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Abstract

Iterative message passing algorithms (MPAs) on graphs, which are generalized from the

well-known turbo decoding algorithm, have been studied intensively in recent years be-

cause they can provide near optimal performance and significant complexity reduction.

The goal of the first part of this work is to apply message passing techniques to the

pseudo random code acquisition problems. To do that, good pseudo-noise patterns are

represented by sparse graphical models, and the standard iterative MPAs are applied over

the graphs to approximate maximum likelihood synchronization. Simulation results show

that the iterative MPAs can achieve better performance than the traditional serial search

in the sense that they work at low signal-to-noise ratios and are much faster. Compared

to full parallel search, this approach typically provides significant complexity reduction.

However, the proposed algorithm does not perform well enough when the number of

observations is relatively large, and we believe that the main reason for this is that the

underlying graphical representation is not good enough. This motivates the second part

of this work, specifically, understanding and analyzing the performance of iterative MPAs

on bi-partite loopy graphs.

Using techniques of eigenvalue analysis, we derive bounds on the variable expansions

of Tanner graphs. These bounds lead to bounds on stopping distance and stopping

ix



redundancy, which are critical parameters of the Tanner graphs that can determine the

performance of iterative decoding for binary erasure channels. Based on these results, we

will also propose two criteria in an attempt to relate variable expansions of Tanner graphs

with the performance of the associated iterative MPAs for binary symmetric channels and

additive white Gaussian channels.
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Chapter 1

Introduction

1.1 Motivation and Research Focus

Though the history of message passing techniques can be traced back to Gallager’s work

on Low-Density Parity-Check (LDPC) Codes [21, 22] forty years ago, they were not well

recognized until the invention of Turbo Codes [10, 11]. From then on, message passing

algorithms (MPAs) have found applications in a wide range of data detection problems

because they can provide near optimal performance and significant complexity reduction.

The main motivation of this work is to find new applications for the iterative message

passing techniques.

Using various simulations, we will demonstrate that the iterative message passing

techniques can be used to solve the pseudo random or pseudo noise (PN) code acquisi-

tion problem efficiently. However, to apply this techniques to practical communication

systems, with strong noise and/or interference and without channel state information

(CSI), the proposed algorithms need to be improved.
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Determining the performance of iterative message passing algorithms on loopy graphs

is still an open problem to the communication society. Therefore, it is difficult to analyze

and improve our algorithm. Thus, the second part of this work tries to understand the

behavior of iterative message passing algorithm by analyzing the expansion properties of

the underlying graphs.

1.1.1 Rapid code acquisition for UWB

Since Ultra-Wideband Radio (UWB) systems [8, 48, 50, 72] utilize pseudo noise spread-

spectrum modulation, they must be able to synchronize the received PN code with the

receiver code by searching over the code phases, and in addition, over a uncertainty

region of frame epochs. The traditional acquisition strategies may be insufficient for

UWB systems because exhaustive parallel search is too complex, and simple serial search

is too slow. Sometimes, hybrid search is implemented to trade complexity for acquisition

speed. However, it can be shown that, under various situations where very long PN

codes are deployed and/or the channel is time-varying, hybrid search can not provide

satisfactory solutions as both implementable and fast enough to address the variation of

the channel.

By exploring the structure of the PN code generators, we demonstrate that there

are many PN patterns that can be represented by sparse loopy graphs. Thus, iterative

message passing algorithms on sparse loopy graphs can be used to solve the rapid PN

code acquisition problems [15, 76]. On additive white gaussian noise (AWGN) channels,

the suggested algorithm works well. Simulation results show that it works at low signal-

to-noise ratios (SNRs) and is much faster than the simple serial search. It is also shown
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that the proposed algorithm can acquire the code phase within time interval comparable

to exhaustive full parallel search while its complexity is significantly less. Furthermore,

there exist verification schemes that can provide rough estimate of frame epoch.

It should be noted that the acquisition module of the UWB systems must work at

extremely low SNR because of the lack of knowledge of the channel state information.

Since the original iterative MPA does not provide a good approximation to the full parallel

search within that SNR range, several heuristics are proposed to improve the performance

of the proposed algorithm. However, the performance gains are usually not significant,

and we believe that it is related to the “goodness” of the graphical representations. This

is the main motivation of the second part of our work, which tries to provide something

sensible that ties properties of the graphical representations with the performance of the

associated iterative message passing algorithms.

1.1.2 Understanding iterative MPAs on loopy graphs

To understand the message passing algorithms and the nature of the solutions they

find, researchers have focused on their algebraic structures at first. Perez, Seghers and

Costello [41] used distance spectrum to explain why Turbo Codes have performance close

to Shannon capacity at low SNRs but have a relative high error floor at high SNRs.

Benedetto and Montorsi [6, 7] introduced the ideas of uniform interleaver and effective

free distance to explain how iterative decoding benefits from interleaving gain at low

SNRs.

More recent studies focused on the graphical representations of the codes, and message

passing algorithms are defined on these graphs. This not only generalizes the idea of

3



turbo decoding, but also provides more insights into the decoding process of both Turbo

Codes and LDPC codes. It is now well known that once the graph is given, the standard

processing is well defined and only schedule needs to be specified. The standard message

passing algorithms referred to in this dissertation are well defined in [2, 3, 14, 28, 29,

39, 40, 70], and iterative message passing algorithms or iMPAs refer to MPAs over loopy

graphs. Some related works are summarized below.

• Tanner-Wiberg Graphs [59, 70]

• Belief Networks and Pearl’s Belief Propagation Algorithm [29, 35, 39, 40]

• Factor Graphs [28, 29, 71]

• Expander graphs and expander codes [12, 55]

• Generalized Minimum Distance (GMD) decoding [1]

• Junction Trees, Junction Graphs and Generalized Distribution Law [2, 3]

• Generalized Belief Propagation (GBP) algorithms [4, 57, 58]

• Normal realizations of codes on graphs [19]

• Iterative decoding on Tanner Graphs for Binary Erasure Channel (BEC) [17, 31,

32, 37, 43, 51]

• Density evolution and Capacity-Achieving LDPC codes [46, 47]

• Pseudo-Codewords, Pseudo-Weight and their relations to the performance of itera-

tive decoding [20, 65–67]
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It has been proven that the standard message passing algorithms running on acyclic

graphs, (i.e.,graphs without loops), provide globally optimal solutions [2, 3, 28]. By

demonstrating the connections between MPAs and variational approaches to approximate

free energy, recent results [4, 57, 58] also showed that the standard message passing

algorithms can only converge to a stationary point of approximate free energy. When the

underlying graph is acyclic, this approximate free energy is convex so that the stationary

point is the unique global minimum. However, the behavior of the iterative message

passing algorithms on loopy graphs is not theoretically understood and in general seems

quite complex.

As most communications problems can be represented by bi-partite loopy graphs,

denoted as GT , of variable nodes and check (factor) nodes [28, 29, 59, 70, 71], it is

interesting to investigate the behavior of iMPAs over GT ’s instead of general graphs.

The idea of bi-partite graphical models was first introduced by Tanner [59] to describe

families of codes which are generalizations of the LDPC codes [21, 22], thus GT ’s are

usually referred to as Tanner Graphs. In Tanner’s original formulation, all variables

are codeword symbols and hence “visible”, Wiberg [70] then introduced “hidden” state

variables and suggested applications beyond coding. Their ideas were further generalized

by Kschischang, Frey and Loeliger [28, 29] to be applied to functions. In this work,

we represent our problems in a way similar to Tanner graphs where variable nodes are

also referred to as broadcasters and check (factor) nodes are also referred to as modulo-

2 adders, respectively, to emphasize their arithmetic operations. Furthermore, a “local

function” [28, 29], which was not included in Tanner’s original work, is associated with

each node.
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It should be noted that the bi-partite graphical representation is usually not unique,

and it is an open problem in general to find a “good” Tanner graph for a given problem in

the sense that the associated message passing algorithms can have bit error rate (BER)

or block error rate close to that of an optimal decoder. Previous researches addressed

this problem in various ways. Using graph analysis and linear programming, Tanner [60]

derived lower bounds on minimum distance for a given LDPC code and suggested that

these lower bounds may be closely related to the performance of iterative decoding.

His bit-oriented bound and parity-oriented bound obtained by graph analysis were later

used by Shin, Kim and Song [52, 53], as a guideline to classify good and bad codes, to

analyze and construct block-wise irregular LDPC codes. Using similar techniques as those

used in [60], Vontobel and Koetter derived an algebraic eigenvalue-based lower bound

and a linear-programming-based lower bound on the minimum pseudo-weight of binary

linear codes [65], and they argued that the minimum pseudo-weight of pseudo-codewords

relates to the performance of iterative decoding. However, all these eigenvalue-based

lower bounds apply to LDPC codes with some degree of regularity only and their linear

programming bounds are usually too complicated to be evaluated.

Sipser and Spielman’s approach [55] to this problem focused on the expansion prop-

erty of the Tanner graph, i.e., the ratio between the number of check nodes connected

a set of variable nodes and the number of edges incident from the same set of variables.

By carefully designing their iterative decoding algorithms, they argued that, for Binary

Symmetric Channels (BSCs), their algorithms can correct a number of random errors if

the expansion property of underlying graph is good enough. This argument was general-

ized by Burshtein and Miller [12] to analyze Gallager’s hard decoding and soft decoding
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(with clipping) [21, 22] algorithms. Using expander-based arguments, they proved that,

if the length of the LDPC code is sufficiently large and these algorithms can correct a

sufficiently large fraction of the errors, they can eventually correct all errors.

Furthermore, very nice results exist for iterative decoding on loopy Tanner graphs

on the erasure channels because the performance of the iterative MPA is completely de-

termined by the stopping sets [17] of GT . The size of the smallest stopping sets was

defined as stopping distance [37, 51], which is function of the specific graphical repre-

sentation. The minimum number of single parity-check nodes, which a GT must contain

so that its stopping distance equals the minimum distance of the corresponding binary

linear code, was defined by Schwartz and Vardy [51] as stopping redundancy. It should be

noted that the concept of stopping distance is closely related to minimum pseudo-weight

of pseudo-codewords [65], as the minimal AWGN-Channel (AWGNC) pseudo-weight is

always smaller than the minimal BEC pseudo-weight which equals the minimal stopping

set weight.

However, the ultimate goal is still to solve this problem for AWGN channels, which

is the most commonly used model for communication systems and probability inference

problems. Our approach to this is twofold. First, we want to define some graph metric,

which is closely related to the performance of the iterative MPAs. Second, we want to

propose a method to compute this metric for any given Tanner graph. Tanner’s linear

programming bound may be a good graph metric, but it is very complex to obtain.

Stopping distance and stopping redundancy point out the direction on how to improve

the performance of the iMPAs, but stopping distance itself is not a good metric, and for

binary linear code with long block size, exhaustive searches are not feasible.
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One interesting observation is that stopping sets have expansion of 1/2, and both

stopping distance and the number of smallest stopping sets affect the performance of

the iMPAs. Thus, generalized from results for BEC and BSC, it is conceivable that the

average expansion property of GT is a good graph metric. Unfortunately, it is also hard

to obtain the exact average expansion of GT .

Noting that there are some well-defined techniques in the field of spectral graph the-

ory [16], lower bounds on stopping distance are derived for any given bi-partite graph [77]

and Tanner’s bit-oriented and parity-oriented bounds are then special cases of our results

applying to regular LDPC codes. Furthermore, these techniques can aid in deriving a

lower bound on the average expansion and it is conjectured that this bound can be used

as the graph metric. However, we only define the graph metric in this work, rigorous

proof and verification using computer simulations remain largely open.

It should be noted that there are other possible graph metrics. For example, the

length and the number of shortest cycles in the graphical representation is conceivable to

be a good graph metric too. This work is being carried on by one of my colleagues, Tom

Halford [24].

1.2 Outline

This dissertation consists of 6 chapters, and each chapter is written in a self-contained

manner. They are organized as following:

In chapter 2, iterative MPAs on sparse loopy graphs are applied to the pseudo random

code acquisition problems. Simulation results show that this new approach can solve the
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code acquisition problem more efficiently, compared to both simple serial search, full

parallel search and hybrid search.

In chapter 3, techniques of eigenvalue analysis for Tanner graphs are introduced and

they are used to derived bounds on the variable expansions.

In chapter 4, by analyzing the eigenvalues and eigenvectors of the normalized incidence

matrix representing a Tanner graph, we derive lower bounds on its stopping distance.

Using these lower bounds, an upper bound on stopping redundancy of the difference-set

codes is derived as well.

In chapter 5, we will provide criteria aiming to relate the performance of iterative

message-passing algorithms on Tanner graphs with the average variable expansions of

these graphs. Though rigorous proofs are not provided, their correctness are suggested

by expander-based arguments and an example. Also, possible steps to prove the criteria

are provided.

Conclusions and possible directions for follow-on research are discussed in chapter 6.
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Chapter 2

Message Passing Techniques for Rapid Code Acquisition

2.1 Introduction

Spread spectrum (SS) techniques are used in many communication systems to provide

some combination of ranging capabilities, anti-jam protection, low probability of detec-

tion and/or interception, and multiple-access capability. A common form of SS is direct

sequence spread spectrum (DS/SS) in which the transmitter multiplies a binary data

sequence by a higher rate pseudo random or pseudo noise (PN) binary sequence. This

procedure is referred to as spreading because it results in a binary signal occupying a much

wider spectrum than the original data. Other SS methods, such as frequency hopping

(FH) and hybrid DS-FH are also commonly used in communication systems. Ultrawide-

band (UWB) systems are extreme cases of SS systems and are often characterized by low

duty cycle trains of very narrow pulses. In all of these cases, spreading is achieved via

a PN sequence. To enable autonomous reception, periodic PN sequences are used. For

most practical communication systems, long PN sequences (i.e.,long period) are desirable
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as the use of shorter PN sequences makes the link susceptible to repeat-back jamming or

interception/detection via delay and correlate methods [54].

At the receiver’s side, despreading must be performed before the demodulation of

the data sequence. This is accomplished by generating a local replica of the PN code

and synchronizing it to the one that is embedded in the received signal. Thus, quickly

achieving and then maintaining PN code synchronization is critical because even a small

misalignment can cause catastrophic signal-to-noise ratio (SNR) degradation. Typically,

this task is performed in two steps: PN code acquisition, where a coarse alignment of the

two PN codes is produced to within one code-chip interval, and code tracking. The SNR

of the observations during this acquisition process is very low since the processing gain

has not yet been realized prior to despreading.

The most widely used and studied methods for code acquisition are full parallel search,

serial search [44, 49] and hybrid search [54]. In each of these, correlations between the

incoming, noisy SS waveform and the locally generated reference are formed. In order

to acquire a PN code with long period quickly, the time duration of these correlations

must be a small fraction of the PN code period. In the full parallel case, correlations are

formed for all possible PN code alignments so that the minimum time to achieve reliable

acquisition is determined by how long one must correlate to reliably detect the correct

alignment. This is the maximum likelihood (ML) decision for the PN code phase based

on the set of observations. Since the number of correlations needed for full parallel search

equals the period of the PN sequence, this method is infeasible for practical systems

using very long PN codes. Simple serial search represents the other extreme wherein

only one of the correlations used in full-parallel search is formed and a threshold test is
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performed to determine if it is the correct alignment. If the threshold test fails, another

set of observations is collected and used to correlate against another reference PN code

alignment. Since many such tests are required, simple serial search provides relatively

slow acquisition for long PN codes. Hybrid search tests a small set of possible alignments

in parallel and then repeats this test on another set of observations until the correct

alignment is discovered.

Full parallel search is fast to acquire, but complex. Serial search is simple, but slow

to acquire. Hybrid search provides, at best, a linear-scale trade-off between these two

extremes (i.e.,a hybrid search with four parallel correlators is four times faster and four

times as complex as serial search). In this chapter we present the first method for achiev-

ing PN acquisition at low SNR as fast as full-parallel search, but with significantly lower

complexity. Our approach is based on the paradigm of message passing on graphical

models and more specifically, iterative message passing algorithms (iMPAs) and graph-

ical models with cycles [2, 3, 28, 70]. This is a generalization of the “turbo” decoding

algorithm [11]. In this approach, no correlation to a single PN reference signal is com-

puted explicitly. Rather, the global structure in the PN sequence is modeled as a set

of coupled local constraints and correlations are formed against these incomplete, local

structures. This may be viewed as an approximation to ML acquisition, much in the same

way that a turbo decoder is an approximation of the ML decoder for a concatenated code.

Therefore, our approach suffers a small performance degradation relative to full parallel

search.

It should be noted that there exists another suboptimal method for fast acquisition in

the literature, i.e.,sequential search [68], which is also known as RASE (Rapid Acquisition
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by Sequential Estimation). The basic idea of this strategy is to sequentially estimate the

shift register state, i.e., hard decisions, of the PN generator. A decade after the original

paper, a modification of the RASE system was reported by Ward and Yiu [69], where

a verification scheme was added to reduce the average acquisition time. Though RASE

can provide rapid acquisition under certain scenarios, it is not widely used because it has

the drawback of being highly vulnerable to noise and interference signals [54]. The main

reason is that its estimation process is performed on a chip-by-chip basis and makes no

use of the interference rejection capabilities of the PN signals. To address this problem,

several modifications of Ward’s initial RASE system were investigated, where Pearce and

Ristenblatt [38] suggested a threshold decoding type of estimator similar to that used for

block codes, Kilgus [26] suggested using the majority logic vote of a number of indepen-

dent estimates to decide the initial state, and Alem and Weber [5] proposed an optimum

Bayes detector instead of the simple threshold decision in the original RASE system.

More recently, iterative soft sequential estimation methods were proposed independently

by Yang and Hanzo [73, 74], and by Vigoda, Dauwels, Gershenfeld and Loeliger [64],

trying to improve the performance of the RASE system. However, graphical represen-

tations are not discussed in their works. Since different graphical models and message

passing algorithms have been discussed in our work, their work can be considered as a

special case. Specifically, their work can be considered as forward-only message passing

algorithms on Tanner graphical representation of the PN generator.
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Our primary motivation for this problem is a UWB system [50, 72] using long PN

sequences, for which fast PN acquisition is a critical necessity. To illustrate this, consider

a low duty cycle train of narrow pulses with PN sequence randomization received in noise

r(t) =
M−1∑

k=0

√
Ec(−1)xkωr(t− kTf − ξTp) + n(t) (2.1)

where Ec is the energy per pulse (“chip”) ωr(t) of duration Tp, xk ∈ {0, 1} is a PN code

pattern, Tf is the frame time or time between pulses, ξ is an unknown shift or frame

epoch, n(t) is additive Gaussian noise and M is number of pulses observed. It should be

noted that, in this work, we focus on the model where the PN randomization is done by

antipodal modulation of the pulses, which has been used in the UWB prototype proposed

by Berkeley Wireless Research Center [36]. Other methods use pulse position modulation

(PPM) by the PN sequence [72]. In our method, one needs the likelihood of the chip value

for a given noisy observation, so application to PPM UWB systems and other models is

straightforward.

A sample waveform for a noise-free UWB signal of this form is shown in Figure 2.1(a).

The PN acquisition problem is also diagrammed in Figure 2.1 in terms of a search over

potential timing bins. This UWB synchronization problem is more difficult than the

corresponding classical DS/SS problem because the frame epoch must be acquired simul-

taneously with the PN pattern. The number of candidate frame epochs to be searched

is on the order of Tf/Tp À 1, and for each of these a complete PN acquisition search is

required. The search bins for a PN acquisition problem are commonly diagramed with

a “PN phase wheel”, as shown in Figure 2.1(b), corresponding to one period of the PN
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Figure 2.1: A sample waveform and diagram of the associated PN acquisition problem for
two spread spectrum systems: (a) a low duty cycle UWB system where the frame epoch
and PN code phase must be determined and (b) a direct sequence system where only
PN code phase need be acquired. The DS system is modeled with the complex baseband
equivalent signal.

code. The corresponding diagram for the UWB system is the “PN-phase/frame-epoch

taurus” shown in Figure 2.1(a).

For UWB systems with long PN codes, extremely fast PN acquisition is required.

This is not only due to the high level of timing uncertainty described above, but also the

fact that the true frame epoch will certainly drift due to oscillator imperfection and/or

platform mobility [61]. More specifically, if the bins in Figure 2.1(a) are tested sequentially

and the frame epoch is drifting, it is possible that the search will never locate the true

epoch – i.e., this may result in a “chasing one’s tail” situation. Therefore, for a fixed,

hypothesized frame epoch, it would be desirable to search all possible PN pattern phases
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in parallel. It is also desirable to complete this search based on a relatively small number

of observations and with reasonable implementation complexity. The method presented

in this chapter provides an attractive solution to this problem that cannot be achieved

using traditional PN acquisition strategies. Similar methods have been applied to the

sparse inter-symbol interference (S-ISI) channels by Chen [13][14, Ch. 3].

This chapter is organized as follows. Section 2.2 contains the signal models considered,

Section 2.3 contains approximate analysis of the traditional approaches to PN acquisition,

and Section 2.4 describes the graphical modeling and iMPAs applied to PN acquisition.

Simulation results are provided in Section 2.5 and conclusions are drawn in Section 2.6.

2.2 Signal Models

Linear feedback shift register (LFSR) sequences having the maximum possible period for

a r-stage shift register are called maximal-length sequences or m-sequences [23]. They

have been successfully employed in a wide range of SS systems and many other spreading

codes can be derived from them. A binary r-stage LFSR is shown in Figure 2.2(a). At

time k, let xk be the output, so that xk+i, 0 ≤ i ≤ r − 1 is the value of the ith register

and the constraint is

0 = g0xk+r ⊕ g1xk+r−1 ⊕ ...⊕ gr−1xk+1 ⊕ grxk (2.2)

where ⊕ is modulo 2 addition and gi ∈ {0, 1}, 0 ≤ i ≤ r, are feedback coefficients. The

generating polynomial is g(D) = g0 + g1D + ... + gr−1D
r−1 + grD

r, where D is the unit

delay operator [23]. The maximum achievable period of a r-stage LFSR is N = 2r − 1

16



g
0

x
0

s
0

+

D D

+ +

DD

+

from x
M-16

g
1

g
2 g

r-2
g
r-1

g
r

x
1

x
k

x
k+1

x
M-1

s
1

s
k
=(x

k-1
x
k-2

… x
k-15

)

s
k+1

s
k+2

s
M-1

s
M

x
15

x
16

x
M-1

0

x
0

x
1

(d)

k
=x
k-1

x
0

x
1

x
15

x
16

x
M-1

x
14

x
M-2

from x
M-16

x
k

1 MM-115 16

x
k+1

x
k+r-1

x
k+r-2

x
k+2

x
k+r

2-state  FSM

(a)

(b)

(c)

Figure 2.2: Methods for modeling LFSRs. Part (a) shows the generator diagram for an
r-stage LFSR. Parts (b)-(d) show different graphical models for the same 15-stage LFSR
with g(D) = 1 + D + D15.

and is achieved for primitive g(D) when the initial register contents are not all zero.

Note that for primitive g(D), g0 = gr = 1 holds. The (infinitely long) periodic output

sequence x generated then can be written as x = x0, x1, ...xr−1, xr, xr+1, ...xN−1, xN , ...,

where xN+i = xi. In fact, this LFSR is a finite state machine (FSM), with evolution

determined entirely by the initial contents of the registers, or the initial FSM state.

Specifically, the initial FSM state is the (r × 1) vector u = (x0, x1, ...xr−1)T , where T

denotes transposition.

The goal of code acquisition is to find the phase of the sequence present in the received

signal, where x, Dx, ..., DN−1x are defined as phases of x. In most practical scenarios
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with long PN codes, only part of this long sequence is observable, so the problem can

be stated as: for a given number of M noisy observations, {zk}M−1
0 , estimate the initial

state u. Also, the number of observations is much larger than the length of the shift

register, but much less than the period (i.e.,r ¿ M ¿ N). A simplified model for these

observations is

zk =
√

Ecyk(u) · ejθc + nk =
√

Ec(−1)xk(u) · ejθc + nk, 0 ≤ k ≤ M − 1 (2.3)

This model captures both the DS/SS and UWB systems illustrated in Figure 2.1 where

Ec is the signal energy per chip (pulse) and nk is complex circular additive white Gaussian

noise (AWGN) having variance N0/2 for each of the real and imaginary parts. The term

with θc is applicable only to the traditional DS/SS system and models the effect of an

unknown carrier phase, assumed to be constant over the observation interval. We have

explicitly denoted the dependency of xk and the corresponding anitpodally modulated

yk on the initial state of the LFSR, u. This model is simplified because it does not con-

sider the effects of oversampling the chip rate, potential frequency offsets, jammers, etc.

Nonetheless, this is the standard model used for basic characterization of PN acquisition

algorithms [54]. The model in (2.3) can be written in vector form as

z =
√

Ecy(u)ejθc + n (2.4)
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where n = (n0, n1, ...nM−1)T is a complex circular Gaussian vector with zero mean and

covariance matrix N0
2 IM for each the real and imaginary parts, where IM is the M ×M

identity matrix.

Since the simple model in (2.3) is common in the DS/SS literature, let us consider how

it applies to the UWB system modeled in (2.1), where n(t) is AWGN with power spectral

density level of N0/2. Using an estimate the frame epoch, ξ̂, the discrete observation

zk is obtained by the following processing: during the time interval [kTf , (k + 1)Tf ), the

UWB receiver aligns a pulse matched filter at kTf + ξ̂Tp, and samples the output at

kTf +(ξ̂ +1)Tp. If ξ is constant over the time interval [0,MTf ] and ξ̂ = ξ, a model of the

form (2.3) results. Specifically, since the UWB signal in (2.1) has no sinusoidal carrier,

the real part of zk from (2.3) is obtained with θc = 0. In this example, the chip interval

Tc equals Tf , the frame time, as there is only one pulse every Tf seconds. Therefore,

while we will characterize acquisition time in terms of the number of chips observed, this

value should be interpreted appropriately for the UWB and DS/SS cases.

In a traditional DS/SS system, θc is typically unknown at the point of PN acquisition

because the SNR before despreading is too low to enable carrier phase synchronization

and PN acquisition is performed noncoherently. In this case, Tc is the time duration of a

single PN chip and θc is modeled as a random variable uniformly distributed over [0, 2π]

which is constant over the duration of M observations.

For compactness, we will use (2.3)-(2.4) for these two cases: (i) the DS/SS system with

no carrier phase knowledge and (ii) the UWB system. Note that if one had knowledge of

θc for the DS/SS case, the model would be the same as the model adopted for the UWB

system.
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2.3 Performance Characteristics of Traditional Acquisition

Methods

As briefly described in Section 2.1, the three widely used approaches to PN acquisition

all form correlations between the noisy observation and a local reference generated with

a hypothesized PN phase (i.e.,despreaders). Specifically, for the chip-spaced model in

(2.3) there are N possible PN phases denoted by ui, 0 ≤ i ≤ N − 1. The normalized

correlation to the i-th PN phase using M observations is

ri = r(ui) =
1
M

yT (ui)z (2.5)

where y(ui) is the noise-free signal in (2.4) with the actual initial state replaced by the

hypothesized state ui. The correlation statistic ri comprises two parts: a Gaussian noise

term and a partial-period PN autocorrelation [23] term of the form yT (ui)y(uj)ejθc .

The autocorrelation properties of m-sequences imply that this is nearly zero for i 6= j.

Therefore, the statistic in (2.5) is similar to the correlator output of a detector for N -ary

orthogonal modulation in AWGN and methods similar to those used in evaluating the

performance of orthogonal modulations can be employed for the analysis of traditional

PN acquisition algorithms.

Without loss of generality, assume that the actual initial state is u0, so that

r0 =
1
M

yT (u0)z =
√

Ece
jθc + ω0 (2.6)

ri =
1
M

yT (ui)z =
√

Ec
1
M

yT (ui)y(u0)ejθc + ωi 1 ≤ i ≤ N − 1 (2.7)
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where the independent identical distributed (i.i.d.) sequence ωi is complex circular

Gaussian with real and imaginary parts having zero mean and variance N0
2M . For m-

sequences it can be shown [23, 54] that the set of random variables {ri}N−1
1 can be

approximately modeled as i.i.d., zero-mean, complex Gaussian random variables with

variance 2·Ec+N0
2M in the imaginary and real parts. Specifically, the non-zero partial-

period correlation between PN phases has been modeled as a small amount of additional

Gaussian noise. This approximation is used throughout the analysis that follows in this

section and is justified numerically in Section 2.5.

2.3.1 Full parallel search

Full parallel search finds the ML estimate of the initial state through exhaustive search

over the N possible values, yielding the estimate û = arg maxui p(z|ui), where p(z|ui)

is the likelihood of ui and z is defined in (2.4). The acquisition time for full parallel

search is just the observation length M , but the memory requirements and computational

complexity both grow linearly in N , which increases exponentially with the length of the

LFSR.

The probability of correct acquisition, PACQ, for full parallel search can be computed

approximately using the model in (2.6)-(2.7), since the set of correlations {ri}N−1
i=0 is a set

of sufficient statistics for the model of (2.3). More precisely, for UWB systems, vi = <{ri}

with θc = 0 are the variables to be compared, while for the DS/SS with unknown θc, |ri|

is the relevant test statistic. In the former case, this is the output of a despreader and

in the latter case, this is the output of an in-phase/quadrature (I/Q) despreader followed

by an envelope detector.
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For the UWB system, correct acquisition is declared only when v0 is the largest

correlator output so that

P
(C)
ACQ =

∫ ∞

−∞
P (v1 < v0, .., vN−1 < v0|v0)p(v0)dv0 (2.8)

≈
∫ ∞

−∞


1−Q


 t +

√
2MEc

N0√
2Ec
N0

+ 1







N−1

e−
t2

2√
2π

dt

where Q(·) is the complementary cumulative distribution function of a standard Gaussian

random variable, defined as

Q(t) =
∫ ∞

t

e−u2/2

√
2π

du

The probability of acquisition of noncoherent full parallel search can be computed

using the same approximation in (2.6)-(2.7). Correct acquisition is declared only when |r0|

is larger than all other |ri|, so that, via methods similar to those employed for analyzing

noncoherent orthogonal modulations, we obtain

P
(NC)
ACQ ≈

∫ ∞

0


1− e

−t2

4Ec
N0

+2




N−1

t exp
[
− t2

2
− MEc

N0

]
I0

[√
2MEct

N0

]
dt (2.9)

where I0(·) is the modified Bessel function of zeroth order [45, Ch.2].

2.3.2 Simple serial search

For the simplified model in (2.3), simple serial search computes the likelihood for one

candidate initial phase p(z|ui) using the set of M observations, z [44]. More precisely, for

the UWB, the real part of ri is compared to a threshold, and for the noncoherent DS/SS

case |ri| is compared to a threshold. If the threshold is not exceeded, the current set of
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M observations is discarded, and correlation over another M observations is computed

to test another initial state.1 In this case, the M observations correspond to one dwell

time [44], Td, which are assumed to be non-overlapping. This process continues until

acquisition is declared.

Simple serial search reduces the memory requirements significantly and works well

at low SNR. However, it is slow since one needs to try roughly half of the possible PN

alignments in order to locate the correct one. More formally, without a priori information

on the PN phase, the mean acquisition time is [44]:

T
(s)
ACQ =

2 + (2− PD)(N − 1)(1 + KPFA)
2PD

· Td (2.10)

where PD is the probability of detection for a single-dwell test, PFA is the probability

of false alarm, and K is the penalty time for a false alarm, measured in dwell times.

Considering the most optimistic case, where PD = 1 and PFA = 0, we have TACQ

Td
=

N+1
2 = 2r−1. So, unlike full parallel search, simple serial search takes much more than M

chip times to acquire on average.

Also, it can be shown that2

P
(s)
ACQ =

PD · [1− (1− PFA)N ]
NPFA

(2.11)

1The reference state must be adjusted for the fact that the tests take place on different observation
sets and the actual PN phase has continued to evolve.

2It is assumed that the system acquires within one single search of the N possible PN alignments. If
this were not the case, threshold tests are not necessary and a full search could be achieved [54]. Also,
an absorbing false alarm state [54] is assumed.
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where PD and PF are the probability of detection and false alarm, respectively, for a

single dwell test. Specifically, PD (PFA) is the probability that the threshold is exceeded

when the correct (incorrect) PN phase is used. These can be computed using the same

method employed to obtain (2.8) and (2.9).

It is also conceivable to use a serial search approach on a single dwell observation.

This would be the case for example, if very fast signal processing resources were reused

to correlate the same set of M observations before another set of M observation was

available. This is not considered here and we reserve the term serial search to describe

the traditional approach summarized above.

2.3.3 Hybrid search

Hybrid (serial/parallel) search uses Cp parallel correlators to test phases in parallel. Like

serial search, multiple dwells on different observation sets are generally required. The

performance is again a function of the single dwell probabilities of detection and false

alarm [54]

P
(h)
FA = 1− (1− PFA)Cp (2.12)

P
(h)
D = 1− (1− PD)(1− PFA)Cp−1 (2.13)

T
(h)
ACQ =

2− PD − (1− PD)(Cp − 1)PFA

2[PD + (1− PD)(Cp − 1)PFA]
· 1 + KCpPFA

Cp
· (NTd) (2.14)

where P
(h)
FA, P

(h)
D and T

(h)
ACQ are the false alarm probability, global detection probability

and mean acquisition time of Cp-correlator hybrid search respectively. If Cp is small

(Cp ¿ N) and the false alarm penalty is neglected, P
(h)
FA ' CpPFA, P

(h)
D ' 1 − (1 −
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PD)[1 − (Cp − 1)PFA] and T
(h)
ACQ ' 1

Cp
T

(s)
ACQ. Therefore, hybrid search can only trade

complexity with mean acquisition time linearly. Furthermore, when Cp is sufficiently

large, the false alarm penalty will dominate and no further improvement in T
(h)
ACQ will

be achieved [54]. The probability of acquisition of hybrid search can be obtained using

equation (2.11), with PD, PFA and N replaced by P
(h)
FA, P

(h)
D and N/Cp respectively.

2.4 Graphical Models and iMPAs for Code Acquisition

2.4.1 Graphical models for m-sequence [100003]8 and the associated

iMPAs

Graphical modeling and iterative message-passing algorithms have become widely ap-

plicable to inference problems in communications and signal processing, most notably

decoding of modern error correction codes. A graphical model captures constraints on

variables by connecting variable nodes to configuration check nodes that constrain the

configurations of the connected variables3. For example, consider the set of m-sequence

outputs {xk}M−1
k=0 . One graphical model is a single check node with these M binary

variables connected. While there are 2M possible combinations of these binary vari-

ables, the check node enforces the constraint that only N = 2r − 1 of these are allow-

able configurations. There are other graphical models that can enforce the same set of

constraints. These are obtained by factoring this global constraint (i.e., involving all

variables) into a sets of interdependent check nodes, each enforcing only local constraints

(i.e., involving only a subset of variables). An example of this is shown in Figure 2.2(b)
3The graphical convention adopted is explicit in time index, so that, for example, x10 and x11 are

distinct nodes, but implicit in value, so that, for example, x10 = 0 and x10 = 1 are captured in one
variable node. This differs from trellis diagrams which are explicit in both time index and variable value.
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for the m-sequence with generating polynomial g(D) = 1 + D + D15 ([100003]8) of de-

gree 15, where we use the convention that variable nodes are circles and check nodes are

squares. Note that each check node enforces the constraint that xk ⊕ xk−1 ⊕ xk−15 = 0

for the appropriate value of k. Thus, the number of valid local configurations is 4 –

i.e.,(xk, xk−1, xk−15) ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. In general, let the number of

allowable configurations at a check node be C and index these by a variable c – i.e., C = 4

and the four configurations correspond to c = 0, 1, 2, 3, respectively.

For a given graphical model, there is a well-defined message-passing algorithm that

repeatedly passes messages across edges in both directions. The MPA combines and

marginalizes messages on variables over the constraints associated with the check nodes.

Specifically, each check node will accept incoming messages, characterizing some form of

soft-decision information, on the variables connected to it. These messages, which are

sent from connected variable nodes, are then combined to obtain soft-decision information

(metrics) on all valid local configurations. Finally, these local configuration metrics are

marginalized to produce output metrics. Variable nodes with more than one connection

can be viewed as incorporating an equality constraint as will become evident.

As a specific example, consider the graph in Figure 2.2(b) and assume the UWB model.

Then there is initial chip-level soft-decision channel information of the form Mch[xk] =

− ln(p(zk|xk) at the variable node for xk. These become the initial input messages for

all three check nodes connected to xk. Under this convention, a large message means

that the conditional value for xk is highly unlikely and small message corresponds to

high confidence in that conditional value. Therefore, we use the term metric and message

interchangeably in the following. Focusing on a check node constraining (xk, xk−1, xk−15),
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let the incoming message on xi be MI[xi]. Note that for each variable the message is a list

of numbers for each conditional value of the variable – i.e., in this case MI[xi] is shorthand

for a list of two numbers: MI[xi = 0] and MI[xi = 1]. With the valid configurations

indexed by c, xi(c) is defined for each of these configurations. The processing associated

with a configuration check node can be viewed as a two step process

M[c] =
∑

i MI[xi(c)] (combining) (2.15)

MO[xi] = minc:xi M[c]−MI[xi] (marginalization) (2.16)

where c : xi means all configurations consistent with the conditional value xi. For exam-

ple, the output message for xk produced by the check node constraining (xk, xk−1, xk−15)

is

MOcc[xk = 0]

= min {MIcc[xk−1 = 0] + MIcc[xk−15 = 0]; MIcc[xk−1 = 1] + MIcc[xk−15 = 1]}

MOcc[xk = 1]

= min {MIcc[xk−1 = 0] + MIcc[xk−15 = 1]; MIcc[xk−1 = 1] + MIcc[xk−15 = 0]}

which uses the fact that configurations c = 0, 1 are consistent with xk = 0 and c = 2, 3

are consistent with xk = 1, and input (output) messages to the configuration check node

have been denoted by MIcc[·] (MOcc[·]).

As mentioned, variable nodes connected to multiple check nodes have an implicit

equality constraint, so that message updates take place at variable nodes too. Specifically,
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consider a variable x and suppose that this variable is connected to L check nodes and

that MIv[x(l)] is the incoming message from the l-th check node to a variable node, then

the output message returned to the l-th check is

MOv[x(l)] = Mch[x = x(l)] +
L−1∑

m=0,m6=l

MIv[x(m) = x(l)] (2.17)

which should be interpreted as an equation for each conditional value of x – i.e., for

binary x, one for x(l) = 0 and another for x(l) = 1. Note that this is equivalent to (2.15)-

(2.16) where each valid configuration corresponds to all connected variables taking the

same value. As a concrete example, consider the variable node for xk in Figure 2.2(b),

which is connected to three checks constraining (xk, xk−1, xk−15), (xk+1, xk, xk−14), and

(xk+15, xk+14, xk). This node has a channel message Mch[xk] and three messages that

were output from the previous activation of the connected check nodes. The variable

node will return to a given check node the sum of the messages from the other two checks

and the channel metric.

The message update equations (2.15), (2.16) and (2.17) are general and define the

processing for all standard MPAs. There are different choices for the format of the

messages and the combining and marginalization operators. In the above discussion, we

used messages in the form of negative-log of probabilities and min-sum marginalization

and combining. In the numerical results, we also consider min∗-sum marginalization and

combining [14] where

min∗(x, y) = min(x, y)− ln
(
1 + e|x−y|

)
(2.18)
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Specifically, min∗-sum algorithms perform the processing in (2.15), (2.16) and (2.17) with

the min operators replaced by min∗ operators.

While the above defines the processing associated with message updating, in order to

specify a MPA, one must define the graph (connectivity and constraint definitions) and

an activation schedule, which is the order that the variable nodes and check nodes are

activated, including when the processing is terminated. When the algorithm terminates,

hard decision information can be inferred from the messages by selecting the conditional

value with smallest metric. A basic result in this area is that if a graph has no cycles, then

there is a schedule for which the MPA is optimal. In other words, by repeatedly updating

messages using simple local constraints, one can compute the same messages that would

be computed using a single global constraint. The advantage is that the processing of

many local constraints can be much smaller than that associated with a single global

constraint. Roughly, any activation schedule that passes messages from each node to all

other nodes on a cycle-free graph is optimal and the MPA converges to the same result

that would have been obtained by processing the global constraint directly.

When the graphical model has cycles, the same message updating rules can be used,

but the approaches are sub-optimal heuristics, which we refer to as iterative message

passing algorithms (iMPAs). Specifically, little has been proven about the convergence

properties and the long-term evolution of the messages for these algorithms when cycles

are present. It has been observed empirically, however, that iMPAs are very effective and

often yield near-optimal performance. Empirical results suggest that the iMPA heuristic

is most effective when there are no very short cycles and when the cycle structure is

highly irregular (i.e., pseudo random). The advantage of using graphs with cycles is that
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the complexity of the resulting iMPA can be significantly less than that of any MPA

associated with a cycle-free graphical model. In the m-sequence example, the global

constraint has N = 2r − 1 = 32767 configurations, while the graph of Figure 2.2(b) has

M − 15 check nodes, each having four valid configurations. For cases of practical interest

4(M − 15) is much less than N , so that message passing on the graph in Figure 2.2(b)

may yield significantly lower complexity.

The graphical model associated with a particular set of constraints is not unique

and selecting different models will yield a different MPA. One way to alter a graph is

to include hidden variables that are neither the input nor output of the system.4 For

example, the same m-sequence modeled in Figure 2.2(b) can be modeled by the cycle-free

graphical model in Figure 2.2(c), in which the hidden variables sk, indexing all values

of (xk−1, xk−2, . . . xk−15), have been added and are denoted with double-lined circles to

distinguish them from the output variables. These hidden variables are simply the state

of the FSM that represents that LFSR. An optimal MPA algorithm on this graph is

known as the forward-backward algorithm (FBA) [14]. In the FBA, messages are sent

forward (left to right) starting at s0 and ending at sM and then backward from sM to s0.

This is one activation schedule that results in an optimal MPA and further activation of

the check nodes does not change the message values. It follows from the definition of the

nonzero sk for an m-sequence that each state takes 2r−1 values and each local check node

has 2r − 1 valid configurations. In fact, at the end of the forward recursion, the messages

at sM are the N = 2r − 1 correlations computed by the full parallel search approach to

4The channel messages for these variables are taken to be zero for all conditional values.
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PN sequence acquisition. This illustrates the importance of cycles in the graphical model

to achieve low complexity iMPAs.

A third graphical model for the m-sequence with g(D) = 1 + D + D15 is shown in

Figure 2.2(d), where hidden variables σk = xk−1 are added and the check nodes enforce

the constraint σk ⊕ σk+1 ⊕ xk−15 = 0 and σk+1 = xk. The three graphs shown in

Figure 2.2 all completely capture the constraint of the m-sequence structure fully and

without redundancy. The graph in Figure 2.2(d) can also be viewed as decomposing the

15-stage shift register into a 2-stage shift register with a long delayed, feedback loop.

This is emphasized by the box in Figure 2.2(d) that outlines the subgraph corresponding

to an FSM with state σk. A natural iMPA schedule for this graph is to activate the

variable nodes to set the transition metrics of the FSM subgraph, then run the FBA on

the two-state FSM subgraph, then send messages back to the variable nodes. This will

be considered one iteration. The details of this iMPA are given in the Appendix.

For completeness, the schedule for the iMPA algorithm running on the graph in Fig-

ure 2.2(b) will be to activate all variable nodes in parallel, then all check nodes in parallel,

etc. One activation of all check and variable nodes will be defined as one iteration.

A final, hard decision on the variable xk is obtained using the soft decision

M[xk] = Mch[xk] +
L−1∑

m=0

MI[x(m) = xk] 0 ≤ k ≤ M − 1 (2.19)

which is the channel metric plus all incoming messages to the variable node xk. Specif-

ically, if M[xk = 1] < M[xk = 0], then x̂k = 1 is decided, otherwise x̂k = 0 is decided.

We modify this standard approach slightly for the PN acquisition problem. Specifically,
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Degree Octal representation of generating polynomial
15 [100003]8,[140001]8,[100021]8,[104001]8
18 [1000201]8,[1004001]8,[1000077]8,[1760001]8
29 [4000000005]8,[5000000001]8
31 [20,000,000,011]8,[22,000,000,001]8

Table 2.1: Examples of sparse generating polynomials for m-sequences [42].

this method can be used to obtain a hard decision on xk for all M time indices. Ide-

ally, these decisions would all be consistent with the same initial state u, but this is not

always observed. Note that decisions on xk for any r-consecutive time indices imply a

decision for the initial state and such decisions can be made at any iteration. Thus, to

provide better performance, bM/rc estimates of the initial state are obtained by using

bM/rc non-overlapping r-variable intervals at each iteration. The iMPA is stopped after

a maximum number of iterations and the state estimate that appears most frequently is

selected as the final decision for the initial state.

2.4.2 Graphical models for other m-sequences

Careful inspection of the development in the previous section implies that our approach

is most desirable when the generating polynomial is sparse, i.e., there are only a few ones

in g(D). For example, considering graphical models of the form shown in Figure 2.2(b),

the number of configurations for each check node grows exponentially with the number

of nonzero feedback coefficients in g(D) and the number of cycles also increases with this

parameter. Some examples from [42] are listed in Table 2.1.

There are many graphical models for a given set of constraints and there is no sys-

tematic procedure for specifying a good cyclic graphical model – i.e., one that will yield
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an iMPA with low complexity and good performance. Although this process remains

more art than science, we illustrate the technique further by considering other generating

polynomials and potential loopy graphical models. A graphical model with no hidden

variables of the form shown in Figure 2.2(b) can be constructed for any LFSR with g(D)

specified. If there are some groupings of non-zero terms in the feedback polynomial,

then one may consider defining an FSM to capture these local constraints as was done in

Figure 2.2(d), for example.

Consider the generating polynomial g34(D) = 1+D19+D20+D33 +D34, so that xk =

xk−19⊕xk−20⊕xk−33⊕xk−34. The cyclic graph with no hidden variables, corresponding

to Figure 2.2(b), is shown in Figure 2.3(a). Another model is shown in Figure 2.3(b) that

uses hidden variables σa
k = xk−20, σb

k = xk−34 and σc
k = xk−33 ⊕ xk−34. This graph has

two acyclic subgraphs that correspond to two-state FSMs with states given by σa
k and

σb
k, respectively. Therefore, this may be viewed as decomposing a 234-state FSM into

two coupled two-state FSMs. One iteration of the corresponding iMPA on this graph

corresponds running the FBA on the two FSMs with activation of all variable nodes and

hidden variable nodes between before each FBA is run.

2.4.3 Relation to LDPC codes and further reading

An Low-Density Parity-Check (LDPC) code [22, 34] is a linear parity check code with

a parity check matrix that has a small number of nonzero entries. Specifically, every

valid codeword c satisfies Hc = 0 where c is an (n × 1) binary column vector and H is

an (n− k)× n binary matrix, where we adopt the conventional notation of k input bits

mapping to n coded bits via (n− k) parity check equations [30]. The standard graphical
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Figure 2.3: Two graphical models for the 34-stage LFSR with g34(D) = 1 + D19 + D20 +
D33 + D34.

model for this is similar to that shown in Figure 2.2(b) where there are n variable nodes

representing the coded bits and the check capture the (n − k) even-parity constraints.

The iMPA algorithm described in the context of Figure 2.2(b) is the same as the standard

iterative decoder for LDPC codes. In fact, the structure imposed by the LFSR in (2.2)

can be written as HLFSRx = 0, where HLFSR is a ((M − r)×M) binary matrix and x

is the vector of xk values. Viewing m-sequences as a form of error correction code is not

new; the corresponding codes are known as maximum length codes [30] and are of rate

r/N in our notation. Since we consider only M ¿ N channel observations, our approach

can be considered iterative decoding of punctured maximum length codes. Thus, the

sparse property of the generating polynomial is akin to the low-density property of the

LDPC H matrix. This interpretation does not imply that the m-sequence defines a code

as powerful as an LDPC code because the structure of the ones in the HLFSR implies a
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relatively localized set of variable constraints and a very regular cycle structure. Both of

these properties are avoided in the construction of good LDPC code parity check matrices.

Adding hidden variables takes one away from the direct correspondence with LDPC

codes, although the hidden binary variables can be viewed as coded bits that have been

punctured from a larger LDPC code. However, the graph in Figure 2.3(b) is very similar

to that of a parallel concatenated convolutional code or “turbo” code [11]. In fact, it is

well known that iterative decoding of turbo codes, LDPC codes and other turbo-like codes

can be viewed as applying the same iMPA paradigm described above. The contribution

of this work is to demonstrate that this same conceptual approach can be applied to the

problem of PN acquisition and this has powerful practical consequences.

There are a number of conventions for graphical modeling and describing the resulting

iMPAs. Our convention most closely follows that of factor graphs [28], which general-

izes the earlier work of Wiberg [70]. Wiberg generalized the work of Tanner [59], who

developed graphical models without hidden variables for linear block codes analogous to

that shown in Figure 2.2(b), to include hidden variables. Wiberg also noted the impact

of cycles and made the connection between iterative decoding and previously known op-

timal algorithms such as the FBA. Other conventions use configuration variable nodes in

place of check nodes [3, 35] and make connection to known approaches in computer sci-

ence [40]. In some of these conventions, directed graphs are used for modeling [14, 35], but

it is undirected cycles that affect the optimality of the resulting iMPA because messages

propagate in all directions. Finally, belief propagation, the sum-product algorithm, the

turbo-principle, and other terms are used synonymously with iterative message passing.
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2.5 Simulation results

2.5.1 Simulation results for m-sequence [100003]8

We first consider simulation of the UWB system with perfect frame synchronization for

the m-sequence generated by an 15-stage LFSR with g(D) = 1+D+D15. Unless otherwise

specified, the performance of the traditional PN acquisition schemes is computed using the

approximations stated in Section 2.3. The threshold for both serial and hybrid searches

is determined using PFA of 10−6. Algorithms are evaluated using PACQ v.s. Ec/N0,

acquisition time, and complexity.

2.5.1.1 UWB Systems with perfect knowledge of frame epoch

The performance of serial, full-parallel, hybrid, and the iMPA corresponding to Fig-

ure 2.2(d) is shown in Figure 2.4. The min-sum and min∗-sum iMPAs have similar per-

formance, each approximately 1.6 dB (in Ec/N0) worse than that of the ML exhaustive

search and 0.3 dB worse than that of the simple serial search. This quantifies the per-

formance degradation due to cycles in the model of Figure 2.2(d) and also suggests that

min-sum processing is preferred in practice for this application since it is less complex and

more robust to imperfect gain control [14]. The performance gain of Cp-correlator hybrid

search, relative to simple serial search, even for large Cp, is insignificant. Though not

explicitly presented here, simulations also show that the iMPA running on Figure 2.2(d)

is about 0.5 dB better than the iMPA running on Figure 2.2(b) (i.e.,the Tanner Graph).

The acquisition times of these algorithms are also given in Figure 2.4. Both full

parallel search and iterative MPAs achieve code acquisition in 128Tc, where Tc is the chip
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Figure 2.4: Comparison of acquisition performance of various approaches for the UWB
system with perfect frame synchronization and m-sequence generated by g(D) = 1 +
D + D15. All iMPA simulations are based on 100 iterations. Simple serial and hybrid
searches use M = 128 chip times per dwell while the iMPA and full parallel approaches
use M = 128 total observations. Part (a) compares the iMPA against the traditional
simple serial and full parallel approaches and (b) compares against hybrid search.
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interval (the frame time for the UWB system in Figure 2.1(a)). In contrast, the mean

acquisition times of simple serial search and 4-correlator and 896-correlator hybrid search

are 2.09 · 106Tc, 5.23 · 105Tc and 2341Tc, respectively. Thus, the iMPAs are 16000 times

faster than the simple serial search and 18 times faster than 896-correlator hybrid search.

These are conservative estimates since the penalty time for false acquisition in the serial

and hybrid case has been assumed to be zero.

The complexity of these algorithms, measured both in terms of memory requirements

(Rm) and the total number of arithmetic operations (Ra), is summarized in Table 2.2.

Values in parenthesis correspond to numerical results obtained using M = 128. Full

parallel search requires a memory 36 times more than the iMPA, and the iMPA requires

a memory 896 times more than the simple serial search but the same as the Cp = 896

hybrid search. In terms of computational complexity, the full parallel requires about 20

times the number of computations required for the iMPA, and simple serial and the two

hybrid strategies each requires about 10 times the number of computations required for

the iMPA. Thus, the iMPA provides a relatively low complexity approach to search all

PN code alignments in parallel with reasonable performance.

Since all of the computations must be performed during the acquisition time, another

measure of interest is this complexity normalized by the mean acquisition time, TACQ.

This is also shown in Table 2.2, where the Ra ·Tc/TACQ of full parallel search is about 20

times that of the proposed iMPA. The proposed iMPA is 1700 times as complex as simple

serial search but only 2 times as complex as the Cp = 896 hybrid search when measured

by this metric.

38



Parallel Serial iMPA hybrid Cp = 4 hybrid Cp = 896
TACQ MTc 2r−1MTc MTc 2r−1MTc/Cp 2r−1MTc/Cp

(128Tc) (2.09 · 106Tc) (128Tc) (5.23 · 105) (2341Tc)
Rm 2r(32736) 1 7M(896) Cp(4) Cp(896)
Ra 2rM 2r−1M 1700M 2r−1M 2r−1M

(4.19 · 106) (2.09 · 106) (2.18 · 105) (2.09 · 106) (2.09 · 106)
RaTc
TACQ

2r 1 1700 Cp Cp

(32767) (4) (896)

Table 2.2: Comparison of acquisition time (TACQ), memory complexity (Rm) and com-
putational complexity (Ra) for the m-sequence defined by g(D) = 1+D +D15. Both full
parallel search and iMPA have M observations, Td = MTc for simple serial search and
hybrid searches, and the iMPA runs 100 iterations. The iMPA is based on the graph of
Figure 2.2(d).

As illustrated in Figure 2.5, doubling the length of the observation window provides

approximately 3 dB of Ec/N0 improvement for both the serial and full parallel search.

This is expected since doubling the number of observations roughly doubles the ratio

between the partial-period correlation [23] under the correct (in-phase) and out-of-phase

alignments. On the other hand, the performance of the iterative MPA does not improve

much when the observation length increases. This is shown in Figure 2.6, where the

minimum value of Ec/N0 required to achieve PACQ = 0.9, (Ec/N0)req, is plotted against

M for the various approaches. The degradation in (Ec/N0)req for the iMPA relative to full

parallel search is less than 2 dB when M = 128, but is more than 5 dB when M = 512.

It is reasonable to conclude that this property of the iMPA is due to the regular cycle

structure of the graph in Figure 2.2(d) – i.e.,each variable is involved in a cycle with

minimum length 30.

Finally, as demonstrated in Figs. 2.4-2.5, the approximate analysis in Section 2.3

matches the simulated performance for full parallel search reasonably well. In the subse-

quent results, only the approximation analysis from Section 2.3 is presented.
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Figure 2.5: The effects of increasing the observation window for various approaches for the
UWB system with perfect frame synchronization and m-sequence generated by g(D) =
1 + D + D15. All iMPA simulations are based on 100 iterations. Simple serial search
use M chip times per dwell while the iMPA and full parallel approaches use M total
observations. Part (a) shows M = 256 and (b) shows M = 512.
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2.5.1.2 Traditional DS/SS systems with no carrier phase knowledge

As described in Section 2.3, traditional approaches use envelope detectors after I/Q PN

code correlators to provide a test statistic when the carrier phase is unknown. This

approach is not applicable to the iMPA because the iMPA does not directly compute

correlations against the PN code, but rather over sequences that capture some sub-

structure (i.e., the two state FSM structure in Figure 2.2(d)).

In order to apply the iMPA approach for the noncoherent DS/SS case, we use a

method based on generalized likelihood [14]. Specifically, a finite number of candidate θc

values are considered. For example, suppose four candidate phase values were considered:

θ̃c ∈ {0, π/2, π, 3π/2}. Then, four versions of the iMPA can be run, each using Mch[xk] =

p(zke
−jeθc |xk) for the specific value of θ̃c. The final decision for the PN alignment is taken

from the iMPA with the best soft-decision information (i.e., largest difference between

best decision and second best decision).

Simulation results are shown in Figure 2.7 along with the curves of the ideal case

where θc is known. The 8 candidate phase approach works well, at the cost of an increase

in complexity by a factor of 8, whereas an additional 2 dB degradation is observed when

4 candidate phase values are used.

This approach can also be viewed as a simple form of joint phase estimation and PN

acquisition, where the phase estimator is based on a simple quantized approximation.

Other approaches for joint parameter estimation and iterative message passing [14, ch. 4]

can also be applied and other unknown parameters (i.e.,a frequency offset) could be

included as well using similar techniques.
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2.5.2 Simulation results for other m-sequences

In Section 2.5.1, the iMPA based on the graphical model in Figure 2.2(d)) was investigated

for one specific m-sequence with g(D) = 1+D+D15, where 3 non-zero gi’s appear at the

two ends. Noting that since binary primitive polynomials have at least 3 non-zero gi’s

and the shortest cycle in the graphs representing of the form in Figure 2.2(d)) an r-stage

LFSR has length at most 2r, this g(D) is the “most favorable” m-sequence with r = 15

for the proposed iMPA acquisition algorithm.

In this section we evaluate our approach for different graphical models and for different

generating polynomials using the UWB system model. The generators considered are:

g22(D) = 1 + D + D22([20000003]8), g18(D) = 1 + D11 + D18 ([1004001]8), g15(D) =

1+D5 +D6 +D8 +D10 +D12 +D15([112541]8) and g34(D) = 1+D19 +D20 +D33 +D34

([300006000001]8). The generated m-sequences are denoted as x22, x18, x15 and x34

respectively, and the corresponding 100 iteration min-sum iterative MPAs are denoted as

iMPA22, iMPA18, iMPA15 and iMPA34, respectively. More specifically, these are based on

the following graphical models: iMPA22 is based on a graph similar to that in Figure 2.2(d)

with σk = xk−1, iMPA18 and iMPA15 are based on (Tanner) graphs similar to that in

Figure 2.2(b), and iMPA34 is based on the graph in Figure 2.3(b). For comparison

purposes, the m-sequence used in Section 2.5.1 is denoted as x0 and the corresponding

iterative MPA is denoted as iMPA0.

Figure 2.8 contains simulation results for iMPA22. Since g22(D) has three non-zero

coefficients appearing at the two ends, it is another “most favorable” m-sequence with

longer period N = 222 − 1 = 4194303. Comparing with curves in Figure 2.4 and 2.5, we
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N = 222 − 1 = 4, 194, 303 for the UWB system with perfect frame synchronization.

observe that the iMPA0 performs 1.5 dB better than iMPA22 when M is 128. A likely ex-

planation for this effect is that the length-128 out-of-phase partial-period correlation [23]

of x22 is much larger than that of x0. However, when M is doubled, iMPA22 gains more

than iMPA0 does, and when M = 512, they have nearly the same performance. This ef-

fect is most likely due to the fact that the underlying graph of iMPA22 has shortest cycles

of the length 44 whereas iMPA0 is running on graph with shortest cycles of length 30.

This is evidence that the property of diminishing benefits of increasing the observation

interval is due in part to the length of the shortest cycle in the graph.
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Figure 2.9: Performance of iMPA18 and iMPA15: 100 iteration min-sum processing on
Tanner graphs. For the UWB system with perfect frame synchronization.

Figure 2.9 contains simulation results for iMPA18 and iMPA15. Although iMPA18

provides performance gain when M is doubled, it does not perform as well as iMPA0 (the

iMPA18 with M = 512 has nearly the same performance as iMPA0 with M = 256). The

length of cycles, 6 in this case, is a likely explanation for this effect. On the other hand,

the iMPA15 performs poorly: for M = 128, the iMPA0 is 3 dB better than the iMPA15;

and when M is doubled, the iMPA15 has less than 1 dB performance gain.

Simulation results of iMPA34 are plotted in Figure 2.10. This includes results for

both iMPA34, based on the graph in Figure 2.3(b), and the iMPA based on the graph
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Figure 2.10: Performance of iMPA for 34-stage LFSR with g34(D) = 1 + D19 + D20 +
D33 + D34: 100 iteration min-sum on Figure 2.3(a) and Figure 2.3(b). For the UWB
system with perfect frame synchronization.

of Figure 2.3(a). The former performs approximately 0.5 dB better than the latter, but

both perform poorly relative to that of full parallel search.

Summarizing the results of the iMPA simulations, we conclude that good performance

is possible for relatively small observation windows, but the performance does not improve

with increasing M as quickly as that of traditional approaches. The likely cause for this

is the regular cycle structure in the underlying graphical models.
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One possible way to alleviate the effects of cycles is to damp the messages to avoid

convergence to a poor solution. In [76], the method of filtering messages to damp out

rapid fluctuations was applied to the problem at hand. Considering an edge labelled ak,

and let the standard extrinsic information [14] after the n-th iteration be MO(n)[ak], the

actually message passed along the edge is

MO(n)
f [ak] = g · (h0 ·MO(n)[ak] + h1 ·MO(n−1)[ak]) (2.20)

where

H(X) = h0 + h1X
−1 =

β√
β2 + (1− β)2

+
1− β√

β2 + (1− β)2
·X−1

is a unit-gain low-pass filter, g is the gain and MO(n)
f [ak] is the filtered soft-out informa-

tion. The parameter β is used to adjust the bandwidth of the filter. Specifically, when

β = 1, there is no filtering.

Simulation results for 100-iteration min-sum iMPA with and without filtering on Fig-

ure 2.2 (d) for the case that M = 128 and M = 256 are plotted in Figure 2.11 (a) and

Figure 2.11 (b) respectively. It can be seen that the method of soft-information filtering

can not improve the performance significantly. Specifically, it yields a performance gain

of approximately 0.3 dB when M = 128 and 0.6 dB when M = 256. On the other

hand, this method increases the memory complexity of the min-sum iMPA significantly.

Therefore, it can be concluded that the method of soft-information filtering is not very

useful to our problem.

In the following section, we will suggest another approach that achieves a similar

performance enhancement with less complexity than the baseline iMPA.
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Figure 2.11: Improve the performance of iMPA using soft-information filtering: 100-
iteration min-sum iMPA on Figure 2.2 (d), (a) M = 128; (b) M = 256.
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2.5.3 Verification scheme

A verification scheme is required if there is the possibility that no signal is present.

For example, in the UWB system in Figure 2.1(a), if the hypothesized frame epoch

is incorrect, there is no signal present during observation times, so the null-hypothesis

should be considered. In this section, we suggest a verification scheme and also use this

verification scheme to better capitalize on additional observations by using the iMPA over

multiple time windows. The following development assumes the UWB model but can be

directly generalized to the noncoherent DS/SS case.

The iMPA can be viewed as a method for generating likely initial states, for each of

which a traditional correlation threshold test could be performed. The proposed heuristic

for post-processing the iMPA decisions is based on this observation. Specifically, the

baseline iMPA using I iterations is run up to V times, each time with a slightly perturbed

set of channel observations. After each of these runs, a state estimate û is obtained and

the correlation statistic v(û) = <{r(û)}, where r(u) is defined in (2.5), is computed.

If v(û) > η, acquisition is declared, otherwise the observation set is perturbed and the

process is repeated. Assuming that PACQ is required to be at least 0.9, which is commonly

used in the code acquisition literature [54], the threshold can be selected as

Pr{v(û) > η} = Q

(
η −√Ec√

N0/2M

)
≥ 0.9 −→ η = Q−1(0.9) ·

√
N0/2M +

√
Ec (2.21)

The way in which the observation set is perturbed is that the signs of the S least

reliable observations are flipped. More precisely, since the sign of <{zk} provides a

decision on xk without regard to the PN code structure, |<{zk}| is a measure of the
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Figure 2.12: Improvement obtained by verification scheme for the UWB system with
perfect frame synchronization and m-sequence generated by g(D) = 1 + D + D15.

quality or reliability of this chip-level observation (i.e.,a large positive (negative) value

corresponds to high confidence that xk = 0 (xk = 1)). So, after each run of the iMPA,

the signs of the S least reliable observations are flipped. Note that after each time the

iMPA is run, the signs of the observations already flipped remain flipped and another

S are selected to be altered. As presented in Figure 2.12, simulation results indicate

that this modification provides an improvement of approximately 0.5 dB, relative to the

iMPA0, with the total number of iterations decreased by roughly 30%, where the modify

algorithm is denoted as iMPA(b).
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To further improve performance, multiple time windows of size M can be combined

together. Specifically, given M2 non-overlapping windows of size M observations each,

the above modified iMPA can be used to obtain an initial state estimate and a correlation

statistic for each. The state estimate with largest correlation is then selected as the final

decision. Clearly, the larger the M2 is, the better the algorithm performs. However, the

larger the M2, the longer the acquisition time. Since rapid acquisition is desired, a small

M2 is preferred. This defines a modified iMPA, denoted by iMPA(v)(I, V, S,M2), where

M2 is the number of non-overlapping observation sets of size M . The parameters V and S

set the maximum number of times the baseline, I iteration, iMPA is run per observation

set and the number of signs flipped between these runs, respectively.

Simulation results for iMPA(v)(I = 25, V = 8, S = 20,M2 = 4) and M = 512 are

shown in Figure 2.13. Compared to the iMPA0 with M = 512 observations, this modified

algorithm has a 3 dB performance gain. Also, using iMPA(v) to combine 4 windows of

size 512 outperforms the baseline iMPA operating on 2048 observations with significantly

less complexity.

Considering a practical scenario where the energy per bit to N0 ratio required is 7 dB

and the spreading ratio is 128 = 21 dB, the PN code acquisition algorithm should work

at (Ec/N0)req = −14 dB. Results from Figure 2.13 show that this can be achieved with

an acquisition time of 2048 chip times using iMPA(v)(I = 25, V = 8, S = 20,M2 = 4).

Referring to Figure 2.5, simple serial search works at (Ec/N0)req, but requires 8.39 · 106

observations on average, which is substantially slower than the proposed approach.
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Figure 2.13: Improvement obtained by verification scheme to combine multiple windows
of observations together. For the UWB system with perfect frame synchronization and
m-sequence generated by g(D) = 1 + D + D15.
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2.5.4 Joint PN and frame epoch acquisition for the UWB system

As a final example we return to the UWB system in Figure 2.1(a) when neither the PN

alignment nor the frame epoch is known at the receiver. A PN acquisition algorithm

should be able to detect the null-hypothesis rapidly so that a hypothesized frame epoch

can be discarded and another is investigated. This cannot be achieved by either serial

search or hybrid search because the whole uncertainty region must be searched before a

null declaration can be made. On the other hand, the iMPA not only achieves rapid code

acquisition when the signal is present, but also can determine null-hypothesis quickly.

This is further enhanced by “early-stopping”, i.e.,it is not necessary to run all the itera-

tions to recognize a null-hypothesis. To do this, another threshold ηES < η is needed.

The frame epoch is estimated in a serial manner (i.e.,starting with ξ̃ = 0, then ξ̃ = 1,

then ξ̃ = 2, etc.) until the correct frame epoch is detected. For a given hypothesized

frame epoch, referring to the iMPA(v) in Section 2.5.3, if the best initial state estimate

obtained has v(û) < ηES , the null-hypothesis is declared. Then, a new hypothesized

frame epoch is considered and the iMPA(v) restarts with a new set of observations based

on this hypothesized frame epoch.

Both the Cp = 896 hybrid search and iMPA(v)(I = 25, V = 8, S = 5,M2 = 1) are

examined for the UWB system since they have similar memory requirements. Referring

to equation (2.1), the m-sequence is generated by g(D) = 1 + D + D15 and the frame

epoch is estimated in a serial manner. Results are summarized in Table 2.3, where the

number of observations of the iMPA(v) is M = 128 and the dwell time for Cp = 896

hybrid search is Td = 128Tf = 128Tc. Furthermore, there are 1000 possible bins to be

54



TACQ Ra

Cp = 896 hybrid search 1.17 · 106Tf 2.10 · 109

iMPA(v) 6.4 · 104Tf 4.5 · 107

Table 2.3: TACQ and Ra of Cp = 896 hybrid search and the proposed iMPA(v): joint
frame/PN synchronization in the UWB example considered in Section 2.5.4.

searched for the frame epoch ξ in each frame (i.e.,Tf/Tp = 1000). The modified iMPA

compares very favorably to hybrid search both in terms of complexity and acquisition

time. Specifically, the proposed iMPA is about 18 times faster and 46 times less complex

than the Cp = 896 hybrid search. Thus, the proposed iMPA-based acquisition algorithm

is even more favorable relative to traditional hybrid/serial search strategies for low duty-

cycle UWB systems where joint frame/PN synchronization is required.

2.6 Conclusion and future work

Iterative techniques are well known to be applicable in a wide range of problems, and

in this chapter we applied this principle to address the PN code acquisition problem.

Simulation results showed that the iterative message passing algorithms based on sparse

cyclic graphical models worked well. Specifically, it is the first method that can search

all possible PN phases in parallel with complexity significantly lower than optimal full

parallel search and good low-SNR performance. This approach is especially favorable

when the block size is relatively small.

One undesirable characteristic of the iMPA approach is that the availability of larger

observation sets does not improve performance as much as in traditional approaches. This

is apparently due to the regular, short cycle structure in the underlying graphical model
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which causes the algorithm to converge based predominately on an initial portion of

the observation window. We addressed this shortcoming by considering verification post-

processing that allows the results of the iMPA operating on sub-windows to be combined.

This same verification processing also enabled us to detect the absence of signal quickly,

thus making this approach even more attractive for low duty cycle UWB waveforms.

A message passing PN search algorithm with low-complexity may also find other

applications in non-cooperative military communication links. For example, the ability

to acquire a long PN code with a short observation interval would enable one to acquire a

spread-spectrum signal with data modulation present. Evaluating the iMPA acquisition

algorithm when multi-path is present, joint channel estimation/PN synchronization, and

hardware architectures are interesting topics for future research.

Finally, it is interesting to consider the design of pseudo-random sequences that are

inherently generated by more random-like sparse loopy graphical models. In this chapter

we considered existing m-sequences and suggested simple graphical models that are not

ideal for application of the iMPA heuristic due to the regular structure of short cycles.

Also, the complexity of the local constraints used is low (e.g., 2-state FSMs), thus making

the effects of this cycle structure likely more detrimental and slowing convergence. It

may be useful to consider LFSR sequences that do not achieve maximum period, but

have generating polynomials with more consecutive ones that can be grouped into FSM

sub-graphs with stronger local structure. Finally, investigating systematic methods for

extracting effective cyclic graphical models for arbitrary systems is a challenging and

interesting direction for further research and significant progress in this direction would

directly apply to the PN acquisition problem considered.
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Chapter 3

Eigenvalue Analysis for Tanner graphs

3.1 Introduction

There are two well known facts that motivate the work in this chapter. First, eigenvalue

analysis has been successfully used in spectral graph theory [16] for quite a long time

to reveal several fundamental properties of graphs, such as the spectrum of the graph,

connectivity and routing, diameter and girth, etc. The one of most interests is the

connection between the eigenvalues and the expansion properties of the graphs. Second, to

understand the behavior of iterative message passing algorithms on Tanner graphs, several

researchers have suggested that iterative decoding would perform well if the underlying

Tanner graphs had good expansion properties [12, 55]. For binary erasure channels, the

concept of stopping sets [17, 37, 51] was introduced as the key parameter that determines

the performance of message passing algorithms. Using our terminology, a stopping set is

a subset of bit variables with vertex expansion no larger than 1
2 . Furthermore, though

not precisely, similar arguments were used to analyze the iterative decoding on binary

symmetric channels and white Gaussian noise channels.
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In contrast to previous work where minimum expansions of subsets of variables are

discussed for ensembles of linear codes, we will derive bounds on the average variable

expansion for an arbitrary, specific Tanner graph. The reason that we want to introduce

average expansion is that, for iterative decoding problems, not only is the expansion

related to the performance, but also does the number of subsets with such expansion

affect performance.

Therefore, after introducing the elements of graph representation and the associated

incidence matrices in Section 3.2, we will demonstrate lower bounds on the vertex expan-

sion of a given Tanner graph. The main technique used is to analyze the eigenvalues and

correspondent eigenvectors of the normalized incidence matrix representing the graph.

Section 3.4 contains summary of this chapter.

3.2 Graph Representations of Linear Codes

Considering a general bipartite graph GT :

GT = (Xn ∪ Yp, E) = ({x0, x1, ..., xn−1} ∪ {y0, y1, ..., yp−1}, E) (3.1)

where Xn and Yp are the sets of vertices and E = {(x, y) : x ∈ Xn, y ∈ Yp} is the set of

edges. This graph can be represented by a p × n incidence matrix Hp = [hij ], the rows

and columns of which correspond to Yp and Xn respectively, such that hij = 1 if there is

an edge between yi and xj , and hij = 0 otherwise, 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ n− 1.
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Let dv denote the degree of vertex v ∈ Xn ∪ Yp, and let S denote a subset of Xn ∪ Yp,

define

ri = weight of row i of Hp = dyi 0 ≤ i ≤ p− 1 (3.2)

cj = weight of column j of Hp = dxj 0 ≤ j ≤ n− 1 (3.3)

N(v) = the set of neighbors of v = {u : (v, u) ∈ E or (u, v) ∈ E} (3.4)

N(S) = the set of neighbors of S (3.5)

vol(S) = the volume of S =
∑

v∈ S

dv (3.6)

Furthermore, we can define

rmax = max
i

ri rmin = min
i

ri cmax = max
j

cj cmin = min
j

cj (3.7)

and the p× n normalized incidence matrix :

Ap = [aij ]p×n =
[

hij√
ri · cj

]

p×n

(3.8)

It can be shown that AT
p Ap and ApAT

p share the same set of non-zero eigenvalues, among

which the unique largest single eigenvalue is 1 [16]. Ordering the eigenvalues of AT
p Ap

as 1 = µ0 > µ1 ≥ µ2... ≥ µp−1 > µp = ... = µn−1 = 0 if p < n or 1 = µ0 > µ1 ≥ µ2... ≥

µn−1 otherwise, with corresponding orthonormal eigenvectors e0, e1, ...en−1, it can also

be shown that

e0 =
T1/2

d 1n√
vol(GT )

(3.9)
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where Td = [tij ] is a n × n diagonal matrix with tjj = cj , 0 ≤ j ≤ n − 1 and all entries

of length-n column vector 1n are 1’s. Similarly, let e′0, e
′
1, ...e

′
p−1 be the orthonormal

eigenvectors of ApAT
p corresponding to eigenvalues 1 = µ0 > µ1 ≥ µ2... ≥ µp−1, then,

e′0 =
(T′

d)
1/21p√

vol(GT )
(3.10)

where T′
d = [t′ij ] is a p× p diagonal matrix with t′ii = ri, 0 ≤ i ≤ p− 1. Now we are ready

to present our results. However, it should be noted that this normalization technique

has a long history and many applications in spectral graph theory. For more information

about spectral graph theory, we direct the interested reader to [16].

Lemma 3.1. For an arbitrary bipartite graph GT = (Xn ∪ Yp, E) and a subset S of Xn

(or Yp), we have

vol(N(S))
vol(S)

≥ 1

µ1 + (1− µ1)
vol(S)

vol(GT )

=
vol(GT )

µ1vol(GT ) + (1− µ1)vol(S)
(3.11)

where µ1 is the second largest eigenvalue of both AT
p Ap and ApAT

p
1.

Proof of Lemma 3.1. Considering S ⊆ Xn, define a n × 1 column vector ψS as

(ψ0, ψ1, ...ψn−1)T , where ψj = 1, if xj ∈ S and ψj = 0, otherwise. Expressing T1/2
d ψS as

a linear combination of the orthonormal eigenvectors of AT
p Ap,

T1/2
d ψS =

n−1∑

j=0

〈T1/2
d ψS , ej〉ej =

n−1∑

j=0

ajej (3.12)

1Similar results can be found in [16] for the graphs of regular row/column weights. However, extensions
to the irregular case discussed in [16] are not fully developed and draw invalid conclusions. The proof of
Lemma 3.1 is based on similar techniques and can be considered an extension of Chung’s work.
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and

a0 = 〈T1/2
d ψS , e0〉 =

ψT
S Td1n√
vol(GT )

=
vol(S)√
vol(GT )

(3.13)

n−1∑

j=0

a2
j = 〈T1/2

d ψS ,T1/2
d ψS〉 = ψT

S TdψS = vol(S) (3.14)

where 〈·, ·〉 denotes the inner product [56] of two column vectors, then

〈ApT
1/2
d ψS ,ApT

1/2
d ψS〉 = ψT

S T1/2
d AT

p ApT
1/2
d ψS (3.15a)

=
n−1∑

j=0

a2
jµj (3.15b)

≤ a2
0 + (

n−1∑

j=1

a2
j )µ1 (3.15c)

=
(vol(S))2

vol(GT )
+

(
vol(S)− (vol(S))2

vol(GT )

)
µ1 (3.15d)

= (1− µ1)
(vol(S))2

vol(GT )
+ µ1vol(S) (3.15e)

Furthermore,

〈ApT
1/2
d ψS ,ApT

1/2
d ψS〉 =

∑

u∈S

∑

v∈S

∑

y : (v, y) ∈ E

and (u, y) ∈ E

1
dy

(3.16a)

=
∑

y∈N(S)

∣∣∣∣∣
N(y) ∩ S√

dy

∣∣∣∣∣
2

(3.16b)

≥

(∑
y∈N(S)

|N(y)∩S|√
dy

√
dy

)2

∑
y∈N(S) dy

(3.16c)

=
(vol(S))2

vol(N(S))
(3.16d)
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where (3.16a) and (3.16b) are generalized from [16, Page 97] and (3.16c) results from

Cauchy-Schwartz inequality. Combining (3.15e) and (3.16d),

(1− µ1)
(vol(S))2

vol(GT )
+ µ1vol(S) ≥ 〈ApT

1/2
d ψS ,ApT

1/2
d ψS〉 ≥ (vol(S))2

vol(N(S))
(3.17)

and (3.11) is the direct result. Similarly, we can prove (3.11) for S ⊆ Yp by using e′i’s

and T′
d defined at (3.10), and ψ′S = (ψ′0, ψ

′
1, ...ψ

′
p−1)

T , where ψ′i = 1, if yi ∈ S and ψ′i = 0

otherwise. ¤

3.3 Lower Bounds on Variable Expansions of Tanner Graphs

3.3.1 Definitions

For a given bipartite graph GT = (Xn ∪ Yp, E), considering a subset Sm ⊆ Xn (or Yn)

with size m, i.e., |Sm| = m, its expansion is defined as:

δ(Sm) =
the number of neighbors of Sm

volume of Sm
=
|N(Sm)|
vol(Sm)

(3.18)

It should be noted that, strictly speaking, what is defined in (3.18) is the“vertex” ex-

pansion. There is also an “edge” expansion defined in the literature of spectral graph

theory. However, as we only consider vertex expansion throughout our work, we use the

term expansion to refer to vertex expansion. It should also be noted that, to analyze the

performance of iterative decoding, typically only subsets of variables, i.e., subsets of Xn,

are considered. Therefore, we only consider Sm ⊆ Xn hereafter. However, the definition

of expansion is not restrict to variables.
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Furthermore, we can define:

δmin(m) = minSm δ(Sm) (3.19)

δmax(m) = maxSm δ(Sm) (3.20)

δavg(m) = 10
BBBBB@

n

m

1
CCCCCA

∑
Sm

δ(Sm) (3.21)

where




n

m


 is the binomial coefficient.

3.3.2 Relations to previous results

In [17, 37, 51], stopping sets were used to determine the performance of iterative decoding

on erasure channels. For Sm ⊆ Xn, we say that Sm is a stopping set if all vertices in

the neighborhood of Sm, i.e., vertices in N(Sm), are connected to at least two different

vertices in Sm. Thus, if Sm is a stopping set, δ(Sm) < 1
2 . It should be noted that

δ(Sm) < 1
2 is a necessary but not sufficient condition for Sm to be a stopping set.

Furthermore, stopping distance [17] was defined as the size of the smallest stopping

sets. Let

mδ = the smallest m such that δmin(m) ≥ 1
2

(3.22)

then

stopping distance ≥ mδ (3.23)
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In [55], the authors discussed iterative decoding of (dv, dc)-regular LDPC codes on binary

symmetric channels, where all variables vertices have degree dv and all parity-checks have

degree dc. They proved that Spielman’s simple sequential decoding algorithm can correct

any αn/2 or fewer random errors if every variable subset of the size αn or less expands by

a factor of at least 3dv/4, where n is the number of variable vertices. Translating into our

notation, it is equivalent to say that Spielman’s simple sequential decoding algorithm can

correct any pattern of m/2 or fewer errors if δmin(i) ≥ 3/4 for 1 ≤ i ≤ m. Similar results

were obtained in [31, 32], where irregular LDPC codes were discussed, and [12], where

Gallager’s hard-decision decoding and soft-decision decoding (with clipping) algorithms

were discussed. Thus, our goal in this chapter is to establish lower bounds on expansion

properties for a given Tanner graph with these results in mind.

3.3.3 Lower bounds on expansion properties of variable subsets

Using Lemma 3.1, we now present lower bounds on expansion parameters defined in (3.18)

and (3.21).

Theorem 3.1. For any subset Sm of Xn,

δ(Sm) ≥ 1
rmax

· vol(GT )
µ1vol(GT ) + (1− µ1)vol(Sm)

(3.24)

where µ1 is the second largest eigenvalue of ApAT
p .

Proof of Theorem 3.1. Follows directly from Lemma 3.1 and (3.18), using the fact

that N(Sm) ≥ vol(N(Sm))/rmax. ¤
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Theorem 3.2. For subsets of Xn with size m,

δavg(m) ≥ 1
rmax

n

m + (n−m)µ1
(3.25)

where µ1 is the second largest eigenvalue of ApAT
p .

Proof of Theorem 3.2. To prove Theorem 3.2, we need to go back to (3.17).

(1− µ1)
(vol(Sm))2

vol(GT )
+ µ1vol(Sm) ≥ (vol(Sm))2

vol(N(Sm))
(3.26a)

⇔(1− µ1)
vol(Sm)
vol(GT )

+ µ1 ≥ vol(Sm)
vol(N(Sm))

≥ vol(Sm)
|N(Sm)|rmax

=
1

δ(Sm)rmax
(3.26b)

Summing both sides of the (3.26b) over all Sm ⊆ Xn such that |Sm| = m, and noting the

fact that
∑

Sm
vol(Sm) =




n− 1

m− 1


 vol(GT ) and

∑
Sm

1 =




n

m


,

∑

Sm

µ1 + (1− µ1)
∑

Sm

vol(Sm)
vol(GT )

≥
∑

Sm

1
δ(Sm)rmax

(3.27a)

⇔




n

m


µ1 +




n− 1

m− 1


 (1− µ1) ≥ 1

rmax

∑

Sm

1
δ(Sm)

(3.27b)

Also, using Cauchy-Schwartz inequality, the right side of (3.27b) satisfies

∑

Sm

1
δ(Sm)

=
∑

Sm

1
δ(Sm)

∑
Sm

δ(Sm)∑
Sm

δ(Sm)
=

∑

Sm

1
δ(Sm)

∑
Sm

δ(Sm)


n

m


 δavg(m)

≥




n

m




1
δavg(m)
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Therefore,




n

m


µ1 +




n− 1

m− 1


 (1− µ1) ≥ 1

rmax




n

m




1
δavg(m)

(3.28)

and (3.25) follows. ¤

However, Theorem 3.2 usually provides relatively weak lower bound on the average

expansion of variable subsets because only the second largest eigenvalue of ApAT
p is used.

This can be observed from Figure 3.1. In the following theorem, another lower bound on

δavg(m) is derived where all the eigenvalues and corresponding eigenvectors are used.

Theorem 3.3. Considering a Tanner Graph GT = (Xn
⋃

Yp, E) with largest variable

degree of L and |Xn| = n, let nl be the number of variable nodes of degree l, 1 ≤ l ≤ L,

and dl be an integer such that 0 ≤ dl ≤ nl, then

δavg(m) ≥




n1∑
..

nL∑
︸ ︷︷ ︸

d1+..+dL=m




n1

d1


 ...




nL

dL




√∑
l ldl




2

rmax




n

m




∑n−1
j=0 µj ã2

j

(3.29)
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where µj’s and ej’s are eigenvalues and the corresponding eigenvectors of ApAT
p and

ã2
j =











n− 1

m− 1



−




n− 2

m− 2







eT
0 Tde0 +




n− 2

m− 2




vol(GT ) if j = 0,







n− 1

m− 1



−




n− 2

m− 2







eT
j Tdej otherwise.

(3.30)

Proof of Theorem 3.3. Let Sm ⊆ Xn, |Sm| = m and define a n×1 column vector ψSm

as (ψ0, ψ1, ...ψn−1)T , where ψj = 1, if xj ∈ Sm and ψj = 0, otherwise. Let

aj(Sm) = 〈T1/2
d ψSm , ej〉 (3.31a)

= ψT
Sm

(
T1/2

d

)T
ej (3.31b)

= ψT
Sm

T1/2
d ej (3.31c)

= eT
j T1/2

d ψSm (3.31d)

combining (3.15b) and (3.16d),

n−1∑

j=0

(aj(Sm))2 µj ≥ (vol(Sm))2

vol(N(Sm))
(3.32)
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Summing the left side of the (3.32) over all Sm ⊆ Xn such that |Sm| = m,

∑

Sm

n−1∑

j=0

(aj(Sm))2 µj =
n−1∑

j=0

µj

∑

Sm

(aj(Sm))2 (3.33a)

=
n−1∑

j=0

µj

∑

Sm

|〈T1/2
d ψSm , ej〉|2 (3.33b)

=
n−1∑

j=0

µj

∑

Sm

eT
j T1/2

d ψSmψT
Sm

T1/2
d ej (3.33c)

=
n−1∑

j=0

µjeT
j T1/2

d

(∑

Sm

ψSmψT
Sm

)
T1/2

d ej (3.33d)

=
n−1∑

j=0

µj ã
2
j (3.33e)

From the definition of ψSm, it can be shown that ψSmψT
Sm

is a n×n binary symmetric

matrix, where the entry at the intersection of the i-th row and the j-th column is 1 if and

only if both xi and xj are in Sm. Then, it can be shown that,

∑

Sm

ψSmψT
Sm

=







n− 1

m− 1







n− 2

m− 2


 · ·




n− 2

m− 2







n− 2

m− 2







n− 1

m− 1


 · ·




n− 2

m− 2




· · · · ·



n− 2

m− 2







n− 2

m− 2


 · ·




n− 1

m− 1







(3.34)

=







n− 1

m− 1


−




n− 2

m− 2





 In +




n− 2

m− 2


1n1T

n

68



where In is the n× n identity matrix and 1n is the n× 1 all one column vector. Noting

that e0 = T
1/2
d 1n√

vol(GT )
, i.e., (3.9), and ej, 1 ≤ j ≤ n − 1, are the orthonormal eigenvectors

of ApAT
p ,

ã2
j = eT

j T1/2
d

(∑

Sm

ψSmψT
Sm

)
T1/2

d ej (3.35a)

=







n− 1

m− 1


−




n− 2

m− 2





 eT

j Tdej +




n− 2

m− 2


 eT

j T1/2
d 1n1T

nT1/2
d ej (3.35b)

=







n− 1

m− 1


−




n− 2

m− 2





 eT

j Tdej +




n− 2

m− 2


 vol(GT )eT

j e0eT
0 ej (3.35c)

=











n− 1

m− 1



−




n− 2

m− 2







eT
0 Tde0 +




n− 2

m− 2




vol(GT ) if j = 0,







n− 1

m− 1



−




n− 2

m− 2







eT
j Tdej otherwise.

(3.35d)
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On the other hand, if summing the right side of the (3.32) over all Sm ⊆ Xn,

∑

Sm

(vol(Sm))2

vol(N(Sm))
≥

∑

Sm

(vol(Sm))2

|N(Sm)|rmax
(3.36a)

=
1

rmax

∑

Sm

vol(Sm)
δ(Sm)

(3.36b)

=
1

rmax

∑

Sm

vol(Sm)
δ(Sm)

∑
Sm

δ(Sm)


n

m


 δavg(m)

(3.36c)

≥ 1
rmax

1


n

m


 δavg(m)

(
∑

Sm

√
vol(Sm)
δ(Sm)

√
δ(Sm))2 (3.36d)

=
1

rmax

1


n

m


 δavg(m)

(
∑

Sm

√
vol(Sm))2 (3.36e)

Combining (3.35d) and (3.36e), we have

δavg(m) ≥ (
∑

Sm

√
vol(Sm))2

rmax




n

m




∑n−1
j=0 µj ã2

j

(3.37)

As the final step, using dl and nl, it is easy to show that

∑

Sm

√
vol(Sm) =

n1∑
..

nL∑
︸ ︷︷ ︸

d1+..+dL=m




n1

d1


 ...




nL

dL




√∑

l

ldl (3.38)
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and (3.29) follows. ¤

3.3.4 Example application of the bounds

Considering [15, 7, 5] cyclic BCH code [30, Ch. 6] as an example, it has cyclic parity-check

matrix

H =




1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 1 0 1 0 0 0 1




(3.39)

and bounds provided in Theorem 3.2 and Theorem 3.3 are evaluated, as shown in Fig-

ure 3.1. It can be seen that Theorem 3.3 provides a much better bound than Theorem 3.2.

Though calculating (3.29) needs more computation, it is much less complex than calcu-

lating δavg(m), which is exponential in n. This exact computation is also shown in

Figure 3.1.

3.4 Summary

In this chapter, using some techniques well-developed in spectral graph theory, we derived

lower bounds on the expansion properties of subsets of variables. Specifically, for any

given Tanner graph represented by an incidence matrix, we showed that the expansion
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code
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of subsets of variables, and the average expansion over all subsets of variables of the

same size m, can be lower bounded by functions of the eigenvalues and corresponding

eigenvectors of the normalized incidence matrix. These theoretical results have been

verified using one simple example. However, as there are more advanced methods in the

literature and there is still noticeable gap between our best bound and the actual value

of the average expansion, it is an interesting question whether the expansion properties

can be bounded by other quantities.

Also, results in this chapter will be used in following chapters to discuss topics related

to the performance of iterative decoding on various channels, because the connection

between the expansion property of subsets of variables and the performance of iterative

decoding is generally believed.
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Chapter 4

Bounds on Stopping Distance and Stopping Redundancy

4.1 Introduction

One of the most important and interesting open problems to the communication society

is to determine the performance of iterative message passing algorithms on loopy graphs.

Some recent work addresses this problem for loopy Tanner graphs on erasure channels [18].

Luby and his colleagues viewed the iterative decoding over Binary Erasure Channel

(BEC) as a discrete random process and modelled its evolution by a system of differential

equations [31, 32]. Using the assertion that the related random variables do not deviate

too much from their expected value over the whole period of decoding, they explicitly

solved the differential equations. Using these results, efficient encoding and decoding of

capacity-approaching codes were also discussed.

Luby’s results were also verified by Richardson and Urbanke using a technique called

density evolution under the assumption that messages passed along different edges are

independent [47]. Along with Schokrollahi, they also proposed some search strategies

and provided search results of degree distributions of irregular LDPC codes, capacities of
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which are very close to the Shannon bound [46]. It should be noted that the application of

Richardson’s work is not limited to erasure channels and details related to other channels

will be discussed in the following chapter.

The reason that many researchers are interested in the BEC is that the performance of

iterative decoding on Tanner graphs on the BEC is completely determined by its stopping

sets [17]. The size of the smallest stopping sets was defined as stopping distance [37, 51].

Focusing on Tanner graph ensembles, Orlitsky, Viswanathan and Zhang [37] derived sev-

eral results on the asymptotic behavior of stopping sets. Specifically, they have demon-

strated a relation between degree distribution of the Tanner graph ensembles and the

likely size of the smallest stopping sets, and argued that the size of these stopping sets

is linear in the block length if certain conditions are satisfied by the degree distribution.

They have also provided bounds on the average block error probability as a function of

the erasure probability of the channel. On the other hand, Pishro-Nik and Fekri [43]

used finite-length analysis to derive bounds on the maximum-likelihood (ML) capacity

on BEC and presented an improved iterative decoding algorithm.

Generally, it is believed that by adding extra check nodes to the graphical repre-

sentation, the performance of the iterative MPAs may be improved. Though various

simulations [75] suggest that it is a plausible conjecture, it has not been proven in gen-

eral. Most recent work by Schwartz and Vardy [51] solved this problem for loopy Tanner

graphs on the BEC. They have demonstrated that, by carefully adding extra parity-

checks, the stopping distance of the Tanner graph can be increased, which will improve

the performance of the iMPAs correspondingly. They define the stopping redundancy as
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the smallest number of parity-checks, which are needed so that the stopping distance of

a Tanner graph representation of the code equals the minimum distance of the code.

Previous investigations have considered the properties of an ensemble of linear codes.

In contrast, we focus on the parameters of an arbitrary linear code and will analyze

eigenvalues and eigenvectors of the “normalized” incidence matrix representing the code.

Using this technique, we will derive two lower bounds on the stopping distance. Since

the stopping distance is always no larger than dmin, the minimum distance of the code,

these lower bounds are also lower bounds on the minimum distance. In particular, if the

graph is regular, they are Tanner’s bit-oriented bound and parity-oriented bound [60]

respectively, i.e., we demonstrate that Tanner’s bounds are actually lower bounds on

stopping distance instead of dmin of regular Tanner graphs.

Furthermore, this technique can also be used to derive bounds on stopping redun-

dancy, which was denoted as ρ(C) in [51]. Previously, Schwartz and Vardy [51] proved

that stopping redundancy is well defined and provided bounds on ρ(C) for the family

of binary Reed-Muller codes, extended Golay Codes and maximum distance separable

(MDS) codes. In this work, we will provide an upper bound on ρ(C) for the family of

simple difference-set codes, i.e.,ρ(C) ≤ n, where n is the length of the code. It has been

noted that similar results were obtained by Vontobel, Smarandache, Kiyacash, Teutsch

and Vukobratovic [67], where minimal codewords and minimum pseudo-codewords of the

families of codes derived from finite geometries were studied.

Using the graph analysis techniques discussed in Chapter 3 lower bounds on stopping

distance for linear codes are derived in Section 4.2, which will also lead to Tanner’s bit-

oriented bound and parity-oriented bound on dmin for regular LDPC [22] codes. We
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continue in Section 4.3 to show connections between our work and the work of Schwartz

and Vardy by providing upper bounds on stopping redundancy of the difference-set codes.

After a short discussion of possible directions for future research 4.4, conclusions are drawn

in Section 4.5.

4.2 Lower Bounds of Stopping Distance

Considering an [n, k, dmin] binary linear code C specified by a p× n incidence matrix Hp

with columns representing bit variables, rows representing parity-checks and p ≥ n− k =

p0, the corresponding Tanner graph [59] GT is:

GT = (Xn ∪ Yp, E) = ({x0, x1, ..., xn−1} ∪ {y0, y1, ..., yp−1}, E) (4.1)

where Xn is the set of variables, Yp is the set of single parity-check constraints and

E = {(x, y) : x ∈ Xn, y ∈ Yp} is the set of edges. It can be shown that the correspondence

between Hp and the traditional parity-check matrix representing C is one-to-one. When

p = p0, Hp is the standard parity-check matrix for the code. For p ≥ p0, there are

redundant parity-checks and we refer to Hp as a redundant parity-check matrix. In either

case, Hp can be interpreted as both a parity-check matrix and the incidence matrix for

the corresponding bipartite graph.

Considering S ⊆ Xn, define bit variables in S as active bits and parity-checks in the

neighborhood of S as active parity-checks [60], respectively, and S is called a stopping set

if all the neighbors of S, i.e., all active parity-checks, are connected to S at least twice.

It is known that, for BEC, the performance of iterative decoding on GT is completely
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determined by its stopping sets [17]. The size of the smallest stopping set was defined

as the stopping distance [51], which is usually denoted as s(Hp) to emphasize that it is a

function of the specific (redundant) parity-check matrix representing the code.

Using Lemma 3.1,we will derive lower bounds on the stopping distance of linear codes.

Since s(Hp) ≤ dmin, these lower bounds are also lower bounds on dmin. In particular,

they lead to Tanner’s results [60] when the underlying Tanner graph is regular.

Theorem 4.1. For the [n, k, dmin] linear code C defined by the Tanner graph GT =

(Xn ∪ Yp, E) with p× n incidence matrix Hp, define cmax, cmin and rmax as in (3.7), the

followings are true:

dmin ≥ s(Hp) ≥ (2/rmax)− µ1

1− µ1
· vol(GT )

cmax
= B(Hp) (4.2)

dmin ≥ s(Hp) ≥ 1 + (2cmin − 2)/rmax − µ1cmax

(1− µ1)cmax
· 2vol(GT )
cmaxrmax

= P (Hp) (4.3)

where vol(GT ) is the volume of GT as defined in (3.6), B(Hp) and P (Hp) denote the

bit-oriented bound and parity-oriented bound obtained using Hp, respectively, µ1 is the

second largest eigenvalue of AT
p Ap and Ap as defined in (3.8).

Using Tanner’s terminology, we call (4.2) and (4.3) bit-oriented bound and parity-

oriented bound, respectively. The bit-oriented bound, i.e., (4.2), becomes meaningless if

µ1 > 2/rmax. However, 1 + (2cmin − 2)/rmax − µ1cmax may still be positive which makes

parity-oriented bound meaningful.

Proof of Theorem 4.1. Since stopping distance is always no larger than minimum dis-

tance [51], we only need to prove the second inequalities of (4.2) and (4.3).
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Let S1 ⊆ Xn be a smallest stopping set, N(S1) is then the set of active parity-checks

and s(Hp) = |S1|. Applying Lemma 3.1,

|N(S1)|rmax

vol(S1)
≥ vol(N(S1))

vol(S1)
≥ vol(GT )

µ1vol(GT ) + (1− µ1)vol(S1)
(4.4)

where µ1 is the second largest eigenvalue of AT
p Ap. Since any active parity-check in

N(S1) must be connected to at least two active bits, |N(S1)| ≤ 1
2vol(S1). Therefore,

rmax

2
≥ vol(GT )

µ1vol(GT ) + (1− µ1)vol(S1)
(4.5)

⇒ s(Hp) = |S1| ≥ vol(S1)
cmax

≥ 2/rmax − µ1

1− µ1
· vol(GT )

cmax
(4.6)

To prove (4.3), let S2 ⊆ Yp be the set of active parity-checks of a smallest stopping

set,

|N(S2)|cmax

vol(S2)
≥ vol(N(S2))

vol(S2)
≥ vol(GT )

µ1vol(GT ) + (1− µ1)vol(S2)
(4.7)

Considering N(S2), it contains all active bits of the stopping set and some other bits

that are not in the stopping set. For those active bits, all their neighbors are included in

the set of S2, and for the rest bits, some of their neighbors are in S2 but others are not.

Therefore, let cavg(N(S2)) be the average number of edges connected to N(S2) that are

counted in vol(S2), i.e., |N(S2)|cavg(N(S2)) = vol(S2), then

(4.7) ⇒ cmax

cavg(N(S2))
≥ vol(GT )

µ1vol(GT ) + (1− µ1)vol(S2)
(4.8)

79



Also, among the ri neighbors of any node yi ∈ S2, at least 2 of them are active bits

and the remaining ri − 2 bits have at least one edge connected to S2. In other words,

assuming the ri neighbors of yi are x1, x2, .., xri, among which x1 and x2 are active bits

and x3, ..xri each has at least one edge connected to S2, it can be shown that at least

(c1 + c2 + ri − 2)/ri = 1 + (c1 + c2 − 2)/ri ≥ 1 + (2cmin − 2)/rmax edges connected to a

neighbor of yi are counted in vol(S2) on average. Thus,

cavg(N(S2)) ≥ 1 + (2cmin − 2)/rmax (4.9)

(4.8) ⇒ cmaxrmax

2cmin + rmax − 2
≥ vol(GT )

µ1vol(GT ) + (1− µ1)vol(S2)
(4.10)

⇔ vol(S2) ≥ 1 + (2cmin − 2)/rmax − µ1cmax

(1− µ1)cmax
· vol(GT )

Noting that s(Hp)cmax ≥ 2|S2| ≥ 2vol(S2)/rmax, (4.3) is obtained. ¤

Lower bounds on minimum distance and stopping distance when the underlying graph

is regular can be considered as a special case of Theorem 4.1, which is summarized in the

following corollary.

Corollary 4.1. The dmin of regular LDPC codes defined by the p×n parity-check matrix

Hp satisfies

dmin ≥ s(Hp) ≥ n(2c− η1)
cr − η1

(4.11)

dmin ≥ s(Hp) ≥ 2n(2c + r − 2− η1)
r(cr − η1)

(4.12)
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where n = |Xn| and η1 = µ1cr is the second largest eigenvalue of HT
p Hp.

Proof of Corollary 4.1. It can be shown that, if Hp is regular, i.e., c0 = ... = cn−1 = c

and r0 = ... = rp−1 = r, the n× n square matrix HT
p Hp has η0 = cr as its unique largest

single eigenvalue and η1 = µ1cr as its second largest eigenvalue, where µ1 is the second

largest eigenvalue of AT
p Ap and Ap is the normalized incidence matrix defined in (3.8).

The proof of Corollary 4.1 is then straightforward by plugging cmax = cmin = c, rmax = r,

vol(GT ) = nc and η1 = µ1cr into (4.2) and (4.3) respectively. ¤

It can be seen that the part of (4.11) and (4.12) corresponding to dmin coincide with

Tanner’s bit-oriented bound and parity-oriented bound for regular LDPC codes [60, The-

orem 3.1,Theorem 4.1], respectively. We have also noted that Shin [53] generalized Tan-

ner’s work by deriving lower bounds on dmin for block-wise irregular LDPC codes, where

some degree of regularity is still necessary. Our main contributions are the derivation of

low bounds for general LDPC codes and demonstrating that Tanner’s bounds are indeed

lower bounds on stopping distance, and an immediate result of this is the explanation

why Tanner’s bounds on dmin are not tight.

Considering Gallager’s (20, 3, 4) regular LDPC code [22, Figure 2.1], it has dmin = 6,

and the given redundant parity-check matrix has stopping distance of 6, r = 4, c = 3 and
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µ1 = 0.5. The bit-oriented bound does not apply, the parity-oriented bound is, however,

4. The parity-check matrix for this code is given as

H15 =




1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1




4.3 The Difference-set Codes: an Upper Bound on Stopping

Redundancy

Stopping redundancy was introduced by Schwartz and Vardy [51]. Lower and upper

bounds were also provided for binary and ternary extended Golay codes, the family
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of Reed-Muller codes and Maximum-Distance Separable (MDS) codes. In this section,

we will provide an upper bound on stopping redundancy of the family of difference-set

codes, which is also known as the type-I 2-D projective geometry LDPC, or PG-LDPC,

codes [27]. Specifically, assuming C is a difference-set code of length n and minimum

distance dmin, we will show that there exists a n× n redundant parity-check matrix Hn

such that s(Hn) = dmin, therefore ρ(C) ≤ n.

Though there are relatively few codes in the family of difference-set codes, they are

nearly as powerful as the best known cyclic codes in the range of practical interest [30].

Furthermore, several recent experiments [27, 33, 77] suggested that this family of codes

can perform very well under iterative decoding. It should also be noted that, in [67],

pseudo-weight enumerators of pseudo-codewords of both type-I 2-D PG-LDPC and type-

I 2-D Euclidean geometry LDPC, EG-LDPC, were discussed, and stopping redundancy

of these two families of codes can be derived from their pseudo-weight enumerator as well.

4.3.1 A lemma on cyclic parity-check matrices

To analyze the algebraic properties of cyclic codes, the components of a row vector1

v = (v0, v1, ..., vn−1) are usually treated as coefficients of a polynomial, i.e., v(X) =

v0 + v1X + v2X
2 + ... + vn−1X

n−1. Since the correspondence between v and v(X) is

one-to-one, we use the terms “row vector” and “polynomial” interchangeably hereafter.

1Different from previous sections, where column vectors are used, row vectors are used here.
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It is known that a cyclic code is uniquely specified by its parity polynomial [30], which

is of degree k and defined as:

h(X) = 1 + h1X + h2X
2 + ... + hk−1X

k−1 + Xk (4.13)

The corresponding parity-check matrix can be written as:

Hp0 =




h∗(X) mod (Xn + 1)

X h∗(X) mod (Xn + 1)

·

·

Xp0−1h∗(X) mod (Xn + 1)




p0×n

=




h∗(X)

X h∗(X)

·

·

Xp0−1h∗(X)




p0×n

=




h∗0

h∗1

·

·

h∗p0−1




p0×n

(4.14)

where p0 = n− k, h∗(X) = Xkh(X−1) is the reciprocal of h(X) and h∗i , 0 ≤ i ≤ p0 − 1,

are row vectors. A parity-check matrix of this form is called a cyclic parity-check matrix

because h∗i is the i-th cyclic shift of h∗0 to the right, 1 ≤ i ≤ p0 − 1.

It is also known that the parity-check matrix for a given cyclic code is usually not

unique. One interesting result is the following lemma.

Lemma 4.1. Assuming that h(X) is the parity polynomial of an [n,k,dmin] cyclic code

C, if there exists another polynomial z(X) = h(X)f(X) such that:

• f(X) is a non-zero polynomial of degree f < p0 = n− k;

• the greatest common divisor of f(X) and Xn +1 is 1, i.e., GCD(f(X), Xn +1) = 1;
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then,

Hp0(z) =




z∗(X) mod (Xn + 1)

X z∗(X) mod (Xn + 1)

·

·

Xp0−1z∗(X) mod (Xn + 1)




p0×n

=




z∗0

z∗1

·

·

z∗p0−1




p0×n

(4.15)

is also a cyclic parity-check matrix for C, where

z∗(X) = Xk+fz(X−1) = Xkh(X−1)Xf f(X−1) = h∗(X)f∗(X) (4.16)

is the reciprocal of z(X).

Proof of Lemma 4.1. To show Hp0(z) is a valid parity-check matrix of C, it suffices to

show that its row vectors belong to the row space of Hp0 and they are linearly independent.

Since the row space of Hp0 is of dimension p0, the row space of Hp0(z) is then the same

as the row space of Hp0. Therefore, Hp0(z) is a cyclic parity-check matrix for C.

Noting that z∗(X) = h∗(X)f∗(X) and GCD(f∗(X), Xn +1) = 1, z∗0 is a non-zero row

vector and is a linear combination of the row vectors of Hp0. Also, the cyclic property of

the row space of Hp0 guarantees that it contains all the cyclic shift of z∗0 to the right.

To prove part two, assuming that the row vectors of Hp0(z) are linearly dependent,

thus there exist a set of variables αi ∈ {0, 1}, 0 ≤ i ≤ p0 − 1, such that not all of them

are zero and

α0z∗0 ⊕ α1z∗1 ⊕ ...⊕ αp0−1z∗p0−1 = 0 (4.17)
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where ⊕ is modulo-2 addition and 0 is a zero row vector. Equivalently,

α0z∗(X)⊕ α1Xz∗(X)⊕ ...⊕ αp0−1X
p0−1z∗(X) ≡0 mod (Xn + 1) (4.18a)

f∗(X)
[
α0h∗(X)⊕ α1Xh∗(X)⊕ ...⊕ αp0−1X

p0−1h∗(X)
] ≡0 mod (Xn + 1) (4.18b)

Noting that GCD(f∗(X), Xn + 1) = 1, thus

[α0 ⊕ α1X ⊕ ...⊕ αp0−1X
p0−1]h∗(X) ≡0 mod (Xn + 1) (4.19a)

⇔ α0h∗0 ⊕ α1h∗1 ⊕ ...⊕ αp0−1h∗p0−1 = 0 (4.19b)

contradicts with the fact that row vectors of Hp0 are linearly independent. Thus, row

vectors of Hp0(z) are linearly independent.

4.3.2 An upper bound on stopping redundancy of the difference-set

codes

Definition 4.1. [30][Ch.5] Let D = {d0, d1, ..., dq} be a set of q +1 non-negative integers

such that 0 ≤ d0 < d1 < ... < dq ≤ q(q +1), and for each 0 < t < q(q +1), there exist one

and only one ordered pair 0 ≤ i 6= j ≤ q such that di − dj ≡ t mod q(q + 1), then D is a

perfect simple difference set of order q. ¤

It can be shown that, if D is perfect simple difference set, D′ = {0, d1 − d0, d2 −

d0, ..., dq−1−d0, dq−d0}, D = {q(q+1)−dq, q(q+1)−dq−1, ..., q(q+1)−d1, q(q+1)−d0}

and D
′ = {0, dq−dq−1, ..., dq−d1, dq−d0} are also perfect simple difference sets. It is also

known that perfect simple difference sets exist for order q = αβ, where α is prime and β
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is any positive integer. However, the case of q = 2β corresponds to the most commonly

studied difference-set codes.

Definition 4.2. [30][Ch.5] Let D = {0, d1, ..., dq} be a perfect simple difference set of

order q = 2β, define the polynomial z(X) = 1+Xd1+Xd2+...+Xdq . Let n = q(q+1)+1 =

22β + 2β + 1, k = 22β + 2β − 3β and h(X) be the greatest common divisor of z(X) and

Xn + 1, i.e., h(X) = GCD(z(X), Xn + 1), the cyclic code defined by the parity-check

matrix with p0 = n− k,

Hp0 =




h∗(X)

X h∗(X)

·

·

Xp0−1h∗(X)




p0×n

=




h∗0

h∗1

·

·

h∗p0−1




p0×n

(4.20)

is an [n, k, dmin = q + 2] difference-set code, where h∗(X) is the reciprocal of h(X). ¤

Theorem 4.2. The stopping redundancy of an [n,k,dmin] difference-set code is less than

or equal to n, where n = q2 + q + 1, k = q2 + q − 3β, dmin = q + 2, q = 2β and β is any

positive integer.
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Proof of Theorem 4.2. Since h(X) = GCD(z(X), Xn + 1), where polynomial z(X)

corresponds to the perfect simple difference set D of order q = 2β, there exists a polynomial

f(X) such that z(X) = h(X)f(X) and GCD(f(X), Xn + 1) = 1. Using Lemma 4.1,

Hp0(z) =




z∗(X) mod (Xn + 1)

X z∗(X) mod (Xn + 1)

·

·

Xp0−1z∗(X) mod (Xn + 1)




p0×n

=




z∗0

z∗1

·

·

z∗p0−1




p0×n

(4.21)

is a parity-check matrix of C. By adding row vectors corresponding to Xiz∗(X) mod (Xn+

1), p0 ≤ i ≤ n− 1, to Hp0(z), a n× n redundant parity-check matrix Hn(z) is formed,

Hn(z) =




z∗(X) mod (Xn + 1)

·

Xp0−1z∗(X) mod (Xn + 1)

·

Xn−1z∗(X) mod (Xn + 1)




n×n

=




z∗0

·

z∗p0−1

·

z∗n−1




n×n

(4.22)

which has both rows and columns weight q + 1. Then

An(z) =
1

(q + 1)2
Hn(z) (4.23)
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Furthermore, 1 = µ̃0 > µ̃1 = µ̃2...µ̃n−1 = q
(q+1)2

are eigenvalues of An(z)TAn(z), which

has diagonal entries of 1
q+1 and off-diagonal entries of 1

(q+1)2
, i.e.,

An(z)TAn(z) =




1
q+1

1
(q+1)2

1
(q+1)2

· · · 1
(q+1)2

1
(q+1)2

1
q+1 · · · · 1

(q+1)2

· · · · · · ·
1

(q+1)2
1

(q+1)2
1

(q+1)2
· · · 1

q+1




(4.24)

Then, the bit-oriented bound is

s(Hn(z)) ≥
2

q+1 − q
(q+1)2

1− q
(q+1)2

(q2 + q + 1) = q + 2 = dmin (4.25)

Therefore, the stopping distance of Hn(z) equals dmin of the code, and the stopping re-

dundancy of the family of difference-set codes, ρ(C) ≤ n = the length of the code. ¤

It should be noted that the class of difference-set codes is a subset of a larger class

of linear codes known as one-step majority-logic decodable code, so is the class of Reed-

Muller codes which was used in [51] as an example. Therefore, its stopping redundancy

must satisfy another upper bound, which is derived in Appendix B for one-step majority-

logic decodable codes. However, upper bounds in B are too weak to be useful here.

Furthermore, for redundant parity-check matrix Hn(z), we can not only show that its

stopping distance equals the minimum distance, but also the number of smallest stopping

sets equals the number of minimum weight codewords, i.e.,
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Theorem 4.3. For the family of [n, k, dmin] difference-set codes,

Ad[dmin, C] = As[s(Hn(z)),Hn(z)] (4.26)

where

Ad[ω, C] = number of weight ω codewords (4.27)

As[|S|,Hp] = number of size |S| stopping sets (4.28)

Proof of Theorem 4.3. To show (4.26), it suffices to show that, by letting variables in

it be 1 and the rest be 0, every smallest stopping set corresponds to a minimum weight

codeword. Without loss of generality, assuming that {x1, x2, ..., xq+2} forms a stopping set

and y1, y2, ... yq+1 are neighbors of x1, there exists at least one xj, 2 ≤ j ≤ q+2, such that

yi ∈ N(xj) because {x1, x2, ..., xq+2} is a stopping set. However, as |N(x1)
⋂

N(x2)| =

... = |N(x1)
⋂

N(xq+2)| = 1 and |N(x1)| = q + 1, it can be shown that there is only one

such xj for each yi so that all neighbors of x1 are of degree two. Similarly, we can prove

this for xj, 2 ≤ j ≤ q + 2. Thus, let xj = 1 for 1 ≤ j ≤ q + 2 and xj = 0 otherwise, a

minimum weight codeword, which is of weight q + 2, is formed. ¤

Using (4.26), we can argue that, when the erasure probability is small, the performance

of the iterative message passing algorithm can be very close to that of the ML decoding.

This can be verified using the [21, 11, 6] difference-set code C21 derived from the difference

set D = {0, 3, 4, 9, 11}, where h(X) = z(X) = 1 + X3 + X4 + X9 + X11, dmin = 6 and

Ad[6, C21] = 168. It can be shown that ρ(C21) ≤ 12, and As[s(Hp(z)),Hp(z)] = 168 if

90



p 10 11 12 13 14 15 16..20 21
s(Hp(z)) 5 5 6 6 6 6 6 6

As[s(Hp(z)),Hp(z)] 8 4 186 171 169 168 168 168

Table 4.1: s(Hp(z)) and As[s(Hp(z),Hp(z)] v.s. the number of rows of Hp(z)

p ≥ 15, where Theorem 4.2 and Theorem 4.3 provide bounds ρ(C21) ≤ 21 and p ≥ 21,

respectively. These results are summarized in Table 4.1.

Figure 4.1 evaluates the performance of iterative decoding for C21 on the erasure

channel as a function of p, the number of rows of the cyclic redundant parity-check matrix

Hp(z) in the form similar to (4.22). The general belief, that the iterative decoder will

perform better if redundant parity-checks are added to the Tanner Graph, is supported by

this simulation. For example, when the channel erasure probability is 0.12, the probability

of block error is 0.001 if p = 10, but this number is 0.00048 if p = 15 and 0.00047 when

p = 21. The performance of ML decoding is also shown in 4.1 and is observed to be

identical to that of the p = 21 iterative decoding algorithm.

Furthermore, Figure 4.2 evaluates the performance of iterative decoding for C21 on the

AWGN channel as a function of p. It can be seen that, by increasing the number of parity-

checks from 10 to 21, there is a performance gain of 0.5 dB (in Eb/N0) and the curve

corresponding the p = 21 is only 0.25 dB away from that of the optimal ML decoding.

Also, it should be noted that the performance gain is not significant by increasing p from

14 to 21.
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Figure 4.1: Performance of iterative decoder as a function of p and Maximum-Likelihood
decoder for [21, 11, 6] difference-set code on BEC. Note that the curve of ML decoding
and iterative decoding with p = 21 coincide.
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4.4 Discussions for future research

In the previous section, we have demonstrated that, by properly adding redundant parity-

checks to a Tanner graph representing simple difference-set codes, the performance of the

associated iMPA can be improved. Generally, however, an open issue is the development

of methods to choose such redundant parity-checks in order to improve the performance

of the iterative decoding. In other words, given a p × n parity-check matrix Hp, the

question is how to find a non-zero row vector hopt from the row space [56] of Hp such

that the iMPA associated with

Hp+1 =




Hp

hopt




performs better in the sense of block error rate (or bit error rate) than the iMPA associated

with Hp and the iMPA associated with

H′
p+1 =




Hp

h′




where h′ 6= hopt is any non-zero vector belongs to the row space of Hp.

It is believed that this problem is hard in general because the relation between proper-

ties of a Tanner graph and the performance of the associated iMPA is generally unknown.

Even for the BEC case, where the performance of iterative decoding is determined by the

stopping sets of the Tanner graph, the search for hopt is hardly possible because finding
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minimum stopping sets for any given parity-check matrix is as hard as finding the mini-

mum distance of the code and the problem of finding dmin is known to be intractable for

large codes [9, 62].

However, noting that the lower bounds in Theorem 4.1 are functions of the specific

(redundant) parity-check matrix being used, a simple heuristic to this problem is to find

some row vector h from the row space of Hp such that the lower bound obtained by (4.2)

and/or (4.3) increases.

One problem with this approach is that Theorem 4.1 usually provides relatively weak

lower bounds on stopping distance. Noting that the main reason for this is because only

the largest and second largest eigenvalues of AT
p Ap are used, if adding h makes AT

p Ap

have two non-zero eigenvalues, i.e.,one is the unique single eigenvalue µ0 = 1 and the

other is eigenvalue µ1 of multiplicity p− 1 if p ≤ n or n− 1 if p > n, the lower bounds in

Theorem 4.1 can be tight.

Therefore, define µ(p) and σ2(p) as the average and variance of non-zero eigenvalues

of AT
p Ap except µ0 = 1, respectively, i.e.,

µ(p) =





1
p−1

∑p−1
j=1 µj = TR(AT

p Ap)−1

p−1 if p ≤ n,

1
n−1

∑n−1
j=1 µj = TR(AT

p Ap)−1

n−1 otherwise.

(4.29)

σ2(p) =





1
p−1

∑p−1
j=1[µj − µ(p)]2 = TR[(AT

p Ap)2]−1

p−1 − [µ(p)]2 if p ≤ n,

1
n−1

∑n−1
j=1 [µj − µ(p)]2 = TR[(AT

p Ap)2]−1

n−1 − [µ(p)]2 otherwise.

(4.30)
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where TR(AT
p Ap) denotes the trace [56] of the n×n matrix AT

p Ap, and let B(Hp) be the

bit-oriented bound as defined in (4.2), we propose the following search strategy,

1. For a given [n, k, dmin] linear code C, the algorithm starts with its parity-check

matrix Hp = Hn−k, B(Hp) and σ2(p) are then obtained using (4.2) and (4.30),

respectively;

2. Search for a row vector h from the row space of Hp such that B(Hp+1) > B(Hp)

and σ2(p + 1) < σ2(p), where

Hp+1 =




Hp

h




3. If B(Hp+1) = dmin, the search stops; otherwise, p ←− p + 1 and go back to step 2.

We believe this algorithm may work because, by making B(Hp) monotonically increase

as a function of p, B(Hp) may approach dmin. Also, by making σ2(p) monotonically

decrease as a function of p, the obtained lower bound becomes tighter. However, it should

be pointed out that this algorithm is not “optimal” in general because its goal is to find

some redundant parity-check matrix of C, the stopping distance of which equals dmin, but

not such matrix with the minimum number of rows. In other words, this algorithm may

be useful for finding upper bounds on stopping redundancy for a given linear code, but

not the stopping redundancy.

Furthermore, it should be noted that the convergence of the algorithm is not guar-

anteed and we leave this as one of the future research problems for interested readers.

Another issue of this algorithm is that, it is possible that B(Hp) < dmin but σ2(p) is
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very small which makes it very hard to find new h. Therefore, it may be necessary for

the algorithm to go back to some previous stage and restart the search. Considering the

following hypothetical scenario: for a given [n, k, dmin] linear code C with parity-check

matrix Hp, the previous algorithm is carried of K times, and a series of K redundant

parity-check matrices, Hp+1,...Hp+k,...Hp+K , are obtained. However, it is observed that

B(Hp+K) < dmin and σ2(p) is close to 0. To make further search possible, a number of the

obtained matrices may be dropped, say, from Hp+k+1 to Hp+K , the search restarts with

Hp+k and a new series of redundant parity-check matrices is obtained. How to decide

and how many matrices that need to be dropped are two research topics related to this

problem.

Another interesting application of Theorem 4.1 is whether it can help finding dmin

of a given LDPC codes, which is known to be NP-hard in general [9, 62]. Noting that

B(Hp) may converge to the minimum distance as p goes to infinity, if the proposed search

algorithm can be carried several times with different initial conditions and B(Hp) always

converges to the same number, it is conceivable that the minimum distance of the code

is obtained. Again, this may be an interesting research topic for interested readers.

4.5 Summary

Using results from the previous chapter, we derived lower bounds on the stopping distance

of linear codes defined by a given parity-check matrix, and pointed out the relationship

between our bounds and Tanner’s bit-oriented bound and parity-oriented bound on min-

imum distance for regular LDPC codes.
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Furthermore, these lower bounds can lead an upper bound on stopping redundancy

of the family of difference-set codes. Theoretical and simulation results also showed that,

by properly adding redundant parity-checks to the parity-check matrix of difference-set

codes, not only can we form redundant parity-check matrix with stopping distance equal

minimum distance, but also the spectrum of stopping sets is close to that of the valid

codeword. Therefore, the performance of iterative decoding is close the that of the ML

decoding as well.
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Chapter 5

Expansions of Tanner Graphs and Message-Passing

Algorithms

5.1 Introduction

Though it is known that the performance of iterative decoding over Tanner graphs on

erasure channels is determined by the spectrum of the stopping sets of the Tanner graphs,

the same problem is still considered unsolved for binary symmetric channels (BSCs) and

additive white Gaussian noise (AWGN) channels.

Using density evolution, three main results are obtained in [47]. Namely, let Pn
e (l) be

the expected (over the ensemble of the code, the choice of the message and the realization

of the noise) fraction of incorrect messages passed in the l-th iteration for a LDPC code

of length n, Richardson and Urbanke first proved that the actual fraction of errors in the

l-th iteration for a particular instance among the ensemble converges to Pn
e (l) as n goes to

infinity. Then, they showed that Pn
e (l) converges to the cycle-free case, i.e.,the graphical

representation does not contain cycles of length 2l or less. Third, they demonstrated the

threshold phenomenon, i.e., letting the channel be characterized by a single parameter
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σ, there exists a channel parameter σ∗ such that limn→∞ l→∞ Pn
e (l) = 0 if σ < σ∗, and

this limit is always non-zero if σ > σ∗. Later, by computer search, some good degree

distributions in the sense that their design rates approach the Shannon capacity were

obtained [46].

Sipser and Spielman proposed another approach to this problem [55]. By introducing

the expansion of variable nodes and defining several iterative decoding algorithms on

BSCs, they proved that, for regular LDPC codes, their algorithms can correct a fraction

of errors if the expansion properties of the underlying graphs is good enough. For example,

as was pointed out in section 3.3.2, for Spielman’s simple sequential decoding algorithm,

any error pattern containing no more than m/2 random errors can be corrected if δmin(i) ≥

3/4 for 1 ≤ i ≤ m. Also, they argued that their codes are asymptomatically good because

it can be proved that, with high probability, a randomly generated regular LDPC code

will have relatively good expansion property. An extension of their approach to irregular

LDPC codes was provided in [32].

The expander graph argument on regular LDPC codes was later generalized by Bur-

shtein and Miller [12], where Gallager’s hard-decoding and soft-decoding [22] were ana-

lyzed for irregular LDPC codes and similar results were obtained. However, their results

should be considered as arguments suggesting why iterative decoding on randomly gen-

erated Tanner graphs can perform well, rather than rigorous proofs relating the variable

expansions of the graphical representation with the performance of associated iMPAs.

In this chapter we propose a possible solution to a related problem, which can be

stated as follows. Let G1 and G2 be two different graphical representations of a binary

linear code C, and let the same, in the sense of definition of messages, rule of updates,
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schedule and stopping criterion, iterative message-passing algorithm runs on both graphs;

is there a systematic way to determine which instance will have smaller block error rate

by just analyzing the graphs?

Our criteria for this problem also use the expansion properties of the graphs. How-

ever, we use average expansions instead of minimum expansions, which were used in [55],

because we believe that the former will relate the graphical representation and perfor-

mance of the associated iMPAs more accurately. Also, we propose a practical method

for calculating lower bounds on the average expansions, where results from Chapter 3 are

used.

It should be noted that our theory has not been fully developed so that results in this

chapter are preliminary. The main criteria is provided in section 5.2 and we argue that

they are valid, which is also verified by examples.

It should also be noted that there are other approaches trying to address similar

problems. By deriving algebraic eigenvalue-based lower bound and linear-programming-

based lower bound on minimum distance, Tanner [60] suggested that the performance

of iterative decoding on loopy Tanner graphs is related to these lower bounds. His re-

sults were generalized by Vontobel and Koetter [65] to derive lower bounds on minimum

pseudo-weight of pseudo-codewords [20]. Also, as suggested by Gallager [21, 22], the

girth and cycle structures are believed to be related to the performance of iMPAs on

loopy graphs [2, 3, 25, 57, 57, 63]. More recently, Halford and Chugg [24] try to evaluate

the performance of iMPAs on loopy graphs using the distribution of short cycles.
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5.2 Average Expansions v.s. Performance of Associated

iMPAs

Before we provide the two criteria that relate the average expansions of variable subsets

of Tanner graphs with the performance of associated iMPAs running on them, several

things must be clarified. Otherwise, the comparison would be unfair and the conclusion

would be of limited use. Namely, we should clarify the channel model, how the decoder

processes, and how the algorithm is evaluated.

The first criterion focuses on the performance of Spielman’s simple sequential decod-

ing [55] over “different” Tanner graphs on the BSCs. Assuming G1 and G2 are both

Tanner graphs with n variables and p parity-checks, we consider them the “same ” if one

can be obtained from the other by simply changing the order of the variables and/or the

order of the parity-checks. Otherwise, they are different Tanner graphs.

Iterative decoding on AWGN channels is discussed in the second criterion. Regarding

the processing of this decoder, the “standard” soft-decision iMPA on Tanner graphs

is used, which has been well developed and used by many researchers over the years

[2, 3, 14, 28, 29, 39, 40, 70]. Details about this algorithm have been covered in Section 2.4

regarding the processing on Figure 2.2(b).

In both cases, block error rate is used to evaluate the performance of the algorithms.

5.2.1 System model

Consider the binary linear code C defined by a Tanner graph with n variable vertices and p

parity-checks, as shown in Figure 5.1. Let n×1 column vector x = (x0, x1, .., xk, .., xn−1)T

102



x
0

x
1 x

i
x

n-1

y
0

y
j

y
p-1

Figure 5.1: A Tanner Graph

represent a valid codeword of C, where xi ∈ {0, 1}, 0 ≤ i ≤ n−1, and these n variables are

transmitted to the receiver together, which is referred to as a block. At the receiver side,

n observations, zi, 0 ≤ i ≤ n− 1, are available, and a properly defined iterative decoding

algorithm over the Tanner graph will try to recover x from z = (z0, z1, ..., zk, ...zn−1)T .

Let the output of the decoder be x̃, a block error is declared if x̃ 6= x.

The two signal models adopted in this chapter are the BSC and AWGN channel,

respectively. For the BSC, zi ∈ {0, 1}, and

Pr{zi = 1|xi = 1} = Pr{zi = 0|xi = 0} = 1− ε

Pr{zi = 0|xi = 1} = Pr{zi = 1|xi = 0} = ε

where ε is defined as the cross-over probability of the channel. For AWGN, zi’s are real

numbers and

zi =
√

Es(−1)xi + ni 0 ≤ i ≤ n− 1 (5.1)

where
√

Es is the energy per transmitted symbol and ni’s are zero-mean and N0/2-

variance white Gaussian random variables.
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5.2.2 The iterative decoder

Two iterative decoders are considered in Criterion 5.1 and Criterion 5.2, respectively.

The first one is Spielman’s simple sequential decoding for BSCs defined in [55, pp.

1713]. Given n observations from the BSCs, zi ∈ {0, 1}, 0 ≤ i ≤ n−1, the p parity-checks

are calculated. A parity-check is even if the sum of the connected variables are even,

and it is odd otherwise. Spielman’s sequential decoding algorithm checks the number of

even parity-checks and the number of odd parity-checks that are in the neighborhood

of each variable. The value of a variable is flipped if more odd parity-checks than even

parity-checks are in its neighborhood. After the value of a variable has been flipped, all

parity-checks are calculated again. This process is repeated until no such variable can be

found.

The second decoder is the standard soft-decision iMPA. In short, the decoding process

starts from the n variable vertices, where the initial symbol-level soft-decision channel

information and messages 1 from connected parity-checks are available. Based on those

provided information and the constraint that values of the bit inferred by the messages

should be the same, the variables calculate extrinsic information [14] and pass them to

the connected parity-checks. Similar processes are performed at the p parity-checks based

on the constraint that module-2 sum of the bits inferred by the messages should be 0,

and extrinsic information are passed back from a parity-check to its neighbors as well.

The process of passing messages from variables to the parity-checks and back from the

parity-checks to the variables defines one iteration. This iterative processing is repeated

1During the first iteration of the decoding process, those messages are set to 0 if the processing is in
minus-log metric domain or 1 if it is in the probability domain.
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a fixed number of times and the final hard-decisions are made on the n variables. If

the final decoded block is different from the transmitting one, a block error is declared.

Unlike the Spielman’s simple sequential decoding, a soft-decision iterative decoder does

not terminate automatically.

5.2.3 The proposed criteria

Criterion 5.1. For two different Tanner graphs, G1 and G2, representing the same

binary linear code C of length n, both have n variables and p parity-checks and assume

that the minimum distance of C is dmin. If

δavg(m,G1) ≥ δavg(m, G2) (5.2)

for every 1 ≤ m ≤ dmin, where δavg(m,G1) and δavg(m,G2) denote the average expansion

for subsets of size m of G1 and G2 respectively, we claim that, with high probability,

Spielman’s simple sequential decoding on G1 will outperform the one on G2 in the sense

that it can achieve lower block error rate. ¤

As Spielman’s simple sequential decoding will terminate automatically, we compare

the final achievable block error rate. Also, as not all error patterns beyond the minimum

distance can not be corrected by maximum-likelihood (ML) decoding either, we can only

consider average expansion of subset of the size no larger than dmin.

Though we do not have a rigorous proof for this criterion, it be argued that this is

correct with high probability. Considering a general Tanner graph GT = (Xn∪Yp, E), let

Sm be a subset of Xn such that |Sm| = m. Without loss of generality, assuming that the
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all-zero codeword is transmitted, and the received observations can be written in vector

form as:

z = x + ψSm = 0 + ψSm (5.3)

where the n × 1 column vectors ψSm = (ψ0, ψ1, ...ψn−1)T , such that ψj = 1, if xj ∈ Sm

and ψj = 0, otherwise, correspond to error patterns caused by the channel. Thus, the

probability of block error is

Pe = Pr(x̃ 6= 0|x = 0) (5.4a)

= 1− Pr(x̃ = 0|x = 0) (5.4b)

= 1−
n∑

m=0

∑

Sm

εm(1− ε)n−mPr(ψSm is a correctable error pattern) (5.4c)

≤ 1−
dmin∑

m=0

∑

Sm

εm(1− ε)n−mPr(ψSm is a correctable error pattern) (5.4d)

where ε is the cross-over probability of the BSC.

Using the expander graph arguments [12, 55], we know that an error pattern ψSm is

correctable if the expansion of Sm is larger than some value, denoted as δth
2. Therefore,

Pe ≤ 1−
dmin∑

m=0

∑

Sm : δ(Sm)>δth

εm(1− ε)n−m (5.5)

because δ(Sm) > δth is a sufficient condition that ψSm corresponds to a correctable error

pattern.

2It should be noted that this δth is determined by the decoding algorithm and the channel. For
example, for erasure channel, δth = 1/2; and for Spielman’s simple sequential decoding on regular LDPC
codes for the BSCs, δth = 3/4.
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As discussed in Section 3.3.2, previous work on this problem focused on the minimum

expansion of subsets of variables. However, as suggested by (5.5), not only the expansion,

but also the number of subsets with such expansion matters. Thus, the expansions of

all subsets of size no larger than dmin can be computed, an upper bound on the block

error rate can be obtained. For two different Tanner graphs G1 = {X(1)
n

⋃
Y

(1)
p , E(1)}

and G2 = {X(2)
n

⋃
Y

(2)
p , E(2)} representing the same binary linear [n, k, dmin] code C, and

the same well defined δth, if it can be shown that, for ever 1 ≤ m ≤ dmin, the number of

size m subsets of X
(1)
n with expansion larger than δth is larger than the number of size m

subsets of X
(2)
n with expansion larger than δth, we can claim that the iterative decoder

on G1 will perform better with high confidence.

Unfortunately, exhaustively calculating expansions of all subsets is hardly possible

for practical communication systems, when n is usually very large. However, we can

argue that, with high probability, if δavg(m,G1) ≥ δavg(m,G2) then the number of size m

subsets of X
(1)
n with expansion larger than δth is larger than the number of size m subsets

of X
(1)
n with expansion larger than δth. The reason for this is that, for randomly generated

parity-check matrices, it is conceivable that the distribution of δSm concentrates on its

average value.

Though we have not been able to prove Criterion 5.1, we believe that it suffices to

take two steps to prove it. First, we may want to show that, for a given ε, approximation

of Pe using (5.5) will be sufficiently close to the real block error rate. Then, we may

want to show, for subsets of size m, the concentration of their expansions around the

average expansion. It should be noted that similar methods have been used by several
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researchers [31, 32, 46, 47] to derive the evolution of messages. Therefore, it is reasonable

to believe this would work for our criterion as well.

As the noises presented in practical communication systems are usually modelled as

zero-mean, white and Gaussian, our second criterion is summarized in the following.

Criterion 5.2. For two different Tanner graphs, G1 and G2, representing the same

binary linear code C of length n, both have n variables and p parity-checks and assume

that the minimum distance of C is dmin. If

δavg(m,G1) ≥ δavg(m, G2) (5.6)

for every 1 ≤ m ≤ dmin, where δavg(m,G1) and δavg(m,G2) denote the average expansion

for subsets of size m of G1 and G2 respectively, we claim that, with high probability, the

standard soft-decision iMPA on G1 will outperform the one on G2 in the sense that it

can achieve lower block error rate for the same number of iterations. ¤

Again, we do not have a rigorous proof for this claim, and we believe it would be

much harder to prove it than to prove Criterion 5.1. Thus, we think this should be more

properly considered as a heuristic.
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At the end, we would like to present one example to argue the correctness of the

criteria. Considering the [15, 7, 5] cyclic BCH code as an example, it has parity-check

matrix in cyclic form as

Hcyc =




1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 1 0 1 0 0 0 1




(5.7)

and parity-check matrix in systematic form as

Hsys =




1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

1 1 0 1 1 1 0 0 0 0 0 1 0 0 0

0 1 1 0 1 1 1 0 0 0 0 0 1 0 0

1 1 1 0 0 1 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 1




(5.8)
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m 1 2 3 4 5
δavg(m,Gcyc) 1.0 0.91 0.81 0.72 0.64
δavg(m,Gsys) 1.0 0.90 0.79 0.69 0.60

Table 5.1: Average expansions of [15, 7, 5] cyclic BCH code

Let Gcyc and Gsys be the Tanner graphs correspond to Hcyc and Hsys respectively, and

Table 5.1 contain results of for the average expansions of both cases as a function of m. It

can be seen from Table 5.1 that δavg(m,Gcyc) > δavg(m,Gsys) for every 1 ≤ m ≤ 5 = dmin,

thus Criterion 5.2 would suggest that the iMPA on Gcyc have a lower block error rate.

This has been verified using Figure 5.2. From left to right, the two curves are the block

error rate for iMPA on Gcyc, and the block error rate for iMPA on Gsys respectively,

where the and x-axis and y-axis correspond to Eb/N0 and block error rate respectively.

5.2.4 Applying Theorem 3.3

In the previous section, we have provided two criteria suggesting that there may be rela-

tions between the average variable expansions of Tanner graphs and the performance of

iterative decoding algorithms on them. However, calculating average variable expansions

is not an easy task either. Thus, it is also conjectured that we can use the lower bounds

on the average expansion, δavg(m), which was derived in Theorem 3.3. Again, use the

[15, 7, 5] cyclic BCH code as an example, it can be seen from Table 5.2 that the Gcyc has

larger lower bound for every 1 ≤ m ≤ 5 = dmin, the performance of soft-decision iMPA

on Gcyc is indeed better.
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cyclic BCH code

m 1 2 3 4 5
Lower Bound on δavg(m,Gcyc) using Theorem 3.3 0.94 0.80 0.69 0.60 0.53
Lower Bound on δavg(m,Gsys) using Theorem 3.3 0.70 0.59 0.50 0.43 0.38

Table 5.2: Lower bound on δavg(m) of [15, 7, 5] cyclic BCH code
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5.3 Summary

Two criteria have been provided in this chapter trying to connect the performance of iter-

ative message-passing algorithms with the expansion property of the underlying graphical

representations. Specifically, we have considered Spielman’s simple sequential decoding

for BSCs and the standard soft-decision algorithm for AWGN, and argued that these

criteria are true with high probability. An example was also provided.

However, we have not been able to provide a rigorous proof for these criteria. It would

be of great interest to prove these criteria, either theoretically or heuristically via more

empirical evidence . Section 5.2.3 contains a short discuss suggesting a possible proof of

Criterion 5.1.

112



Chapter 6

Conclusion and Future work

There are two main contributions of this work. First, we applied the well-known iterative

decoding techniques to the code acquisition problem, which existed in the literature for

a long time. As the applications of traditional methods are usually limited, we found,

mostly by computer simulations, that the iterative MPA approach provides a promising

solution to the code acquisition problem. Specifically, our approach approximate the full

parallel search with the same order of acquisition time, but with significantly less com-

plexity. This approach seems also promising to solve the PN code acquisition problems

for the low duty cycle UWB systems, where extremely fast code acquisition is critical.

We also tried to use the techniques of eigenvalue analysis to relate the performance

of iterative decoders on loopy Tanner graphs to the expansion properties of these graphs.

Similar work has been done by many researchers for the binary erasure channels, and

our approach can provide interesting results related to theirs. For more general binary

symmetric channels and additive white Gaussian channels, we proposed two criteria sug-

gesting the possible connections between the average variable expansions of Tanner graphs

and the performance of associated iMPAs. However, as average variable expansions is not
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easy to compute either. A practical heuristic was proposed as well by deriving an lower

bound on the average variable expansions first, then suggested that it could be used as a

replacement of the real average expansion.

It is believed by us that, in both cases, we have only scratched the surface of the prob-

lems. However, these two problems are closely related. The code acquisition motivates

us to find good graphical representation, which is the problem being addressed by the

eigenvalue analysis. Using the eigenvalue analysis and if the two criteria are true with

high probability, we can find good graphical representation for the PN code acquisition

problems.

Among the open problems, the most important ones will be to prove the correctness,

or the confidence of the claims, of the criteria, either theoretically or heuristically. For

Criterion 5.1, we have pointed out a possible route to reach the proof. For Criterion 5.2,

though similar argument may still be true, we believe heuristic computer simulations may

be much practical solution.

Also, we have derived lower bounds on the stopping distance and used them to de-

rive an upper bound on the stopping redundancy of the difference-set codes. However, we

believe that the applications of those results may be beyond that, and bounds on the stop-

ping redundancy of other family of binary linear codes are interesting research problems

as well. For example, in Appendix B, we provide a weak upper bound on the stopping

redundancy of the family of one-step majority-logic decodable code, and these bounds

may be significantly improved if more algebraic structures of the codes are brought into

considerations.
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Appendix A

Iterative MPA on Figure 2.2 (d)

In this appendix, we clarify the messages passed along edges in Figure 2.2(d). A check
node from Figure 2.2(d) is redrawn in Figure A.1. The configurations of this check
node are indexed by the value of the transition variable τk = (σk, σk+1). Also shown in
Figure A.1, specific labels are given to messages passed along these edges. The chip-level
soft-decision channel information is

Mch[xk] =
2
√

Eczk(−1)xk

N0
xk = 0, 1 (A.1)

where zk is the relevant real part of the observation in (2.3) and the local configuration
metric is

M[τk] = Fk[σk] + RIk[xk] + LIk[xk−15] + Bk+1[σk+1] (A.2)

Note that the values of the variables σk, xk, xk−15 and σk+1 are determined when a
conditional value of τk is set and the dependency of these variables on τk is not explicitly
shown in this appendix. Excluding the Fk[·] and Bk+1[·] from M[τk], the remaining sum
may be viewed as a generalized state transition metric used during the FBA stage of the
iMPA.

With (A.2), a compact way of expressing the message updating in min-sum form is1:

Fk+1[σk+1] = minτk:σk+1
M[τk]− Bk+1[σk+1] σk+1 = 0, 1 (A.3)

Bk[σk] = minτk:σk
M[τk]− Fk[σk] σk = 0, 1 (A.4)

LOk[xk−15] = minτk:xk−15
M[τk]− LIk[xk−15] xk−15 = 0, 1 (A.5)

ROk[xk] = minτk:xk
M[τk]− RIk[xk] xk = 0, 1 (A.6)

MO[xk] = LOk+15[xk] + ROk[xk] xk = 0, 1 (A.7)
LIk[xk−15] = ROk−15[xk−15] + Mch[xk−15] xk−15 = 0, 1 (A.8)

RIk[xk] = LOk+15[xk] + Mch[xk] xk = 0, 1 (A.9)

Similarly, min∗-sum messages can be obtained by replacing min operators in equations
(A.2)-(A.6) by min∗.

1Since the term subtracted in each of (A.3)-(A.9) is constant over all terms in the minimization, each
equation can be written in a form where (A.2) is simplified by cancelling that term priori to minimization.
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Figure A.1: Detailed notation of the input and output messages associated with one check
node in Figure 2.2(d).

Pseudo-code of the proposed iMPA algorithm over
Figure 2.2(d)

1. Initialization: F0[σ0], BM [σM ], i ← 0, I ← Maximum Number of iterations;

Mch[xk] ← 2
√

Eczk(−1)xk

N0
; LIk[xk−15] ← Mch[xk−15]; RIk[xk] ← Mch[xk]

2. Forward-backward algorithm: updating Fk[σk] and Bk[σk], 0 ≤ k ≤ M − 1, sequen-
tially using (A.3) and (A.4) respectively. F0[σ0] → F1[σ1] → ...Fk[σk]... → FM [σM ];
BM [σM ] → ...Bk+1[σk+1] → Bk[σk]... → B0[σ0].

3. Update LOk[xk−15] and ROk[xk]: 0 ≤ k ≤ M − 1, using equation (A.5) and (A.6)
respectively. Then, i ←− i + 1, LIk[xk−15] and RIk[xk] are updated using equation
(A.8) and (A.9) respectively.

4. Selecting candidate decisions: bM/15c non-overlap (intermediate) estimates of the
initial state are obtained using Mk[xk] = Mch[xk] + MO[xk], 15i ≤ k ≤ 15i + 14,
i = 0, 1, .., bM/15c. The decision rule is: x̂k = 0 when Mk[xk = 0] < Mk[xk = 1],
and x̂k = 1 otherwise.

5. If i < I, go to step 2; otherwise, the estimate that appears the most times in step
4 is selected to be final estimate of the initial state.
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Appendix B

Upper bounds on the Stopping Redundancy of the one-step
MLD codes

The goal of this appendix is to provide an upper bound on the stopping redundancy of
the class of the one-step majority-logic decodable (MLD) codes.

B.1 One-step majority-logic decodable codes

For a given binary matrix H, suppose that there exist I vectors in its row space,

w1 = (w10, w11, ..., w1,n−1)

w2 = (w20, w21, ..., w2,n−1)

· ·
wI = (wI0, wI1, ..., wI,n−1)

such that:

• w1,n−1 = w2,n−1 = ...wI,n−1 = 1

• For j 6= n− 1, there exist at most on vector whose i-th component is a “1”.

These I vectors are said that be orthogonal on the (n−1)-th digit. We call them orthogonal
vectors [30].

Definition B.1. [30][Ch.7] A cyclic code with minimum distance dmin is said to be
completely orthogonalizable in one step if and only if it is possible to form I = dmin − 1
parity-checks orthogonal on an error digit.

Definition B.2. [30][Ch.7] A cyclic code is one-step majority-logic decodable (MLD) if
it is completely orthogonalizable in one step.

It should be noted that the majority-logic decoding was first introduced as an effective
scheme for decoding certain classes of block codes. Therefore, in strict sense, every
linear block code is one-step majority-logic decodable. However, it can be shown that
one-step majority-logic decoding is most effective for cyclic codes that are completely
orthogonalizable in one step. The term one-step majority-logic decodable code is usually

123



reserved for the class of codes that are completely orthogonalizable in one step only.
Details of the majority-logic decoding and the class of majority-logic decodable codes can
be found in [30][Ch.7,Ch.8]

B.2 Upper Bounds on the Stopping Redundancy of the
one-step MLD codes

Referred to Section 3.1, for an [n, k, dmin] linear code C specified by a p× n parity-check
matrix H, where p ≥ n− k, the corresponding bipartite graph GT is denoted as:

GT = (B ∪ Y,E) = ({b1, b2, ..., bn} ∪ {y1, y2, ..., yp}, E) (B.1)

It can be shown that, if we define

s(bj ,H) = size of the smallest stopping sets include bj 1 ≤ j ≤ n (B.2)

then the stopping distance of the graph

s(H) = min
j

s(bj ,H) (B.3)

If we further know that C is an one-step majority-logic decodable code, there exists a
I × n matrix

H0 =




1 h11 h12 · h1,n−1

1 h21 h22 · h2,n−1

· · · · ·
· · · · ·
1 hI1 hI2 · hI,n−1




(B.4)

which has row vectors orthogonal on the 0-th digit and I = dmin − 1. It can be shown
that the j-th, 0 ≤ j ≤ n− 1 cyclic shift of H0 to the right

H0 =




h1,n−j · h1,n−1 1 h11 · h1,n−j−1

h2,n−j · h2,n−1 1 h21 · h2,n−j−1

· · · · · · ·
· · · · · · ·

hI,n−j · hI,n−1 1 hI1 · hI,n−j−1




(B.5)

contain the I row vectors orthogonal to the j-th digit. Then, we have the following
theorem.

Theorem B.1. The stopping redundancy of one-step majority-logic decodable codes is
less than or equal to (dmin− 1)n+n− k, where n and dmin are the length, the dimension
and minimum distance of the code respectively.
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Proof of Theorem B.1. This theorem can be proved by using the redundant parity-check
matrix,

H̃ =




H
H0

·
Hi

·
Hn−1




(B.6)

where Hj’s are defined in (B.5). It can be shown that

s(bj , H̃) ≥ I + 1 0 ≤ j ≤ n− 1 (B.7)

⇒ s(H̃) = min
j

s(bj , H̃) ≥ I + 1 = dmin (B.8)

However, since stopping distance is always no larger than dmin,

s(H̃) = dmin (B.9)

ρ(C) ≤ number of rows in H̃ = I · n + p = (dmin − 1) · n + n− k (B.10)

Bounds in Theorem B.1 can be improved a little by noting the fact, to make H̃ a
valid parity-check matrix for the code, not all rows of H are needed. Since the I rows in
H0 are linearly independent, we can safely remove I properly selected rows from the H
in H̃ and still make row space of H̃ unchanged. Therefore, the improved upper bound

Theorem B.2.
ρ(C) ≤ (dmin − 1)n + n− k − dmin + 1 (B.11)

where C is an one-step majority-logic decodable code of length n, dimension k and mini-
mum distance dmin.

Consider the family of Reed-Muller codes as examples. Our Theorem B.1 applies
since Reed-Muller codes are one-step majority-logic decodable codes. Also, Schwartz and
Vardy [51] have provided an upper bound for Reed-Muller codes, specifically, for µ-th

order RM code RM(µ,m) with parameters n = 2m − 1, k =
∑µ

i=0

(
m
i

)
, dmin =

2m−µ − 1, the upper bound is
ρ(C) ≤ dmin · k/2 (B.12)

Results are summarized in Table B.1. Unfortunately, our upper bound is very weak as
compared to Schwartz and Vardy’s work. However, this phenomenon does make sense as
our work is on for a general one-step majority-logic decodable without any knowledge of
the algebraic structure of the code.
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R(µ, 7) R(1, 7) R(2, 7) R(3, 7) R(4, 7) R(5, 7)
k 8 29 64 99 120

dmin 63 31 15 7 3
Schwartz-Vardy bound (B.12) 252 450 480 350 180

bound (B.11) 7921 3878 945 616 259

Table B.1: Upper bounds on stopping redundancy of the Reed-Muller codes
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