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Abstract We present an algorithmically-aware, high-
level partitioning methodology for discrete cosine
transforms (DCT) targeted to distributed hardware ar-
chitectures. The methodology relies on the exploration
of alternate DCT formulations as part of the partition
optimization process. To the best of our knowledge,
no previously proposed DCT algorithm exists that is
capable of consistently producing alternate regular for-
mulations for an n-size DCT. Hence, a new Cooley-
Tukey-like DCT factorization algorithm was developed
to allow exploration of alternate formulations as part
of the partitioning optimization process. The use of
our factorization mechanism along with a greedy strat-
egy to explore the space of equivalent DCT formu-
lations yielded partitioning solutions with as much as
18% reduction in latency and 83% reduction in run-
time as compared to previously proposed regular DCT
formulations.

R. A. Arce-Nazario (B)
Department of Physics and Electronics,
University of Puerto Rico, Humacao Campus,
Humacao 00681-4300, Puerto Rico
e-mail: rafael.arce@upr.edu

M. Jiménez · D. Rodríguez
Electrical and Computer Engineering Department,
University of Puerto Rico, Mayagüez Campus,
Mayagüez 00681-5000, Puerto Rico

M. Jiménez
e-mail: mjimenez@ece.uprm.edu

D. Rodríguez
e-mail: domingo@ece.uprm.edu

Keywords Discrete cosine transforms · Distributed
hardware architecture · Partitioning methodology

1 Introduction

The discrete cosine transform (DCT) is an essential
component in many current multimedia compression
algorithms such as MPEG and JPEG. Most literature
for the hardware implementation of the DCT concen-
trates on the 8-point one-dimensional and the 8 × 8
two-dimensional transforms, since they are widely used
in multimedia applications [1, 2]. The hardware den-
sity of current FPGAs allows the implementation of
small to moderate DCT sizes within a single device,
while meeting some performance criteria. As with other
widely used transforms, meeting performance require-
ments for larger DCTs frequently requires implementa-
tion onto distributed hardware architectures (DHAs),
such as multi-FPGA boards. In these situations, a sys-
tematic partitioning method is needed to effectively
map the DCT functionality across the devices of a
distributed architecture.

Several general-purpose partitioning methodologies
for DHAs have been proposed [3–5]. They commonly
use discrete signal transforms (DSTs) such as the DFT
and DCT as benchmarks. Nevertheless, they treat these
transforms as just any other algorithm, missing the
opportunity to use algorithmic level properties and par-
ticular graph features (e.g. regularity) that are typical
of DSTs. We have developed a methodology called
DST mapping using algorithmic and graph interaction
and computation (DMAGIC) for partitioning DSTs to
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DHAs that uses DST features to improve exploration
time and partitioning results. DST-features are intro-
duced in two abstraction levels as part of our method-
ology: at the graph level and the algorithmic-level. At
the graph partitioning level, a series of DST-specific
structural considerations are proposed and evaluated
to improve the graph partitioning heuristic. At the
algorithm-level, an equivalent formulation exploration
is conducted in search of formulations that are more
suitable to the target topology. Partitioning schemes
based on algorithmic-level reformulations have been
successfully applied on the Fast Fourier Transform
(FFT), using the Cooley-Tukey (CT) factorization rule
to obtain alternate formulations [6]. These exploit
the regularity of FFTs to devise efficient partitioning
schemes. These methods, however, do not necessar-
ily apply to the DCT due to its less regular struc-
ture and the lack of CT-like rules to generate regular
formulations.

In order to extend formulation-exploration strate-
gies to DCTs, a new systematic way of obtaining reg-
ular DCT formulations must be devised. To this end,
we studied several regular DCT formulations and an-
alyzed their potential for distributed implementation.
This analysis resulted in the development of a factor-
ization of Nikara’s perfect shuffle DCT (NPS-DCT)
formulation [1] that can be used to explore alternate
DCT algorithms. The use of this new factorization
allowed DMAGIC to obtain results with over 21%
latency improvement as compared to the best among
the previously existing formulations.

In this paper, we present an overview of the
DMAGIC methodology, highlighting the considera-
tions that make it effective for the partitioning of DSTs
to DHAs. The need for a regular factorization DCT
scheme is justified within the context of the method-
ology. Then, the studied regular DCT formulations are
reviewed with emphasis on their advantages for distrib-
uted implementation. This is followed by the derivation
of the new regular factorization method. Finally, the
results of using the new factorization method within the
DMAGIC methodology are compared against existing
DCT regular formulations.

2 A Generalized DST Partitioning Methodology

Figure 1 shows a conceptual map of the proposed
partitioning methodology, called DMAGIC. The in-
puts on the top are a DST specified as a Kronecker
Products Algebra formulation, parameterized at least
by the resolution of its points, and a high-level spec-

Figure 1 Block diagram for the DMAGIC methodology.

ification of the target architecture, which includes the
number and logic capacity of the devices and their
connection topology. The Kronecker to Graph process
converts the algorithmic formulation into a dataflow
graph (DFG) whose nodes denote functional prim-
itives, i.e. small computational components that are
common throughout the formulation and have been
identified as efficient procedures on the target devices.
The DFG is partitioned using a deterministic graph par-
titioning/placement heuristic that has been enhanced
to handle DST structures. The quality of results from
the partition/placement (P/P) process is used by a
heuristic formulation-exploration engine to guide ex-
ploration onto further formulations. Based on the parti-
tioning results of the current formulation, factorization
rules are used to generate a new formulation, which,
hopefully, improves the previous results. The conver-
sion/partitioning/reformulation process continues until
no considerable improvements are detected, at which
point the methodology outputs the best P/P scheme
encountered obtained throughout the exploration.

Two main aspects distinguish the proposed method-
ology as being specially oriented for DSTs. First, a
series of DST-structure aware considerations have been
incorporated into the partitioning/placement heuristic.
These considerations help the partitioning/placement
heuristic to conduct a faster exploration and maintain
the regularity of the original expression, thus obtaining
results that can be efficiently mapped onto hardware
structures [6, 7]. Second, the methodology uses rules
specific to the particular DST at hand to conduct an ex-
ploration of alternate formulations that might be more
suitable for partitioning to the given topology. In this
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sense, DSTs have an advantage over other algorithms,
since they a have considerable amount of properties to
be used for such purposes.

2.1 Graph P/P Process

DMAGIC’s P/P algorithm, KL-H, is a k-way parti-
tion heuristic for heterogeneous-channel topologies [6].
Given that communication channels typically represent
the most constrained resource in DHAs, the objective
of this algorithm is to best distribute communications
among the available channels, while minimizing the
amount of communications. KL-H complements the
basic Kernighan-Lin bipartition heuristic with several
considerations derived from DST flow-graph character-
istics, in an effort to improve optimization convergence
and solution quality. The following are the three funda-
mental considerations:

1) Linear partitioning: Fast DST algorithms have tra-
ditionally been partitioned vertically or horizon-

tally because of the regularity of their dataflow and
inter-stage data dependence [2, 8]. Vertical parti-
tioning maps computation as in architectural-level
pipelines, where one or more complete DST com-
putational stages are assigned to each hardware
device. In horizontal partitioning, each device car-
ries out all stages of computation for a data subset,
similar to single-instruction-multiple-data (SIMD)
processing. A pipeline implemented onto a DHA
requires all data points to cross all inter-device
communication channels. On the other hand, in a
SIMD scheme, even a naïve linear partitioning can
reduce data communications requirements in half.
These two situations are illustrated in Fig. 2.
For the sake of simplicity, assume that a 16-point
FFT is being partitioned to an architecture con-
sisting of 4 FPGAs connected in a linear array
topology with width of 1 data point and with a
crossbar serving as a common connection, as shown
in Fig. 2a. Assume also that each FPGA is capable

Figure 2 Comparison of vertical and horizontal partition schemes. a Target architecture. b Vertical partition scheme. c Horizontal
partition scheme.
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Algorithm 1 Produce linear horizontal partitions.

Input: DFG G = (V, E, fL) , k: the number of
partitions
Output: Horizontal linear partition {Q0, Q1, .., Qk−1},
where Qi ∈ V and Q0 ∪ Q1 ∪ . . . ∪ Qk−1 = V
1. Q0 ← ∅, Q1 ← ∅, . . . Qk−1 ← ∅
2. For every computational column C ∈ V

2.1. Sort v ∈ C in order of increasing node levels
( fL (v)).

2.2. WCC = ∑

c∈C
w(c)

2.3. Determine indexes (p0, . . . , pk−2) such that
p0∑

i=0
w(ci)≈

p1∑

i=p0+1
w(ci)≈ . . .≈

|C|−1∑

i=pk−2+1
w(ci)≈ WCC

k

2.4. Q0 = Q0 ∪
p0⋃

i=0
ci, Q1 = Q1 ∪

p1⋃

i=p0+1
ci, . . . ,

Qk−1 = Qk−1 ∪
|C|−1⋃

i=pk−2+1
ci

3. End For

of implementing one butterfly-multiplication (BM)
kernel and the necessary permutation logic. A ver-
tical partition, illustrated in Fig. 2b will vertically
fold each computational column into the instanced
BM kernel. A horizontal partition will fold the two
rows assigned to each device into an instanced BM
kernel, as illustrated in Fig. 2c. In each case, the
instanced kernel will perform the same amount
of computations (i.e. 8 BM computations) how-
ever; the performance bottleneck will be the com-
munication channels. In the vertical partitioning
scheme, every data point will pass through each
channel. Meanwhile, in the horizontal partitioning,
some of the data points do not need to cross be-
tween partitions during the computation. In the
example, the vertical partitioning scheme will have
a latency of 30 cycles, and will complete each sub-
sequent data set every 16 cycles. The horizontal
partitioning scheme (as is, without optimization)
will have a latency of 25 cycles, and will complete
further data sets every 16 cycles. Swapping the
partitions of several BMs in the last column results
in a horizontal partitioning with a latency of 18
cycles and completed data sets every 8 cycles. For
the type of architecture being targeted, horizontal
partitioning is expected to provide lower latencies
than the vertical scheme, as it shall significantly
reduce data communications. For this reason

KL-H limits its partition search to horizontal linear
partition solutions.

2) Balanced initial partitions: The concept of bal-
anced linear horizontal partitions is illustrated in
Fig. 2c. The initial linear horizontal partitions are
obtained by using Algorithm 1. The algorithm
is given a DST’s data-flow graph, where each
node is annotated with its level; a positive in-
teger that indicates the node’s level within the
computational topology. For example, a matrix[
(I2 ⊗ A3) ⊕ (I3 ⊗ B2)

]
would have two A3 nodes

with levels 0 and 1, and three B2 nodes with levels
2, 3, and 4. In essence, the initial partition scheme is
obtained by dividing the structure horizontally into
k equally weighted partitions. Common DST for-
mulations have corresponding DFGs which cluster
highly interconnected subgraphs in such a way that
a balanced linear horizontal partition represents
a good solution. For this reason, in KL-H uses
this method rather than randomly obtained initial
solutions. When used in KL-H to partition DSTs,
balanced initial partitions resulted in reductions
of up to 31% on cutsize and up to 67% in it-
erations vs. average results with random initial
partitionings. Reductions in iterations are specially
important considering that the graph partitioning
heuristic is called upon numerous times throughout
the DMAGIC partitioning process.

3) Schedule compactness; A common graph structure
found in fast DST algorithms is the butterfly net-
work (BN) [9]. Regular DCT formulations com-
monly contain BN structures as part of their DFGs
[1, 2, 10]. Schedule-wise, the BN is a completely
rigid structure since all paths of its computational
stages are isometric and a delay in the computation
of any node means a delay to the completion of
processing as a whole. KL-H takes this into ac-
count as part of the partitioning process by only
considering solutions that exchange nodes from the
same computational stage. This consideration en-
tails a more focused partition solution exploration
since it limits the number of possible node swaps
during each KL-H iteration. DST partitioning ex-
periments were used to confirm the effect of this
consideration on partition quality and run time.
Run time is reduced by as much as 87% when
stage-constrained swapping is used, as compared
to non-constrained swapping. The effect on latency
is negligible; being less than 1% improvement on
average.
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Our P/P process estimates solution latency using a
cost function which measures the impact of commu-
nications. The cost of a solution is represented by a
vector:

P = 〈�0, �1, . . . �M−1〉 , (1)

where �i is the cost of communications through chan-
nel i. Let P1 and P2 be costs, we say P1 < P2 if the non-
increasing ordering of P1 is lexicographically smaller
than the ordering of P2. For example, P1 = 〈1, 3, 1, 4〉
is smaller than P2 = 〈0, 2, 3, 4〉, since, lexicographically
4,3,1,1 is smaller than 4,3,2,0. The communication cost
�i is obtained as:

�i = W(ci)
∑

e∈E

R(e, ci), (2)

where the weight W(ci) of a channel is a function W :
C → Z

+, whose value is a relative measure of the im-
pact on system latency of communicating a data point
through c.

The communication flag R(e, ci) of an edge e through
a channel ci determines if the communication repre-
sented by e will be done through ci.

R(e, ci) =
{

1 if ci = μ(e),

0 else.
(3)

Let a(u) and a(v) represent the partitions to which
nodes u and v have been assigned, respectively. Let
Je, where e = 〈u, v〉, be the set of channels that can
be used to communicate data from a(u) to a(v). The
minimum weight channel μ(e) is the channel ci ∈ Je

with the minimum weight.

2.2 Formulation Exploration Process

DMAGIC uses algorithmic-level rules to explore al-
ternative formulations of a DST. This is done with
the objective of finding a formulation whose structural
features can be better exploited by the partitioning
methodology for the given target topology. Since the
number of equivalent formulations grows exponen-
tially with DST size, exhaustive search of the formula-
tion space is impractical. For instance, the SPIRAL
code generation program can consider a total of
1,639,236,012 formulations for a size-32 DCT [11].
Clearly, a more effective search of the equivalent-
formulation space is needed.

To develop the DMAGIC’s formulation-exploration
heuristic, we began by assessing the impact of different

formulation-level rules on partitioning quality. Initial
assessment experiments focused mostly on partition-
ing FFTs due to the availability of algebraic trans-
formations that systematically generate equivalent, yet
structurally diverse formulations, e.g. CT factorization
and permutation rules. Of the evaluated transforma-
tions, the decomposition strategies obtained using the
Cooley Tukey factorization rule (CTFR) had the most
evident and predictable impact on partitioning qual-
ity [6]. Salient observations from the assessment were
incorporated into an algorithm for greedy exploration
of the formulation space using CTFR decomposition.
This algorithm obtained improved results in terms of
implementation latency and exploration time as com-
pared to other general-purpose high-level partitioning
methods.

CTFR has two essential features that allow its use
for breakdown strategy exploration. First, it is capable
of decomposing a size n = mp FFT into the combi-
nation of arbitrary sized FFTs sized m and p. This
allows the generation of multiple breakdown strategies,
each corresponding to a unique formulation and having
characteristics that enable its improved partitioning for
a given DHA. Second, regardless of the decomposition
factors, the resulting formulation can still be imple-
mented using the same basic functional primitives as
the original, i.e. size-2 butterfly-twiddles. Functional
primitive regularity is essential for effective hardware
implementation since it simplifies control and allows
for a more effective use of hardware resources for
computation.

Fast DCT formulations have a structure that resem-
bles that of the FFT, with somewhat less regularity.
In order to perform formulation exploration for the
DCT, a method is needed which can systematically
yield different, yet equivalent formulations, without
loss of structure regularity. Several regular fast DCT
algorithms have been reported over the years, yet none
of them inherently comply with both of the features
that make CTFR desirable for FFTs. Püschel, et al.
proposed several CT like algorithms for the DCT which
factor a DCT size n into a combination of size-m and
size-p terms [12]. However, the resulting structures
do not naturally encourage hardware implementation,
since structural irregularities are introduced. Other al-
gorithms, such as those reported by Wang, Takala,
Hsiao, and Nikara imply effective hardware structures,
but lack the arbitrary decomposition capability [1, 2, 10,
13]. As proposed, each of these algorithms provides a
single formulation for each DCT size, which highly lim-
its their use in a formulation-exploration environment.
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As part of the search for a regular CT-like decompo-
sition algorithm for DCTs, several previously proposed
regular DCT formulations were studied, as well as
their suitability for distributed implementation. Of the
studied formulations, NPS-DCT structure allowed us
to derive a decomposition scheme that can systemati-
cally decompose a DCT into arbitrarily-sized functional
primitives, while maintaining regularity. This scheme
significantly broadens the DCT formulation space,
and allows DMAGIC to find improved partitioning
solutions.

3 DCT Regular Algorithms

The N-point 1-D DCT type-II transform matrix is
defined as:
[
DCTII

n

]

mn
=

√
2

N

[

bm cos

(
m
(
n + 1

2

)
π

N

)]

, m, n

= 0, 1, . . . , N − 1 , (4)

where bm is a scaling factor defined as:

bm =
{

1√
2
, if m = 0 or m = N

1, if m = 0 and m = N
(5)

The redundancies found in the DCT matrix are
exploited to obtain algorithms which reduce its com-
putational complexity. For hardware implementation,
it is essential that the fast DCT algorithm not only
have a reduced number of expensive operations, such
as multiplications, but must also have an overall reg-
ular structure. Regular computational structures facil-
itate the mapping of DCT operations to the limited
resources available in hardware, meanwhile keeping
a simplified control structure. In general, DCT algo-
rithms have not obtained the regularity found in CT
FFT algorithms. However the regularity of some pro-
posed DCT algorithms is enough to implement efficient
hardware pipeline structures that meet performance
requirements [1, 2]. The following sections discuss the
four candidate formulations that were evaluated for
their potential use within the DMAGIC methodology.
Section 3.1 presents Pus̈chel’s CT-like DCT algorithm,
which allows arbitrary decomposition at the expense of
structural irregularities. Sections 3.2, 3.3, and 3.4 discuss
three regular fast DCT algorithms, emphasizing their
suitability for distributed implementation.

3.1 Püschel, et al. CT-Like DCT Algorithms

Püschel, et al. reported several algorithms where
DCTs of size N = M · P can be synthesized as the

composition of DCTs size M and P along with interfac-
ing permutations and additions. Equation 6 shows one
of the proposed algorithms for the DCT-II.

DCTII
n (rπ) = Cn,k Ln,k

(
Im ⊗ DCTII

k (rπ)
)

×
(

⊕
0≤i<k

DCTII
m (riπ)

)Ln,k

Rn,m (6)

where Ln,k is a size-n stride-k stride permutation
matrix,

Cn,m =

⎡

⎢
⎢
⎢
⎢
⎣

Ik Zk

Ik
. . .

. . . Zk

Ik

⎤

⎥
⎥
⎥
⎥
⎦

, (7)

Zn =

⎡

⎢
⎢
⎣

0
0 1

. .
.

. .
.

0 1

⎤

⎥
⎥
⎦ , (8)

and

Rn,m = (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . .) . (9)

Here Jk is Ik with the order of the columns reversed.
In particular,

DCT(I I)
2 (riπ) = diag

(
1, 1/(

2 cos(riπ
/
2
)
)

· F2 (10)

F2 =
[

1 1
1 −1

]

(11)

The DCT II
n (riπ) term is called a skew DCT of type II,

where ri has an effect on the multiplication coefficients
but not on the structure of the DCT flowgraph. The
essential limitation of this algorithm when targeting a
distributed implementation resides in matrix C. This
matrix represents a varying number of additions and
permutations depending on its indexes.

Figure 3 shows the DFGs of the two alternate for-
mulations that can be generated by Eq. 6 for n = 8.
Repetitive functional primitives can be seen in each of
the graphs. However, since different C matrices may
be used throughout each decomposition; the functional
primitives will differ from stage to stage, making dif-
ficult its hardware implementation through uniform
modules.

Experimental results using our partitioning heuris-
tics revealed latency increases of up to 100% when
comparing formulations containing heterogenous C
matrices to formulations using a unique C matrix. Thus,
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Figure 3 DFGs for the two
alternate formulations
generated by Eq. 6 for n=8
(a, b).

practical instances for hardware implementations using
Eq. 6 could be obtained as factorizations that produce
C matrices of the same type throughout all stages. This
represents a very limited set of formulations. For exam-
ple, Fig. 4 shows the split trees of the DCT formulations
for size 64.

3.2 Hsiao and Tseng’s DCT Algorithm

Hsiao and Tseng reported a 1-D DCT decomposi-
tion algorithm (HT-DCT) that computes a size N = 2n

transform as n stages of a butterfly-with-multiplication
(BM) stages followed by n − 1 post processing (PP)
stages, where some of the results from the BM stages
are added [2]. Figure 5 shows a DFG for the type-II
formulation of an 8-point 1D HT-DCT. The regularity
obtained throughout both stages allowed its implemen-
tation as resource-efficient VLSI pipeline consisting

of variations of two kernels: one to implement each
of the butterfly stages and another for each of the
post-processing stages. The explicit separations into
two stages that perform distinct operations make it
ineffective to merge both functionalities into one func-
tional primitive, since this would lead to a rather non-
regular structure, as shown in Fig. 6. This discourages
the development of an arbitrary factorization scheme
based on HT-DCT.

3.3 Morikawa’s Simple Structured Fast
DCT Algorithm

As part of the development for his Pruning DCT algo-
rithm, Wang presented Morikawa’s simple structured
fast DCT (SS-FCT) algorithm [10]. SS-FCT is similar to
HT-DCT in that it involves both butterfly-multiply and
adding structures. However, as shown in Fig. 7, SS-DCT

Figure 4 Practical split trees
for 16, 32 and 64-point DCT
when using Eq. 6 for
hardware implementation.
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Figure 5 8-point HT-DCT
[2].

intermixes the adding structures and with the butterfly-
network (BN) structures, making it more feasible to
utilize a merged BM/Add functional primitive. Figure 8
shows a DFG for an 8-point WP-DCT using a unified
functional primitive. Note that if all the successive BM
and add stages were like in the second BN column we
could implement a size-2 common-data integrated func-
tional primitive, i.e. a functional primitive that would
perform BM followed by addition on the same two
points. However, this doesn’t happen throughout the
rest of the structure, as BMs are followed by permu-
tations. This eliminates the practicality of integrating
BM and adds as common-data unified functional prim-
itive. Thus, we have a 2n − 1 computational column
structure, as shown in Fig. 8. Once again, the lack of
regularity and the explicit separation of functionalities
limit SS-FCT chances for being factorized in a CT-like
manner.

3.4 NPS-DCT Algorithm

NPS-DCT algorithm has several features that facilitate
its pipelined hardware implementation [1]. Figure 9
shows a DFG of an 8-point NPS-DCT. First, it is
almost perfectly regular across each of its computa-
tional columns, an essential characteristic to vertically
fold its columns into a pipeline. Second, irregularities
have been distributed across the computation in such
manner that they operate on the same data sets as
the previous BM structure. Third, data permutations
between successive computational columns are kept to
varying sizes of perfect-shuffle permutations, for which
efficient pipeline structures have been proposed [14].
The only feature missing for NPS-DCT to be fully
amenable to our partitioning methodology is the capa-
bility of generating multiple formulations for a given
DCT size. From the NPS-DCT DFG in Fig. 9, we can

Figure 6 8-point HT-DCT
using a single functional
primitive that performs both
the BM and add
(post-processing)
functionalities.
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Figure 7 8-point SS-FCT
[10].

begin to identify a functional primitive that is common
throughout the complete PS-DCT structure (identified
in Fig. 9 by dashed boxes). This serves as basis for
the development of an arbitrary clustering/factorization
technique, described in the next section.

4 CT-Like Decomposition for NPS-DCT

We have derived a functional primitive-equivalent
CT-like factorization scheme based on NPS-DCT al-
gorithm. Section 4.1 summarizes the basic stride per-
mutation rules used throughout the derivation, while
Section 4.2 details the derivation itself.

4.1 Stride-Permutation Theorems

A fast version of a DST typically consists of a series
of computational columns with data point stride per-
mutations in between. Stride permutations can be fac-
torized/combined to form smaller/larger permutations

that can expose opportunities for a more effective im-
plementation of a DST to a given computational archi-
tecture. For instance, the Pease FFT formulation, which
can be obtained from the original CT formulation by
using permutation decomposition rules, is well suited
for hardware implementation as its DFG easily folds
both vertically and horizontally [8]. The following the-
orems were used as part of the derivation to combine
and reformulate stride permutations. Proofs for these
theorems and corollaries can be found in the works by
Nikara and Takala [1, 14].

Theorem 1 Factorizations of stride permutations
Let Lm,n be a size-m stride-n permutation matrix and

Im a size-m identity matrix. Then,

La,bc = La,b La,c (12)

Labc,c = (
Lac,c ⊗ Ib

) (
Ia ⊗ Lbc,c

)
(13)

LT
abc,c = Labc,ab = (

Ia ⊗ Lbc,b
) (

Lac,a ⊗ Ib
)

(14)

Figure 8 8-point SS-FCT
using functional primitive
blocks.
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Figure 9 DFG for an 8-point
NPS-DCT.

Theorem 2 Commutative property for tensor products.
Let A be a × a and B be b × b matrices. Then,

(A ⊗ B) = Lab ,a (B ⊗ A) Lab ,b (15)

Corollary 1 Factorization of a stride-2 permutation.

L2n+1,2 =
0∏

q=n−1

(
I2n−q−1 ⊗ L4,2 ⊗ I2q

)
(16)

Corollary 2 Factorization of L2n+K,2n+1

L2n+K,2n+1 =
n∏

q=0

(
I2n−q ⊗ L2K,2 ⊗ I2q

)
(17)

4.2 CT-Like Formulation for the DCT

NPS-DCT is formulated as a product of sparse matrices
using Kronecker Algebra operators. Let CII

2n be a 2n-
point DCT type-II formulation,

CII
2n =

√
2

2n
U (n−1)

2n

1∏

s=n−1

[
A(s)

2n

(
I2n−s−1 ⊗ L2s+1,22

)]
A(0)

2n PH
2k ,

(18)

where

A(s)
N = M(s)

N D(s)
N H(s)

N FN , (19)

M(s)
2k = 2k−1−1⊕

i=0

(
1 0

−μs(i) 1

)

, (20)

D(s)
2k = diag (gk (i, s)) , i = 0, 1, ..., 2k − 1 , (21)

gk (i, s) = (
2μs(�i/2�)d

(
2k−s−1 + ⌊

i/2s+1
⌋)) fk(i,s)

, (22)

fk (i, s) = (i mod 2) + (1 − τ0 (i)) (1 − τk−1 (s)) , (23)

τi (s) =
{

0, s = i
1, s = i

, (24)

H(s)
2k = 2k−2−1⊕

i=0
(Q4 R4 Q4)

μs−1(i) , (25)

F2k = I2k−1 ⊗ F2 , (26)

and PH
2k is a Hadamard permutation matrix of order N.

To allow us to concentrate on the main computational
components, we rewrite Eq. 18 as follows:

CII
2n =

√
2

2n
U (n−1)

2n �2n PH
2k (27)

where

�2n =
1∏

s=n−1

[
A(s)

2n

(
I2n−s−1 ⊗ L2s+1,2s

)]
A(0)

2n , (28)

As evidenced by Eq. 28, actual arithmetic opera-
tions are performed by the A(s)

n terms. Upon closer
examination, it was noticed that the sparse matrices
involved in the computation of these A(s)

n terms are all
composed of kernels operating on 2 or 4 points. Thus, a
complete formulation can be represented in terms of
4-input functional primitives, as illustrated by the
dashed lines in Fig. 9. Furthermore, these 4-input
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functional primitives can be systematically combined
into clusters with 4p inputs. If we define the operation
performed on each 4-input group to be a non-divisible
functional primitive �4, we can rewrite a Nikara’s
formulation as follows:

�2n =
1∏

s=n−2

[
(I2n−2 ⊗ �4)

(
I2n−s−2 ⊗ L2s+2,2s+1

)]

× (I2n−2 ⊗ �4)
(
I2n−2 ⊗ L4,2

)
(I2n−2 ⊗ �4) (29)

In other words, PSDA consists of n processing
columns, each consisting of 2n−2 �4 components in-
terconnected using the perfect-shuffle sequence. Each
of these �4 components encapsulates the variabilities
introduced by the parameterized An terms. Thus, if we
envision each of �4 kernels as able to contain the nec-
essary hardware to implement the minor computational
differences introduced by the parameterized An terms,
Eqs. 28 and 29 are structurally equivalent.

Let us define �2n as:

�2n =
1∏

s=n−2

[
(I2n−2 ⊗ �4)

(
I2n−s−2 ⊗ L2s+2,2s+1

)]
(I2n−2 ⊗ �4)

(30)

Equation 30 can be split into three products of length
m − 1, 1, and k − 1, where n = m + k + 1:

�2n =
n−m∏

s=n−2

[
(I2n−2 ⊗ �4)

(
I2n−s−2 ⊗ L2s+2,2s+1

)]

× (I2n−2 ⊗ �4)
(
I2n−k−2 ⊗ L2k+2,2k+1

)

×
1∏

s=k−1

[
(I2n−2 ⊗ �4)

(
I2n−s−2 ⊗ L2s+2,2s+1

)]

× (I2n−2 ⊗ �4) (31)

For discussion purposes, Eq. 31 is rewritten as follows:

�2n = A (I2n−2 ⊗ �4)
(
I2n−k−2 ⊗ L2k+2,2k+1

)
B , (32)

where

A =
n−m∏

s=n−2

[
(I2n−2 ⊗ �4)

(
I2n−s−2 ⊗ L2s+2,2s+1

)]
(I2n−2 ⊗ �4)

(33)

B=
1∏

s=k−1

[
(I2n−2 ⊗ �4)

(
I2n−s−2 ⊗ L2s+2,2s+1

)]
(I2n−2 ⊗ �4) .

(34)

Since, n − 2 = m + k − 1, we factor out I2m

B = I2m ⊗
1∏

s=k−1

[
(I2k−1 ⊗ �4)

(
I2k−s−1 ⊗ L2s+2,2s+1

)]

× (I2k−1 ⊗ �4) = I2m ⊗ �2k+1 (35)

Expanding the A term exposes the permutations be-
tween the computational columns (permutation terms
are shown underlined):

A =
n−m∏

s=n−2

[
(I2n−2 ⊗ �4)

(
I2n−s−2 ⊗ L2s+2,2s+1

)]

= (I2n−2 ⊗ �4)
(
L2n,2n−1

)
(I2n−2 ⊗ �4)

×(
I2n−2 ⊗ L2n−1,2n−2

)
... (I2n−2 ⊗ �4)

×(
I2m−2 ⊗ L2n−m+2,2n−m+1

)
(36)

The underlined terms in Eq. 36 are expanded using
the permutation property shown in Eq. 14, yielding the
underlined terms in Eq. 37.

A = (I2n−2 ⊗ �4)
(
I2 ⊗ L2n−1,2n−2

) (
L4,2 ⊗ I2n−2

)

× (I2n−2 ⊗ �4)
(
I2n−1 ⊗ L2n−2,2n−3

) (
I2 ⊗ L4,2 ⊗ I2n−3

)

×... (I2n−2 ⊗ �4)
(
I2m−1 ⊗ L2n−m+2,2n−m+1

)

×(
I2M−1 ⊗ L2n−2,2n−3 ⊗ I2n−2−(m−2)

)
(37)

The
(
IX ⊗ L4,2 ⊗ IY)

)
expressions are moved to the

end of the formulation and rewritten as a multiplication
series:

A= (I2n−2 ⊗�4)
(
I2⊗L2n−1,2n−2

)
(I2n−2 ⊗�4)

× (
I22 ⊗ L2n−2,2n−3

)
... (I2n−2 ⊗ �4)

× (
I2m−1 ⊗ L2n−m+2,2n−m+1

)

×
0∏

q=m−2

(
I2m−2−q ⊗ L4,2 ⊗ I2q

) ⊗ I2n−m (38)

Then, using Corollary 1:

A= (I2n−2 ⊗�4)
(
I2⊗L2n−1,2n−2

)
(I2n−2 ⊗�4)

× (
I22 ⊗L2n−2,2n−3

)
... (I2n−2 ⊗ �4)

× (
I2m−1 ⊗ L2n−m+2,2n−m+1

)
L2m,2 ⊗ I2n−m (39)

The same procedure is repeated, yielding the under-
lined term:

A = (I2n−2 ⊗ �4)
(
I22 ⊗ L2n−2,2n−3

)
(I2n−2 ⊗ �4)

× (
I23 ⊗ L2n−3,2n−4

)
...

× (I2n−2 ⊗ �4)
(
I2m−2 ⊗ L2n−m+1,2n−m

)

×
(

I2 ⊗ L2m,2 ⊗ I2n−m−1

) (
L2m,2 ⊗ I2n−m

)
(40)
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Figure 10 DFG for Eqs. 46
and 47.

After k iterations of this procedure, exhibited in
Eqs. 36–40, another multiplication series is obtained:

A = (I2n−2 ⊗ �4)
(
I2k ⊗ L2n−k,2n−k−1

)

× (I2n−2 ⊗ �4)
(
I2k+1 ⊗ L2n−(k+1),2n−(k+2)

)
...

× (I2n−2 ⊗ �4)
(
I2k+m−2 ⊗ L2n−m+1,2n−m

)

×
k−1∏

q=0

(
I2k−1−q ⊗ L2m,2 ⊗ I2q

) ⊗ I22 (41)

Corollary 2 is used, yielding:

A = I2k ⊗
0∏

s=m−1

[
(I2m−1 ⊗ �4)

(
I2m−1−s ⊗ L2s+2,2s+1

)]

× (
L2m+k−1,2k ⊗ I22

)
(42)

Since m + k − 1 = n − 2, we finally obtain:

A = I2k ⊗
0∏

s=m−1

[
(I2m−1 ⊗ �4)

(
I2m−1−s ⊗ L2s+2,2s+1

)]

× (
L2n−2,2k ⊗ I22

)
(43)

Figure 11 Split trees for Eqs. 46 and 47.

Thus,

�2n = A (I2n−2 ⊗ �4)
(
I2n−k−2 ⊗ L2k+2,2k+1

)
B

= I2k ⊗
0∏

s=m−1

[
(I2m−1 ⊗�4)

(
I2m−1−s ⊗L2s+2,2s+1

)]
(I2n−2 ⊗�4)

︸ ︷︷ ︸
I2k ⊗�2m+1(

L2n−2,2k ⊗ I22

) (
I2n−k−2 ⊗ L2k+2,2k+1

)
(I2m ⊗ �2k+1)

(44)

Finally,

�2n = (I2k ⊗ �2m+1)
(
L2n−2,2k ⊗ I22

)

× (
I2n−k−2 ⊗ L2k+2,2k+1

)
(I2m ⊗ �2k+1) (45)

Algorithm 2 Formulation exploration based on top-
down breakdown using CT-like factorization.
Input: Discrete signal transform Kronecker product
expression D
Output: Optimized expression D′
1. Cost ← ∞
2. D′ = InitialBreakdown(D);
3. Cost′ = Partition(D′)
4. While ( Cost′ < Cost )

4.1. Cost ← Cost′
4.2. Cost′ ← ∞
4.3. H = NextChildToSplit(D’)
4.4. For every split (a, b) of H

4.4.1. D_split = Split(D,H,(a, b))
4.4.2. Split_Cost = Partition(D_split)
4.4.3. If (Split_Cost < Cost′) Then Best_D ←

D_Split
4.5. End For
4.6. D′ ← Best_D);
4.7. Cost′ = Partition(D′)

5. End While
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Figure 12 Target topology for experiments.

For example, the following two decompositions
of DCT24 can be obtained using Eqs. 46 and 47.
Figure 10a and b illustrate the two decompositions.

�24 = [
(I2 ⊗ �8)

(
L4,2 ⊗ I4

) (
I2 ⊗ L8,4

)
(I4 ⊗ �4)

]

× (
I4 ⊗ L4,2

)
(I4 ⊗ �4) (46)

�24 = [
(I4 ⊗ �4) L16,8 (I2 ⊗ �8)

] (
I4 ⊗ L4,2

)
(I4 ⊗ �4)

(47)

5 Formulation Exploration Heuristic

The formulation space obtained using Eq. 45 grows ex-
ponentially with DCT size. In order to develop a heuris-
tic that searches the state space in a non-exhaustive
yet effective manner, we began by observing the ef-
fect of formulation decomposition (with Eq. 45) on
partition solution quality. Exhaustive formulations for
DCTs of sizes 32 to 256 were generated, converted to
DFGs, and partitioned using the KL-H graph partition-
ing heuristic. For analysis purposes, DCT formulations
were represented as split trees since this allows for bet-
ter understanding of the factorization sequence. Split
trees are a common graphical representation of DST
decomposition strategies [15]. For instance, Fig. 11a
and b show the two split trees for Eqs. 46 and 47. Each

node in the split tree is labeled with the log2 of the size
of the computational block (�) that it represents. The
children of a node indicate how the node’s transform is
recursively computed.

As exemplified by Eqs. 46 and 47 and Fig. 10, CT-like
formulation DFGs consist of computational columns
of smaller computational kernels (i.e. the (�N ⊗ IM)

expressions) and inter-column connections (i.e. the per-
mutation expressions). Notice that each split tree leave
corresponds to a computational column in the DFG.
Thus, once the DFG has been partitioned, informa-
tion from the partition process can be related back to
the split tree and used to guide further factorization
of the tree. This concept is used in the formulation-
exploration algorithm to decide the breakdown strat-
egy for partitioning improvement.

Results of the exhaustive DCT formulations were
analyzed in search of common decisions throughout
the decomposition process which generated superior
solution quality. These heuristic decisions were incor-
porated into a greedy formulation-exploration algo-
rithm, shown in Algorithm 2. The algorithm starts by
factoring the transform to a split tree with a distribution
of children’s sizes that has been observed to lead to
partition-friendly formulations in smaller cases. This
formulation is partitioned and its communication costs
are measured. Partitioning cost information is used to
determine which leaf of the current formulation to split.
As was detected in the analysis of smaller transforms,
an effective heuristic to guide the breakdown is to
split the tree on a leaf that interfaces with the highest
stage cost. The chosen leaf is split exhaustively into its
children and the cost of each resulting formulation is
measured. If the best cost of the split formulations is
better than the current, this best-cost split formulation
is kept and a new level is explored. This continues until
no further improvement is obtained or when the split
tree cannot be further decomposed.

Figure 13 Device-level architectural model.
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Table 1 Latency in c-steps for various sizes of DCT formulations.

PSDA Hsiao Wang Pueschel Best of rest PSDA-CT Latency decrease

64 50 48 46 40 40 35 12.50%
128 54 80 72 65 54 57 −5.56%
256 86 161 112 118 86 75 12.79%
512 160 385 219 199 160 131 18.13%
1024 318 669 387 404 318 267 16.04%

A 2n-point DCT formulation (that has not been
fully expanded) can be decomposed into O(n) differ-
ent formulations at each application of Eq. 45. Since
Algorithm 2 chooses one formulation at each step and
the number of decomposition steps is O(n), time com-
plexity for the formulation exploration mechanism is
O(n2).

6 Experiments

In order to assess the suitability of the various DCT
formulations for distributed implementation, we par-
titioned them using the DMAGIC methodology. For
DCT formulations where only one algorithm is avail-
able per size, such as HT-DCT and SS-FCT, the
methodology only conducts a graph partitioning with-
out formulation exploration. When using the developed
formulation, the CT-like property is used to explore
alternative formulations, as directed by Algorithm 2. In
all cases, the DCT formulations are partitioned neglect-
ing the post-scaling factor b m (Eq. 4) . A scheduling
algorithm using the As-Soon-As-Possible heuristic is
run after partitioning to map the various DCT nodes
to the available hardware kernels in each device.

Figure 12 shows the target topology for our experi-
ments. It consists of Virtex-2 Pro XC2CP4 FPGAs con-
nected in ring topology with a crossbar which mainly
serves to communicate non-adjacent devices. Latency
for communication through the direct channels and the
crossbar is 1 and 2 cycles, respectively. Width for all

communication channels is 16 bits. Latency for oper-
ations (addition, subtraction and multiplication) is 1
cycle. DMAGIC can target architectures that consist
of an arbitrary number of devices and topologies. The
target architecture was chosen since it is representative
of common multi-FPGA boards produced by vendors
such as Annapolis and Gidel, as well as high-end acad-
emic reconfigurable systems such as the Berkeley Em-
ulation Engine 2 (BEE2) [16].

Figure 13 shows DMAGIC’s target architectural
model for each dedicated DHA device. The compu-
tational load of a partition is implemented by a set of
interconnected modules that function as a customizable
vertical folding structure. Each module consists of a
functional primitive common throughout a particular
DST’s structure, as well as the necessary storage, con-
trol and data path options to implement the various
stages of the transform. For instance, Fig. 13 shows
a module with a 2-input kernel, data memories to
store intermediate results, a twiddle table that con-
tains the various coefficients for multiplication, and
data path/control elements to establish data movement
throughout execution.

Tables 1 and 2 summarize our results. In the majority
of cases, the use of the PSDA-CT algorithm within the
formulation-exploration methodology obtained better
latency values than the rest of formulations, with up
to 18% improvement over the best of the other cases.
DMAGIC did not achieve the best latency overall for
the 128-point DCT, however, its result (57 c-steps)
was only surpassed by the fully fine-grained PSDA

Table 2 Execution time in seconds for various sizes of DCT formulations.

PSDA Hsiao Wang Pueschel Best of rest PSDA-CT Time decrease

64 0.2 1 1 1 0.2 0.2 0.00%
128 0.2 11 5.2 17 0.2 0.2 0.00%
256 6 123 99 142 6 1 83.33%
512 14 1234 934 1321 14 3 78.57%
1024 189 18701 21509 16015 189 45 76.19%
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formulation. Execution time was also significantly re-
duced when compared to the rest of formulations
with reductions up to 83%. These results evidence
the advantage of exploring different formulations of
a given transform as part of the partitioning process.
They also demonstrate that formulation-exploration
can be performed in a non-exhaustive manner and
yield acceptable results. Run time reduction can be
attributed to the fact that our formulation explo-
ration strategy starts by considering coarser-granularity
formulations. This requires a smaller number of
nodes and consequently a reduced graph partition-
ing vs. the rest of formulations, whose format re-
quires them to be in their finest-granularity. Among
the previously proposed formulations, PSDA con-
sistently obtained the best results, both in latency
and execution time, highlighting the importance of
regularity on distributed hardware implementation
of DCT.

7 Conclusions

We presented DMAGIC, a new algorithmically-aware,
high-level partitioning methodology for DCTs targeted
to DHAs. A study of previously proposed regular DCT
formulations exposed their limitations for the type
of distributed implementations that DMAGIC envi-
sions. In order to take advantage of the formulation-
level exploration capabilities of the methodology, a
systematic factorization algorithm for the DCT was
developed based on NPS-DCT algorithm. The derived
PSDA-CT algorithm allows the decomposition of the
PSDA into arbitrarily-sized functional primitives, while
maintaining regularity. This significantly broadens the
DCT formulation space, and allowed DMAGIC to
find improved partitioning solutions as compared to
previously proposed regular one-dimensional DCT for-
mulations. The currently proposed strategy can be ex-
tended to multidimensional transforms by expressing
them as tensor products of unidimensional transforms
and lexicographically-ordering the n-dimensional in-
put data into a vector. Future work includes the
study of additional regular 2-D DCTs formulations
to identify further partitioning opportunities at this
dimensionality.
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