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Analogue Filter Design Syllabus
This course of lectures deals with the design of passive and 

Analogue Filter Design Syllabus

active analogue filters

Th t i th t ill b d i l dThe topics that will be covered include:

Frequency-domain filter approximationsq y pp
Filter transformations
Passive equally-terminated ladder filtersq y
Passive ladder filters from filter design tables
Active filters – cascade synthesis
Component value sensitivity
Copying methods
Generalised immittance converter (GIC)
Inductor simulation using GICs
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Analogue Filter Design PrerequitiesAnalogue Filter Design Prerequities

You should be familiar with the following topics:

SE1EA5: Electronic CircuitsSE1EA5:  Electronic Circuits
Circuit analysis using Kirchhoff’s Laws
Thévenin and Norton's theorems
The Superposition Theorem
Semiconductor devices
Complex impedances
Frequency response function – gain and phase
The infinite-gain approximation

SE1EC5: Engineering MathematicsSE1EC5: Engineering Mathematics
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Analogue Filter Design

Filters are normally used to modify the frequency spectrum of

Analogue Filter Design

Filters are normally used to modify the frequency spectrum of 
a signal and are therefore specified in the frequency domain:
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Analogue Filter Design

The design procedure for analogue filters has two distinct

Analogue Filter Design

The design procedure for analogue filters has two distinct 
stages  

In the first stage a frequency response function H(jω) is 
derived which meets the specificationderived which meets the specification

In the second stage an electronic circuit is designed to e seco d s age a e ec o c c cu s des g ed o
generate the required frequency response function  

Filter circuits can be constructed entirely from passive 
components or can contain active elements such as 
operational amplifiers
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Frequency-Domain Filters

The design of frequency-domain filters usually starts by

Frequency Domain Filters

The design of frequency domain filters usually starts by 
deriving a low-pass prototype filter normalised to a cut-off 
frequency of 1 rad/sq y

This prototype filter is then transformed to the required type p yp q yp
and cut-off frequency:

Low passLow-pass
High-pass
Band-passBand-pass
Band-stop

This procedure results in a frequency response function 
which meets the specification
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Frequency-Domain Filters
An ideal normalised sharp cut-off low-pass filter has a 

Frequency Domain Filters
p p

frequency response:

Gain

|H(jω)|=1 0|H(jω)|=1.0

Angular0 0

Unfort natel s ch a filter is not realisable and it is

ω =1.0 frequency
0.0

0.0

Unfortunately such a filter is not realisable and it is 
necessary to use approximations to the ideal response
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Frequency-Domain Filters

The frequency response function of a circuit containing no

Frequency Domain Filters

The frequency response function of a circuit containing no 
distributed elements is a rational function of jω :

n
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210 ωωωω ++++

= n
nbbbb

H
)j(..)j()j(

)j( 2
210 ωωω

ω
++++

=

The first stage in the design is to choose suitable values for 
the order n and the coefficients a0..an and b0..bn

Five different approximations will be considered: ButterworthFive different approximations will be considered: Butterworth, 
Chebychev, Inverse Chebychev, Elliptic and Bessel
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Butterworth Approximation

The B tter orth appro imation gain is ma imall flat

Butterworth Approximation

The Butterworth approximation gain is maximally flat

That is to say the gain in the pass band (below ω=1) is as flatThat is to say the gain in the pass-band (below ω=1) is as flat 
as possible

The gain falls off monotonically in both pass-band (below 
ω=1) and stop-band (above ω=1)ω=1) and stop-band (above ω=1) 

The gain of a Butterworth filter of order n is give by:The gain of a Butterworth filter of order n is give by:

H 1)j(
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Butterworth Approximation

Gain

Butterworth Approximation

Gain
(dB)

0
-3
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log(freq)
ω=1 ω= ωs
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Butterworth ApproximationButterworth Approximation

The poles pk of a Butterworth frequency response function 
are given by:are given by:

kkk yxp j+=

where:
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Values of k from 1 to n are substituted into this formula 
giving the n poles
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Butterworth Approximation

The poles of the B tter orth response p p p are

Butterworth Approximation

The poles of the Butterworth response p1, p2, ... , pn are 
then combined to give the Butterworth frequency response 
function:function:

1
)j()..j()j(

1)j(
21 nppp

H
−−−

=
ωωω

ω

The Butterworth approximation is an all-pole responseThe Butterworth approximation is an all pole response

That is, the numerator consists simply of a constant andThat is, the numerator consists simply of a constant and 
there are no zeros
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Butterworth ApproximationButterworth Approximation

3rd-order Butterworth approximation:

π
6
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66

k pk

1 – 0.5 +j 0.866
2 1 0 +j 0 02 – 1.0 +j 0.0
3 – 0.5 – j 0.866
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Butterworth Approximation
Poles of H(jω):

Butterworth Approximation
(j )

– 0.5 + j 0.866 – 0.5 – j 0.866 – 1.0 + j 0.0

Combining the poles:
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Butterworth ApproximationButterworth Approximation
What order n is required to meet specification?

Gain (dB)

0
-3-3

gs

log(freq)
ω=1 ω= ωs

School of Systems Engineering - Electronic Engineering Slide 16James Grimbleby

s



Butterworth Approximation
The gain g of a Butterworth filter, expressed in dB, is given 
b

Butterworth Approximation

by:
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The stop-band edge is at ωs, and the stop-band gain is 
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Butterworth Approximation
Example:

Butterworth Approximation
p

Pass-band gain: gp ≥ -3 dB
Stop-band gain: gs ≤ -40 dB
Pass-band edge: ωp = 1.0
Stop-band edge: ωs = 1.5

Using the formula for the filter order:

51log20
0.40

log20 1010
=

−
≥

s

sgn
ω

36.11
5.1log20log20 1010

≥
sω

Thus a Butterworth approximation of order 12 is required to 
meet the specification
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Butterworth Approximation

Response of 12th-order Butterworth approximation:

Butterworth Approximation

Response of 12th order Butterworth approximation:
n 

(d
B

)

gp ≥ -3 dB

G
ai

n gp
gs ≤ -40 dB
ωp = 1.0p
ωs = 1.5

Frequency (Hz) 1 00 01
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Chebychev Approximation

The Cheb che appro imation gain oscillates bet een 0

Chebychev Approximation

The Chebychev approximation gain oscillates between 0 
dB and gp dB in the pass-band (below ω=1)  

In the stop-band (above ω=1) the gain falls off 
monotonicallymonotonically

The Chebychev approximation is not a singleThe Chebychev approximation is not a single 
approximation for each n, but a group of approximations 
with different values of the pass-band ripple gwith different values of the pass band ripple gp

Like the Butterworth approximation, the ChebychevLike the Butterworth approximation, the Chebychev
approximation is an all-pole response
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Chebychev Approximation

Gain

Chebychev Approximation

Gain
(dB)

0
gp

l (f )

gs

log(freq)
ω=1 ω= ωs
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Chebychev Approximation

Response of 6th-order Chebychev approximation:

Chebychev Approximation

Response of 6th order Chebychev approximation:
n 

(d
B

)

gp ≥ -3 dB

G
ai

n gs ≤ -40 dB
ωp = 1.0

1 5ωs = 1.5

Frequency (Hz) 1.00.01

School of Systems Engineering - Electronic Engineering Slide 26James Grimbleby

q y ( )



Inverse Chebychev ApproxInverse Chebychev Approx

The Inverse Chebychev approximation gain falls off 
monotonically in the pass-band (below ω=1)  

In the stop-band (above ω=1) the gain at first falls to -∞ dB, 
d th ill t b t dB d dBand then oscillates between -∞ dB and gs dB

The Inverse Chebychev approximation is not a singleThe Inverse Chebychev approximation is not a single 
approximation for each n, but a group of approximations with 
different values of the stop band ripple gdifferent values of the stop-band ripple gs

The Inverse Chebychev approximation has imaginary zerosThe Inverse Chebychev approximation has imaginary zeros
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Inverse Chebychev Approx

Gain

Inverse Chebychev Approx

Gain
(dB)

0
gp

gs

log(freq)
ω=1 ω= ωs
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Inverse Chebychev Approx

Response of 6th-order Inverse Chebychev approximation:

Inverse Chebychev Approx

Response of 6th-order Inverse Chebychev approximation:
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Elliptic ApproximationElliptic Approximation

The elliptic response gain oscillates between 0 and gp dB in 
the pass band (below ω=1)the pass-band (below ω=1) 

The gain in the stop band (above ω=1) oscillates betweenThe gain in the stop-band (above ω=1) oscillates between 
gs dB and -∞ dB

The elliptic approximation has imaginary zeros

For a given filter specification the elliptic approximation gives 
the lowest order frequency response functionthe lowest order frequency response function
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Elliptic Approximation

Gain

Elliptic Approximation

Gain
(dB)

0
gpp

gs

log(freq)
ω=1 ω= ωs
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Elliptic Approximation

Response of 4th-order elliptic approximation:

Elliptic Approximation

Response of 4th order elliptic approximation:
(d

B
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gs ≤ -40 dB
ωp = 1.0p
ωs = 1.5

Frequency (Hz) 1 00 01
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Time-Domain Response

Unit-step response of 6th-order Chebychev:

Time Domain Response

Unit step response of 6th order Chebychev:

1.0

)
g(

t)

Time
0.0

1 0s 3 0s
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Bessel Approximation

The Bessel appro imation is sed here a freq enc domain

Bessel Approximation

The Bessel approximation is used where a frequency-domain 
filter is required which also has a good time-domain 
behaviourbehaviour

All filters generate a frequency dependent phase shiftAll filters generate a frequency-dependent phase shift 

In a Bessel filter the phase varies approximately linearly withIn a Bessel filter the phase varies approximately linearly with 
frequency and the different frequency components are 
delayed by the same amountdelayed by the same amount

A time-domain waveform is therefore delayed, but is notA time domain waveform is therefore delayed, but is not 
seriously distorted

School of Systems Engineering - Electronic Engineering Slide 34James Grimbleby



Bessel Approximation
The Bessel approximation has an all-pole frequency 

Bessel Approximation

response function:
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In the high-frequency limit ω→∞:

aH ω 0)j(

The coefficients are related to Bessel functions:
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The coefficients are related to Bessel functions:
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Bessel Approximation

Response of 8th-order Bessel approximation:

Bessel Approximation

Response of 8th order Bessel approximation:
(d
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Bessel Approximation

Unit-step response of 8th-order Bessel:

Bessel Approximation

Unit step response of 8th order Bessel:

1 01.0

t)
g(

Time
0.0

1 0s 3 0s
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Low-Pass to Low-PassLow Pass to Low Pass 
Transformation

This transformation shifts the cut-off frequency to ω0:

0

jj
ω
ωω →
0

ω= ω0ω=1.0
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Low-Pass to Low-PassLow Pass to Low Pass 
Transformation

Design example: A Chebychev low-pass filter is required with 
th f ll i ifi tithe following specification:

P b d i ≥ 3 dBPass-band gain: gp ≥ -3 dB
Stop-band gain: gs ≤ -50 dB
Pass band edge: f = 1000 HzPass-band edge: fp = 1000 Hz
Stop-band edge: fs = 2000 Hz

This corresponds to a normalised low-pass filter with ωp=1.0, 
ω =2 0ωs=2.0 
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Low-Pass to Low-PassLow Pass to Low Pass 
Transformation

Normalised low-pass filter:

P b d i 3 dBPass-band gain: gp ≥ -3 dB
Stop-band gain: gs ≤ -50 dB
P b d d 1 0Pass-band edge: ωp=1.0
Stop-band edge: ωs=2.0 

This specification can be met by a 5th-order Chebychev
approximation with 3 dB pass band ripple:

62650.0)j( 34=ωH

approximation with 3 dB pass-band ripple:

062650)j(40800)j(54890

)j(415.1)j(5745.0)j(
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ωω
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Low-Pass to Low-PassLow Pass to Low Pass 
Transformation

Applying the low-pass to low-pass transformation with 
ω0=2π×1000=6283:
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Low-Pass to Low-PassLow Pass to Low Pass 
Transformation

5th-order Chebychev low-pass with cut-off frequency 1000 Hz :

(d
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(
G

Frequency (Hz) 1000
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Low-Pass to High-PassLow Pass to High Pass 
Transformation

This transformation converts to a high-pass response and 
shifts the cut-off frequency to ω0:

ω
ωω
j

j 0→
ωj

ω= ω0ω=1.0
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Low-Pass to High-PassLow Pass to High Pass 
Transformation

Design example: A Chebychev high-pass filter is required 
with the following specification:with the following specification:

Pass band gain: g ≥ 3 dBPass-band gain: gp ≥ -3 dB
Stop-band gain: gs ≤ -25 dB
Pass-band edge: f = 2000 HzPass band edge: fp = 2000 Hz
Stop-band edge: fs = 1000 Hz

This corresponds to a normalised low-pass filter with 
ωp=1.0, ωs=2.0ωp 1.0, ωs 2.0
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Low-Pass to High-PassLow Pass to High Pass 
Transformation

Normalised low-pass filter: 

Pass-band gain: gp ≥ -3 dB
Stop-band gain: gs ≤ -25 dB
Pass-band edge: ωp=1.0
Stop-band edge: ωs=2.0

This specification can be met by a 3rd-order Chebychev
i ti ith 3 dB b d i lapproximation with 3 dB pass-band ripple:

25060
2506.0)j(9284.0)j(5972.0)j(
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ωωω
ωH
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Low-Pass to High-PassLow Pass to High Pass 
Transformation

2506.0)j(9284.0)j(5972.0)j(
2506.0)j( 23 +++

=
ωωω

ωH

Applying the low-pass to high-pass transformation with 

)j()j()j(

ω0=2π×2000:
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Low-Pass to High-PassLow Pass to High Pass 
Transformation

3rd-order Chebychev high-pass with cut-off frequency 2000 Hz :
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Frequency (Hz)1000
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Low-Pass to Band-PassLow Pass to Band Pass 
Transformation

This transformation converts to a band-pass response 
centred on ω0 with relative bandwidth k2:
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Low-Pass to Band-Pass

10th-order Chebychev band-pass centred on f=1000 Hz

Low Pass to Band Pass 
Transformation

10th-order Chebychev band-pass centred on f=1000 Hz 
with relative bandwidth k2=4:
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Low-Pass to Band-StopLow Pass to Band Stop 
Transformation

This transformation converts to a band-stop response 
centred on ω0 with relative bandwidth k2:
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Low-Pass to Band-StopLow Pass to Band Stop 
Transformation

10th-order Chebychev band-stop centred on f=1000 Hz 
with relative bandwidth k2=4:
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Passive Filter RealisationPassive Filter Realisation

Passive filters are usually realised as equally-terminated 
ladder filters

This type of filter has a resistor in series with the input and a yp p
resistor of nominally the same value in parallel with the 
output; all other components are reactive (that is inductors or 
capacitors)

Passive equally-terminated ladder filters are not normally 
used at frequencies below about 10 kHz because they 
contain inductors
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Passive Filter Realisation
Equally-terminated low-pass all-pole ladder filter:

Passive Filter Realisation

R

RInput OutputRInput Output

This type of filter is suitable for implementing all-pole 
designs such as Butterworth Chebychev and Besseldesigns such as Butterworth, Chebychev and Bessel

Order = number of capacitors + number of inductors
School of Systems Engineering - Electronic Engineering Slide 53James Grimbleby

Order  number of capacitors + number of inductors



Passive Filter Realisation
Alternative equally-terminated low-pass all-pole ladder filter:

Passive Filter Realisation

R

RInput OutputRInput Output

This type of filter is suitable for implementing all-pole designs 
such as Butterworth Chebychev and Besselsuch as Butterworth, Chebychev and Bessel

Order = number of capacitors + number of inductors
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Passive Filter Realisation

Equally-terminated low-pass ladder filter with imaginary

Passive Filter Realisation

Equally terminated low pass ladder filter with imaginary 
zeros in response:

R

RInput Output

This type of filter is suitable for implementing an Inverse 
Chebychev or Elliptic response
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Passive Filter Realisation

Alternative equally-terminated low-pass ladder filter with

Passive Filter Realisation

Alternative equally terminated low pass ladder filter with 
imaginary zeros in response:

RR

RInput Outputp

This type of filter is suitable for implementing an Inverse 
Chebychev or Elliptic response
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Passive Filter Realisation

Low-pass filters can be changed to high-pass filters by

Passive Filter Realisation

Low pass filters can be changed to high pass filters by 
replacing the inductors by capacitors, and the capacitors 
by inductors:y

R

RInput Outputp p

This type of filter is suitable for implementing all-pole 
designs such as Butterworth, Chebychev and Bessel
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Passive Filter Realisation

Low-pass filters can be changed to band-pass filters by

Passive Filter Realisation

Low-pass filters can be changed to band-pass filters by 
replacing the inductors and capacitors by LC combinations

LC L

C
L 2

1
=

C
C2

0ω

CLL
C 1

L
C 2

0ω
=

where ω0 is the geometric centre frequency of the 
passband
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Passive Filter Realisation

Low-pass filters can be changed to band-pass filters by

Passive Filter Realisation

Low-pass filters can be changed to band-pass filters by 
replacing the inductors and capacitors by LC combinations

R

RInput Output

This type of filter is suitable for implementing all-pole 
designs such as Butterworth, Chebychev and Bessel
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Component Value Determination

Suitable component values can be determined by the

Component Value Determination

Suitable component values can be determined  by the 
following procedure:

1. Select a suitable filter circuit

2. Obtain its frequency-response function in symbolic 
form

3. Equate coefficients of the symbolic frequency-
response function and the required response

4. Solve the simultaneous non-linear equations to 
obtain the component values
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Component Value Determination

A simpler procedure is to use filter design tables

Component Value Determination

A simpler procedure is to use filter design tables

Normalised low-pass ButterworthNormalised low pass Butterworth 
(R = 1.0 Ω, ω0 = 1.0 rad/s):

n C1 L2 C3 L4 C5 L6 C7
2 1.414 1.414
3 1.000 2.000 1.000
4 0.765 1.848 1.848 0.765
5 0.618 1.618 2.000 1.618 0.618
6 0.518 1.414 1.932 1.932 1.414 0.518
7 0.445 1.247 1.802 2.000 1.802 1.247 0.445
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Component Value Determination

Design example: a 5th-order low-pass Butterworth filter with

Component Value Determination

Design example: a 5th order low pass Butterworth filter with 
cut-off (-3 dB) frequency 2 kHz

Normalised 5th-order Butterworth low-pass filter:

Ω1Ω 1.618H 1.618H

Input Output1ΩInput Output1Ω
0.618F 0.618F2.000F
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Component Value Determination

Scale impedances: multiply resistor and inductor values by

Component Value Determination

Scale impedances: multiply resistor and inductor values by 
k, divide capacitor values by k

Choose k = 10000

Ω Ω10kΩ 10kΩ16.18kH 16.18kH

Input OutputInput Output
61.8μF 61.8μF200μF
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Component Value Determination

S l f di id i d t d it l b k

Component Value Determination

Scale frequency: divide inductor and capacitor values by k 
where k = 2π×2000 = 1.257×104

10kΩ 10kΩ1.288H 1.288H10kΩ 10kΩ1.288H 1.288H

Input Output
4 918 F 15 92 F 4 918 F4.918nF 15.92nF 4.918nF
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Component Value Determination

Response of 5th-order low-pass Butterworth filter:

Component Value Determination

Response of 5th order low pass Butterworth filter:
(d

B
)

G
ai

n 

Frequency (Hz) 10000100
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Component Value DeterminationComponent Value Determination

Normalised 1 dB ripple low-pass Chebychev 
(R = 1 0 Ω ω0 = 1 0 rad/s):(R  1.0 Ω, ω0  1.0 rad/s):

n C1 L2 C3 L4 C5 L6 C7n C1 L2 C3 L4 C5 L6 C7
2 0.572 3.132
3 2.216 1.088 2.216
4 0.653 4.411 0.814 2.535
5 2.207 1.128 3.103 1.128 2.207
6 0.679 3.873 0.771 4.711 0.969 2.406
7 2.204 1.131 3.147 1.194 3.147 1.131 2.204
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Component Value Determination

Design example: a 3rd-order high-pass Chebychev filter with

Component Value Determination

Design example: a 3rd order high pass Chebychev filter with 
1 dB ripple and a cut-off (-3 dB) frequency 5 kHz

Normalised 3rd-order Chebychev high-pass filter:

Ω 0 919F
1

1Ω 0.919F 088.1

1ΩInput Output
0.451H

p p
0.451H

216.2
1
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Component Value Determination

Scale impedances: multiply resistor and inductor values by k,

Component Value Determination

Scale impedances: multiply resistor and inductor values by k, 
divide capacitor values by k

Ω 919μF

Choose k = 1000

Ω1000Ω 919μF 1000Ω

Input Outputp p
451H 451H
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Component Value Determination

S l f di id i d t d it l b k

Component Value Determination

Scale frequency: divide inductor and capacitor values by k 
where k = 2π×5000 = 3.142×105

Ω 29 25nF Ω1000Ω 29.25nF 1000Ω

Input Outputp p
14.36mH 14.36mH
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Component Value Determination

Response of 3rd-order high-pass Chebychev filter:

Component Value Determination

Response of 3rd order high pass Chebychev filter:
(d

B
)

G
ai

n 

Frequency (Hz) 100k1k
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Alternative Configuration

Design example: a 3rd-order high-pass Chebychev filter with

Alternative Configuration

Design example: a 3rd order high pass Chebychev filter with 
1 dB ripple and a cut-off (-3 dB) frequency 5 kHz

Normalised 3rd-order Chebychev high-pass filter:

0 451F1 0 451F0.451F
216.2
1 0.451F

1Ω
1Ω0.919HInput Output0 9 9p p

088.1
1
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Alternative Configuration

Scale impedances: multiply resistor and inductor values by k,

Alternative Configuration

Scale impedances: multiply resistor and inductor values by k, 
divide capacitor values by k

Choose k = 1000

1000Ω 451μF 1000Ω451μF1000Ω 451μF 1000Ω451μF

919HInput Output9 9p p
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Alternative Configuration

S l f di id i d t d it l b k

Alternative Configuration

Scale frequency: divide inductor and capacitor values by k 
where k = 2π×5000 = 3.142×105

1000Ω 14.36nF 1000Ω14.36nF

29.25mHInput Output
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Component Value Sensitivity
5th-order 3dB ripple low-pass Chebychev equally-

Component Value Sensitivity

terminated ladder filter with cut-off frequency 1000 Hz:

B
)

ai
n 

(d

±10% variation of 
components valuesG components values

Frequency (Hz) 1000
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Active Filters: Cascade Synthesis

The frequency response function is first split into second-

Active Filters: Cascade Synthesis

The frequency response function is first split into second-
order factors
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Each factor is implemented using a second-order active filter

...)j()j( 21 ×× ωω HH

g

These filters are then connected in cascade
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Active Filters: Cascade SynthesisActive Filters: Cascade Synthesis

If the response to be implemented is derived from an all-
pole approximation then the second-order factors will be of 
i l l (H ) b d (H ) hi h (H )simple low-pass (Hlp), band-pass (Hbp) or high-pass (Hhp) 

form:
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Sallen-Key Low-Pass Filter
C1

Sallen Key Low Pass Filter

R1 R2

OutputInput
C2
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Resonance Frequency and Q-factor

1

Resonance Frequency and Q factor

2
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Sallen-Key Low-Pass Filter
Gain(dB)

Sallen Key Low Pass Filter

20 dB
2=Q 10=Q

0 dB0 dB

2
1

=Q

-20 dB
12 dB / octave-12 dB / octave

Frequency (rad/s)
1000 10000 10000010010

-40 dB

School of Systems Engineering - Electronic Engineering Slide 79James Grimbleby

Frequency (rad/s)



Sallen-Key High-Pass Filter

R1

Sallen Key High Pass Filter

1

C1 C2

O t tOutputInput
R2
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Sallen-Key High-Pass Filter
Gain(dB)

Sallen Key High Pass Filter

20 dB
2=Q 10=Q

0 dB0 dB

2
1

=Q

-20 dB
12 dB / octave

2

12 dB / octave

Frequency (rad/s)
1000 10000 10000010010

-40 dB
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Rauch Band-Pass Filter

R1

Rauch Band Pass Filter

1

C2

R2
C1

OutputInput

2
1

)j()j(21
)j()j(
TTT

THbp
++

−
=

ωω
ωω

22211121

2
212

:where
)j()j(21

CRTCRTRR
TTT

===

++ ωω

School of Systems Engineering - Electronic Engineering Slide 82James Grimbleby



Rauch Band-Pass Filter
Gain(dB)

Rauch Band Pass Filter

40 dB 10=Q

20 dB 5=Q

2=Q

0 dB

Frequency (rad/s)
1000 10000 10000010010
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All-Pole Cascade SynthesisAll Pole Cascade Synthesis

Design example: 5th-order Chebychev low-pass filter has 
numerator and denominator coefficients:

a0 = 0.06265 b0 = 0.06265
0 0 b 6 493 10 5a1 = 0.0 b1 = 6.493×10-5

a2 = 0.0 b2 = 1.390×10-8

a = 0 0 b = 5 705×10-12a3 = 0.0 b3 = 5.705×10-12

a4 = 0.0 b4 = 3.686×10-16

a = 0 0 b = 1 021×10-19a5 = 0.0 b5 = 1.021×10 19

The frequency response is factored into second orderThe frequency response is factored into second order 
sections by finding the poles (there are no zeros)
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All-Pole Cascade SynthesisAll Pole Cascade Synthesis

The poles are the roots of the equation obtained by setting 
the denominator polynomial to zero:

-9.011×10+2 + j3.751×10+3

9 011 10+2 j3 751 10+3-9.011×10+2 - j3.751×10+3

-3.463×10+2 + j6.070×10+3

3 463 10+2 j6 070 10+3-3.463×10+2 - j6.070×10+3

-1.115×10+3 + j0.0

The frequency response is of 5th-order so that the factors 
are two conjugate pairs of complex roots and a single realare two conjugate pairs of complex roots and a single real 
root
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All-Pole Cascade Synthesis
Conjugate pole pairs are combined:

All Pole Cascade Synthesis
j g p p

-9.011×10+2 + j3.751×10+3

9 011×10+2 j3 751×10+3-9.011×10 2 - j3.751×10 3

32 )107513j109 011(j)j( ×××+= ωωD
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×+×+

××−×+=

ω

ωωD

22

2)j(= ω

322

22

)107513()109 011(

)j)(109.011109.011(
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ωω
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All-Pole Cascade Synthesis

The denominator of the 1st-order section:

All Pole Cascade Synthesis

The denominator of the 1st-order section:
310115.1j)j()j( +×+=−= ωωω pD

Dividing through by 1.115×10+3:
4

Frequency response function of 1st-order filter:

)j(10966.81)j( 4 ωω −×+=D

eque cy espo se u c o o s o de e

)j(1
1)j(

ω
ω

RC
H

+
=

Thus:

)j(1 ωRC+

4109668 −×=RC

Let R=10 kΩ; then C=89.66 nF.

10966.8 ×=RC
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All-Pole Cascade Synthesis
Denominator of the 1st 2nd-order section:

All Pole Cascade Synthesis

Di idi th h b 1 488 10+7

732 10488.1)j(10802.1)j()j( ++ ×+×+= ωωωD
Dividing through by 1.488×10+7:

284 )j(107186)j(1021111)j( ωωω −− ×+×+=D

Frequency response function of 2nd-order filter:

)j(10718.6)j(10211.11)j( ωωω ×+×+D

1
2

212 )j()j(21
1)j(

ωω
ω

TTT
Hlp

++
=

Thus:
38

5
2

4
2 10054.610211.12 −− ×=→×= TT

Let R1=R2=10 kΩ; C1=111 0 nF C2=6 054nF

3
1

8
21 10110.110718.6 −− ×=→×= TTT
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All-Pole Cascade Synthesis
Denominator of the 1st 2nd-order section:

All Pole Cascade Synthesis

Di idi th h b 3 696 10+7

722 10696.3)j(10926.6)j()j( ++ ×+×+= ωωωD
Dividing through by 3.696×10+7:

285 )j(107062)j(1087411)j( ωωω −− ×+×+=D

Frequency response function of 2nd-order filter:

)j(10706.2)j(10874.11)j( ωωω ×+×+D

1
2

212 )j()j(21
1)j(

ωω
ω

TTT
Hlp

++
=

Thus:
38

6
2

5
2 10369.910874.12 −− ×=→×= TT

Let R1=R2=10 kΩ; C1=288 8 nF C2=0 9369nF

3
1

8
21 10888.210706.2 −− ×=→×= TTT
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All-Pole Cascade SynthesisAll Pole Cascade Synthesis

Complete cascade synthesis of Chebychev active filter:

111.0nF 288.8nF

10kΩ 10kΩ 10kΩ

10kΩ

10kΩ

10kΩ

89 66nF 6 054nF 0 9369nF89.66nF 6.054nF 0.9369nF

Input Output
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General Cascade Synthesis

If the response is not deri ed from an all pole appro imation

General Cascade Synthesis

If the response is not derived from an all-pole approximation 
then the second-order factors will be of general form:

2

2
210 )j()j()j( ωωω aaaH ++

= 2
210 )j()j(

)j(
ωω

ω
bbb

H
++

Rauch or Sallen-Key second-order filters are unsuitable and 
a more complex filter configuration must be useda more complex filter configuration must be used

The ring-of-three filter (aka the bi-quad or state-variableThe ring of three filter (aka the bi quad or state variable 
filter) can be used
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Component Value Sensitivity
5th-order Chebychev low-pass implemented as a cascade 

Component Value Sensitivity

of active Sallen-Key sections:

(d
B

)
G

ai
n 

(
G

Frequency (Hz) 1000
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Copying Methods

Copying methods are ways of designing active filters with

Copying Methods

Copying methods are ways of designing active filters with 
the same low sensitivity properties of passive equally-
terminated ladder filtersterminated ladder filters 

The starting point for all copying methods is a prototypeThe starting point for all copying methods is a prototype 
passive filter

This is then copied in some way which preserves the 
desirable properties of the passive filters but which p p p
eliminates the inductors  

The copying method that will be described here is based on 
inductor simulation
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Positive Immittance Converters

V I1

Positive Immittance Converters
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Positive Immittance Converters
4131 ZIVV +=

Positive Immittance Converters
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Substitute to remove V2 and V3:
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Positive Immittance Converters

Multiply both sides by Z :

Positive Immittance Converters

Multiply both sides by Z0:

)( 420120130201 ZZZIZZVZZZZV −=+

)(
)(

30311
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ZZZZV
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++
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Remove cancelling terms:

The impedance Z of the PIC is given by:

4201311 ZZZIZZV =

The impedance Zi of the PIC is given by:

4201 ZZZV
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1
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I
VZi ==

School of Systems Engineering - Electronic Engineering Slide 96James Grimbleby



Inductor Simulation

Let Z Z Z and Z be resistors of al e R and Z be a

Inductor Simulation

Let Z0, Z1 ,Z2,and Z4 be resistors of value R, and Z3 be a 
capacitor of value C: 

2
3

31

420 j
j/

CR
CR

R
ZZ

ZZZZi ω
ω

===

or:
31 j/ CRZZ ω

2wherej CRLLZ ω

The PIC therefore simulates a grounded inductor of value

2wherej CRLLZi == ω

The PIC therefore simulates a grounded inductor of value 
CR2

By correct choice of R and C the PIC can be made to 
simulate any required inductance.  
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Copying Methods

5th order Cheb che high pass passi e filter

Copying Methods

5th-order Chebychev high-pass passive filter:

10kΩ 9 134nF 7 015nF 9 134nF10kΩ 9.134nF 7.015nF 9.134nF

Input Output4.178H 4.178H 10kΩ

Let R=10 kΩ; then:Let R 10 kΩ; then:

F10178.4H178.4 82 −×=→= CCR
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Copying Methods
5th-order Chebychev high-pass active filter:

Copying Methods

9.134nF 9.134nF7.015nF10kΩ

10kΩ 10kΩ

pu
t O

u

10k 10kΩ

41.78nF41.78nF

In
p utput

10k

10kΩ

10kΩ

10kΩ

10kΩ

10kΩ

10kΩ

10kΩ
10kΩ

10kΩ 10kΩ
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Copying Methods

3th-order elliptic high-pass passive filter:

Copying Methods

3th-order elliptic high-pass passive filter:

1kΩ 395nF382nF1kΩ

Input Output
815nF

1kΩ
2.29H

Let R=1 kΩ; then:
F1029.2H29.2 62 −×=→= CCR
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Copying Methods

3th-order elliptic

Copying Methods

3th-order elliptic 
high-pass 
active filter:

815nF 395nF382nF1kΩ
active filter:

1kΩ

Input Output

2.29μF

1kInput Output1kΩ

1kΩ

1kΩ

1kΩ

1kΩ
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Analogue Filter DesignAnalogue Filter Design

© J. B. Grimbleby,  19 February 2009
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