT and a proposed scalable Pease's FFT. The results show a performance advantage of the scalable FFT DAF implementation over the DAF implementation using the Xilinx's FFT IP core.

