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Chapter 7

Frequency Response and Bode Plots

his chapter discusses frequency response in terms of both amplitude and phase. This topic will
enable us to determine which frequencies are dominant and which frequencies are virtually
suppressed. The design of electric filters is based on the study of the frequency response. We

will also discuss the Bode method of linear system analysis using two separate plots; one for the mag-
nitude of the transfer function, and the other for the phase, both versus frequency. These plots reveal
valuable information about the frequency response behavior.

Note: Throughout this text, the common (base 10) logarithm of a number  will be denoted as
while its natural (base e) logarithm will be denoted as . However, we should remember

that in MATLAB the  function displays the natural logarithm, and the common (base 10) log-
arithm is defined as .

7.1  Decibels

The ratio of any two values of the same quantity (power, voltage or current) can be expressed in
decibels ( ). For instance, we say that an amplifier has  power gain or a transmission line
has a power loss of  (or gain ). If the gain (or loss) is , the output is equal to the
input. We should remember that a negative voltage or current gain  or  indicates that there is a

 phase difference between the input and the output waveforms. For instance, if an amplifier has
a gain of  (dimensionless number), it means that the output is  out-of-phase with the
input. For this reason we use absolute values of power, voltage and current when these are expressed
in  terms to avoid misinterpretation of gain or loss. 

By definition,

(7.1)

Therefore,
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Also,

 represents a power ratio of approximately 

 represents a power ratio of approximately 

 represents a power ratio of approximately 

From these, we can estimate other values. For instance,  which is equivalent to a
power ratio of approximately Likewise,  and this is equivalent
to a power ratio of approximately .

Since  and , if we let  the  values for the voltage and
current ratios become:

(7.2)

and

(7.3)

Example 7.1  

Compute the gain in  for the amplifier shown in Figure 7.1.

Figure 7.1. Amplifier for Example 7.1

Solution:

Example 7.2  

Compute the gain in for the amplifier shown in Figure 7.2 given that .

Figure 7.2. Amplifier for Example 7.2.
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Bandwidth and Frequency Response

Solution:

7.2 Bandwidth and Frequency Response

Electric and electronic circuits, such as filters and amplifiers, exhibit a band of frequencies over
which the output remains nearly constant. Consider, for example, the magnitude of the output volt-
age  of an electric or electronic circuit as a function of radian frequency  as shown in Figure
7.3.

Figure 7.3. Definition of the bandwidth.

As shown in Figure 7.3, the bandwidth is  where  and  are the lower and upper

cutoff frequencies respectively. At these frequencies,  and these two points
are known as the  or half-power points. They derive their name from the fact that since

power , for  and for or  the power is ,
that is, it is “halved”. Alternately, we can define the bandwidth as the frequency band between half-
power points. 

Most amplifiers are used with a feedback path which returns (feeds) some or all its output to the
input as shown in Figure 7.4.

Figure 7.4. Amplifier with partial output feedback

Figure 7.5 shows an amplifier where the entire output is fed back to the input.
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Figure 7.5. Amplifier with entire output feedback

The symbol  (Greek capital letter sigma) inside the circle indicates the summing point where the
output signal, or portion of it, is combined with the input signal. This summing point may be also
indicated with a large plus (+) symbol inside the circle. The positive (+) sign below the summing
point implies positive feedback which means that the output, or portion of it, is added to the input.
On the other hand, the negative ( ) sign implies negative feedback which means that the output, or
portion of it, is subtracted from the input. Practically, all amplifiers use used with negative feedback
since positive feedback causes circuit instability.

7.3  Octave and Decade

Let us consider two frequencies  and  defining the frequency interval , and let

(7.4)

If these frequencies are such that , we say that these frequencies are separated by one
octave and if , they are separated by one decade.

Let us now consider a transfer function  whose magnitude is evaluated at , that is,

(7.5)

Taking the log of both sides of (7.5) and multiplying by 20, we get 

or

(7.6)

Relation (7.6) is an equation of a straight line in a semilog plot with abscissa  where

and  shown in Figure 7.6.
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Bode Plot Scales and Asymptotic Approximations

Figure 7.6. Straight line with slope 

With these concepts in mind, we can now proceed to discuss Bode Plots and Asymptotic Approxi-
mations.

7.4  Bode Plot Scales and Asymptotic Approximations

Bode plots are magnitude and phase plots where the abscissa (frequency axis) is a logarithmic (base
10) scale, and the radian frequency  is equally spaced between powers of  such as , ,

,  and so on. 

The ordinate (  axis) of the magnitude plot has a scale in  units, and the ordinate of the phase
plot has a scale in degrees as shown in Figure 7.7.

Figure 7.7. Magnitude and phase plots
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It is convenient to express the magnitude in  so that a transfer function , composed of prod-
ucts of terms can be computed by the sum of the  magnitudes of the individual terms. For exam-
ple,

and the Bode plots then can be approximated by straight lines called asymptotes.

7.5  Construction of Bode Plots when the Zeros and Poles are Real

Let us consider the transfer function 

(7.7)

where  is a real constant, and the zeros  and poles  are real numbers. We will consider complex
zeros and poles in the next section. Letting  in (7.7) we get

(7.8)

Next, we multiply and divide each numerator factor  by  and each denominator factor
 by  and we get:

(7.9)

Letting

(7.10)

we can express (7.9) in  magnitude and phase form,
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Construction of Bode Plots when the Zeros and Poles are Real

(7.11)

(7.12)

The constant  can be positive or negative. Its magnitude is  and its phase angle is  if ,
and  if . The magnitude and phase plots for the constant  are shown in Figure 7.8.

Figure 7.8. Magnitude and phase plots for the constant K

For a zero of order , that is,  at the origin, the Bode plots for the magnitude and phase are as
shown in Figures 7.9 and 7.10 respectively.

For a pole of order , that is,  at the origin, the Bode plots are as shown in Figures
7.11 and 7.12 respectively.
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and taking the log of both sides and multiplying by  we get

(7.14)
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Figure 7.9. Magnitude for zeros of Order n at the origin

Figure 7.10. Phase for zeros of Order n at the origin

Then, (7.14) becomes

(7.16)
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Construction of Bode Plots when the Zeros and Poles are Real

Figure 7.11. Magnitude for poles of Order n at the origin

Figure 7.12. Phase for poles of Order n at the origin

For  the first term of (7.16) becomes . For , this term becomes approxi-

mately  and this has the same form as  which is shown in Fig-
ure 7.9 for , , and .

The frequency at which two aymptotes intersect each other forming a corner is referred to as the
corner frequency. Thus, the two lines defined by the first term of (7.16), one for  and the other
for  intersect at the corner frequency .

The second term of (7.16) represents the ordinate axis intercept defined by this straight line.
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The phase response for the term  is found as follows:

We let 

(7.17)

and

(7.18)

Then,

(7.19)

Figure 7.13 shows plots of the magnitude of (7.16) for , , , and .

Figure 7.13. Magnitude for zeros of Order n for 

As shown in Figure 7.13, a quick sketch can be obtained by drawing the straight line asymptotes given
by  and  for  and  respectively. 
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Construction of Bode Plots when the Zeros and Poles are Real

we get

(7.21)

and

(7.22)

At the corner frequency  we get  and with (7.20)

(7.23)

Figure 7.14 shows the phase angle plot for (7.19).

Figure 7.14. Phase for zeros of Order n for 

The magnitude and phase plots for  are similar to those of 
except for a minus sign. In this case (7.16) becomes

(7.24)

and (7.20) becomes

(7.25)

The plots for (7.24) and (7.25) are shown in Figures 7.15 and 7.16 respectively.
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Figure 7.15. Magnitude for poles of Order n for 

Figure 7.16. Phase for poles of Order n for 

7.6  Construction of Bode Plots when the Zeros and Poles are Complex

The final type of terms appearing in the transfer function  are quadratic term of the form

 whose roots are complex conjugates. In this case, we express the complex conjugate
roots as
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Construction of Bode Plots when the Zeros and Poles are Complex

(7.26)

and letting

(7.27)

and

(7.28)

by substitution into (7.26) we get

(7.29)

Next, we let
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Then,
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The magnitude of (7.31) is

(7.32)

and taking the log of both sides and multiplying by  we get

(7.33)

As in the previous section, it is convenient to normalize (7.33) by dividing by  to yield a function
of the normalized frequency variable  such that
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(7.35)

The first term in (7.35) is a constant which represents the ordinate axis intercept defined by this
straight line. For the second term, if , this term reduces to approximately  and

if , this term reduces to approximately  and this can be plotted as a straight line
increasing at . Using these two straight lines as asymptotes for the magnitude curve
we see that the asymptotes intersect at the corner frequency . The exact shape of the curve
depends on the value of  which is called the damping coefficient.

A plot of (7.35) for , , and  is shown in Figure 7.17.

The phase shift associated with  is also simplified by the substitution 
and thus

(7.36)

The two asymptotic relations of (7.36) are

(7.37)

and

(7.38)

At the corner frequency ,  and

(7.39)

A plot of the phase for , , and  is shown in Figure 7.18.
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Construction of Bode Plots when the Zeros and Poles are Complex

Figure 7.17. Magnitude for zeros of 

Figure 7.18. Phase for zeros of 
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are similar to those of

except for a minus sign. In this case, (7.35) becomes

(7.40)

and (7.36) becomes

(7.41)

A plot of (7.40) for , , and  is shown in Figure 7.19.

Figure 7.19. Magnitude for poles of 

A plot of the phase for , , and  is shown in Figure 7.20.
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Construction of Bode Plots when the Zeros and Poles are Complex

Figure 7.20. Phase for poles of 

Example 7.3  

For the circuit shown in Figure 7.21

a. Compute the transfer function .

b. Construct a straight line approximation for the magnitude of the Bode plot.

c. From the Bode plot obtain the values of  at  and . Com-

pare these values with the actual values.

d. If , use the Bode plot to compute the output .

Figure 7.21. Circuit for Example 7.3.

Solution:

a. We transform the given circuit to its equivalent in the  shown in Figure 7.22.
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Figure 7.22. Circuit for Example 7.3 in 

and by the voltage division expression,

Therefore, the transfer function is

(7.42)

b. Letting  we get

or in standard form

(7.43)

Letting the magnitude of (7.43) be denoted as , and expressing it in decibels we get

(7.44)

We observe that the first term on the right side of (7.44) is a constant whose value is
. The second term is a straight line with slope equal to . For

 the third term is approximately zero and for  it decreases with slope equal to
Likewise, for the fourth term is approximately zero and for

 it also decreases with slope equal to 

For Bode plots we use semilog paper. Instructions to construct semilog paper with Microsoft
Excel are provided in Appendix D.
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Construction of Bode Plots when the Zeros and Poles are Complex

In the Bode plot of Figure 7.23 the individual terms are shown with dotted lines and the sum of
these with a solid line. 

Figure 7.23. Magnitude plot of (7.44)

c. The plot of Figure 7.23 shows that the magnitude of (7.43) at  is approximately
 and at  is approximately . The actual values are found as follows:

At , (7.43) becomes

and using MATLAB we get

g30=0.011*30j/((1+0.3j)*(1+0.03j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g30));...
fprintf('magdB = %6.2f dB',20*log10(abs(g30))); fprintf(' \n'); fprintf(' \n')

 mag = 0.32   magdB = -10.01 dB 

Therefore,

and
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Likewise, at , (7.43) becomes

and using MATLAB we get

g4000=0.011*4000j/((1+40j)*(1+4j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g4000));...
fprintf('magdB = %6.2f dB',20*log10(abs(g4000))); fprintf(' \n'); fprintf(' \n')

mag = 0.27    magdB = -11.48 dB 

Therefore, 

and

d. From the Bode plot of Figure7.23, we see that the value of  at  is approxi-

mately . Then, since in general , and that  implies , we
have

and therefore

If we wish to obtain a more accurate value, we substitute  into (7.43) and we get

g5000=0.011*5000j/((1+50j)*(1+5j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g5000));...
fprintf('phase = %6.2f deg.',angle(g5000)*180/pi); fprintf(' \n'); fprintf(' \n')

mag = 0.22     phase = -77.54 deg. 

Then,

and in the 

4000 r s=

G j1000 0.11 j4000
1 j40+ 1 j4+

-----------------------------------------=

G j4000 0.27=

20 G j4000log 20 0.27log 11.48 dB–= =

AdB 5000 r s=

12 dB– adB 20 blog= y xlog= x 10 y=

A 10
12
20
------–

0.25= =

Vout max A VS 0.25 10 2.5 V= = =

5000=

G j5000 0.011 j5000
1 j50+ 1 j5+

----------------------------------------- 0.22 77.54–= =

Vout max A 10 0.22 10 2.2 V= = =

t domain–

vout t 2.2 5000t 77.54–cos=
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Construction of Bode Plots when the Zeros and Poles are Complex

We can use the MATLAB function bode(sys) to draw the Bode plot of a Linear Time Invariant
(LTI) System where sys = tf(num,den) creates a continuous-time transfer function sys with
numerator num and denominator den, and tf creates a transfer function. With this function, the fre-
quency  r ang e  and  nu mbe r  o f  po in t s  a r e  chosen  au toma t i c a l l y.  T he  f unc t i on
bode(sys,{wmin,wmax}) draws the Bode plot for frequencies between wmin and wmax (in radi-
ans/second) and the function bode(sys,w) uses the user-supplied vector w of frequencies, in radi-
ans/second, at which the Bode response is to be evaluated. To generate logarithmically spaced fre-
quency vectors,  we use the command logspace(f irst_exponent, last_exponent,
number_of_values). For example, to generate plots for 100 logarithmically evenly spaced points
for the frequency interval , we use the statement logspace( 1,2,100).

The bode(sys,w) function displays both magnitude and phase. If we want to display the magnitude
only, we can use the bodemag(sys,w) function.

MATLAB requires that we express the numerator and denominator of  as polynomials of  in
descending powers. 

Let us plot the transfer function of Example 7.3 using MATLAB.

From (7.42),

and the MATLAB code to generate the magnitude and phase plots is

num=[0 1100 0]; den=[1 1100 10^5]; w=logspace(0,5,100); bode(num,den,w)

However, since for this example we are interested in the magnitude only, we will use the code

num=[0 1100 0]; den=[1 1100 10^5]; sys=tf(num,den);...
w=logspace(0,5,100); bodemag(sys,w); grid

and upon execution, MATLAB displays the plot shown in Figure 7.24.

Example 7.4  

For the circuit of Example 7.3

a. Draw a Bode phase plot.

b. Using the Bode phase plot estimate the frequency where the phase is zero degrees.

c. Compute the actual frequency where the phase is zero degrees.

d. Find  if  and  is the value found in part (c).

10 1– 102 r s

G s s

G s 1100s
s2 1100s 105+ +
----------------------------------------=

vout t vin t 10 t 60+cos=
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Figure 7.24. Bode plot for Example 7.3.

Solution:

a. From (7.43) of Example 7.3

(7.45)

and in magnitude-phase form

where

For 

For 

The straight-line phase angle approximations are shown in Figure 7.25.

G j 0.011j
1 j 100+ 1 j 1000+

----------------------------------------------------------------------=

G j 0.011 j
1 j 100+ 1 j 1000+

---------------------------------------------------------------------------- – –=

90= – 1001–tan–= – 10001–tan–=

100=

– 11–tan– 45–= =

1000=

– 11–tan– 45–= =
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Construction of Bode Plots when the Zeros and Poles are Complex

Figure 7.25.  Bode plot for Example 7.4.

Figure 7.26 shows the magnitude and phase plots generated with the following MATLAB code:

num=[0 1100 0]; den=[1 1100 10^5]; w=logspace(0,5,100); bode(num,den,w)

b. From the Bode plot of Figure 7.25 we find that the phase is zero degrees at approximately

c. From (7.45)

and in magnitude-phase form

The phase will be zero when

-180

-135

-90

-45

0

45

90

135

180

90=

101
100 102 105104103

– –=

– 10001–tan–=

– 1001–tan–=

310 r s=

G j 0.011j
1 j 100+ 1 j 1000+

----------------------------------------------------------------------=

G j 0.011 90
1 j 100+ 1001–tan 1 j 1000+ 10001–tan

---------------------------------------------------------------------------------------------------------------------------------------------------------------=

1001–tan 10001–tan+ 90=
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Figure 7.26. Bode plots for Example 7.4 generated with MATLAB

This is a trigonometric equation and we will solve it for  with the solve(equ) MATLAB func-
tion as follows:

syms w; x=solve(atan(w/100)+atan(w/1000) pi/2); combine(x)

ans =
  316.2278

Therefore, 

d. Evaluating (7.45) at  we get:

(7.46)

and with MATLAB

Gj316=0.011*316.23j/((1+316.23j/100)*(1+316.23j/1000)); fprintf(' \n');...
fprintf('magGj316 = %5.2f \t', abs(Gj316));...
fprintf('phaseGj316 = %5.2f deg.', angle(Gj316)*180/pi)

magGj316 = 1.00  phaseGj316 = -0.00 deg.

We are given that  and with  we get

316.23 r s=

316.23 r s=

G j316.23 0.011 j316.23
1 j316.23 100+ 1 j316.23 1000+

-----------------------------------------------------------------------------------------------=

Vin 10 V= G j316.23 1=
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Corrected Amplitude Plots

The phase angle of the input voltage is given as  and with  we find that

the phase angle of the output voltage is

and thus

or

7.7 Corrected Amplitude Plots

The amplitude plots we have considered thus far are approximate. We can make the straight line
more accurate by drawing smooth curves connecting the points at one-half the corner frequency

, the corner frequency  and twice the corner frequency  as shown in Figure 7.27.

At the corner frequency , the value of the amplitude  in  is

(7.47)

where the plus (+) sign applies to a first order zero, and the minus ( ) to a first order pole.

Similarly,

(7.48)

and

(7.49)

As we can seen from Figure 7.27, the straight line approximations, shown by dotted lines, yield 
at half the corner frequency and at the corner frequency. At twice the corner frequency, the straight
line approximations yield  because  and  are separated by one octave which is equiva-
lent to  per decade. Therefore, the corrections to be made are  at half the corner fre-
quency ,  at the corner frequency , and  at twice the corner frequency .

The corrected amplitude plots for a first order zero and first order pole are shown by solid lines in
Figure 7.27.

Vout G j316.23 Vin 1 10= 10 V= =

in 60= j316.23 0=

out in j316.23+ 60 0+ 60= ==

Vout 10 60=

vout t 10 316.23t 60+cos=
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n A dB

AdB
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20 1 j+log 20 2log 3 dB= = =

AdB
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4
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AdB 2 n=
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The corrections for straight-line amplitude plots when we have complex poles and zeros require dif-
ferent type of correction because they depend on the damping coefficient . Let us refer to the plot
of Figure 7.28. 

Figure 7.27. Corrections for magnitude Bode plots

We observe that as the damping coefficient  becomes smaller and smaller, larger and larger peaks in
the amplitude occur in the vicinity of the corner frequency . We also observe that when

, the amplitude at the corner frequency  lies below the straight line approximation.

We can obtain a fairly accurate amplitude plot by computing the amplitude at four points near the

corner frequency  as shown in Figure 7.28.
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Corrected Amplitude Plots

The amplitude plot of Figure 7.28 is for complex poles. In analogy with (7.30), i.e., 

Figure 7.28. Magnitude Bode plots with complex poles

which was derived earlier for complex zeros, the transfer function for complex poles is

(7.50)

where C is a constant.

Dividing each term of the denominator of (7.50) by  we get

and letting  and , we get

(7.51)

As before, we let . Then (7.51) becomes
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(7.52)

and in polar form,

(7.53)

The magnitude of (7.53) in  is

(7.54)

and the phase is

(7.55)

In (7.54) the term  is constant and thus the amplitude , as a function of frequency, is
dependent only the second term on the right side. Also, from this expression, we observe that as

,

(7.56)

and as ,

(7.57)

We are now ready to compute the values of  at points , , , and  of the plot of Figure 7.29.
At point 1, the corner frequency  corresponds to . Then, from (7.54)

(7.58)

and for 

G ju K
1 u2– j2 u+
--------------------------------=

G ju K
1 u2– j2 u+
-------------------------------------------=

dB

AdB 20 G julog 20 Klog 20 1 u2– j2 u+log–= =
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Corrected Amplitude Plots

Figure 7.29. Corrections for magnitude Bode plots with complex poles when 

To find the amplitude at point 2, in (7.54) we let  and we form the magnitude in . Then,

(7.59)

We now recall that the logarithmic function is a monotonically increasing function and therefore
(7.59 has a maximum when the absolute magnitude of this expression is maximum. Also, the square
of the absolute magnitude is maximum when the absolute magnitude is maximum. 

The square of the absolute magnitude is

(7.60)
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or

(7.61)

To find the maximum, we take the derivative with respect to  and we set it equal to zero, that is,

(7.62)

The expression of (7.62) will be zero when the numerator is set to zero, that is,

(7.63)

Of course, we require that the value of  must be a nonzero value. Then,

or

from which

(7.64)

provided that  or  or . 

The  value of the amplitude at point  is found by substitution of (7.64) into (7.54), that is,

(7.65)

and for 

The  value of the amplitude at point  is found by substitution of  into (7.54).
Then,
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Corrected Amplitude Plots

(7.66)

and for 

Finally, at point , the  value of the amplitude crosses the  axis. Therefore, at this point we
are interested not in  but in the location of  in relation to the corner frequency .
at this point we must have from (7.57)

and since , it follows that 

or

Solving for  and making use of  we get

From (7.67),

therefore, if we already know the frequency at which the  amplitude is maximum, we can compute
the frequency at point  from

(7.67)

Example 7.5  

For the circuit of Figure 7.30
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Figure 7.30. Circuit for Example 7.5.

a. Compute the transfer function 

b. Find the corner frequency  from .

c. Compute the damping coefficient .

d. Construct a straight line approximation for the magnitude of the Bode plot.

e. Compute the amplitude in  at one-half the corner frequency , at the frequency  at
which the amplitude reaches its maximum value, at the corner frequency , and at the frequency

 where the  amplitude is zero. Then, draw a smooth curve to connect these four points.

Solution:

a. We transform the given circuit to its equivalent in the  shown in Figure 7.31 where
, , and .

Figure 7.31. Circuit for Example 7.5 in 

and by the voltage division expression,

Therefore, the transfer function is

+
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Corrected Amplitude Plots

(7.68)

b. From (7.50)

(7.69)

and from (7.68) and (7.69)  or

(7.70)

c. From (7.68) and (7.69) . Then, the damping coefficient  is

(7.71)

d. For , the straight line approximation lies along the  axis, whereas for , the
straight line approximation has a slope of . The corner frequency  was found in part (b)
to be  The  amplitude plot is shown in Figure 7.31.

e. From (7.61),

where from (7.74)  and thus . Then,

and this value is indicated as Point 1 on the plot of Figure 7.32.

Next, from (7.64)

Then,

Therefore, from (7.65)

and this value is indicated as Point 2 on the plot of Figure 7.32.

The  amplitude at the corner frequency is found from (7.66), that is,

G s
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--------------------------------------= = =
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Then,

and this value is indicated as Point 3 on the plot of Figure 7.32.

Finally, the frequency at which the amplitude plot crosses the  axis is found from (7.67), that
is,

or

This frequency is indicated as Point 4 on the plot of Figure 7.32.

Figure 7.32. Amplitude plot for Example 7.5

The amplitude plot of Figure 7.32 reveals that the given circuit behaves as a low pass filter. 
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Corrected Amplitude Plots

Using the transfer function of (7.68) with MATLAB, we get the Bode magnitude plot shown in Fig-
ure 7.33.

num=[0 0 2500]; den=[1 20 2500]; sys=tf(num,den); w=logspace(0,5,100); bodemag(sys,w)

Figure 7.33. Bode plot for Example 7.5 using MATLAB
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7.8 Summary

The decibel, denoted as dB, is a unit used to express the ratio between two amounts of power, gen-
erally . By definition, the number of  is obtained from . It
can also be used to express voltage and current ratios provided that the voltages and currents have
identical impedances. Then, for voltages we use the expression , and for

currents we use the expression 

The bandwidth, denoted as , is a term generally used with electronic amplifiers and filters. For
low-pass filters the bandwidth is the band of frequencies from zero frequency to the cutoff fre-
quency where the amplitude fall to  of its maximum value. For high-pass filters the band-
width is the band of frequencies from  of maximum amplitude to infinite frequency. For
amplifiers, band-pass, and band-elimination filters the bandwidth is the range of frequencies where
the maximum amplitude falls to  of its maximum value on either side of the frequency
response curve. 
If two frequencies  and  are such that , we say that these frequencies are separated
by one octave and if , they are separated by one decade.

Frequency response is a term used to express the response of an amplifier or filter to input sinuso-
ids of different frequencies. The response of an amplifier or filter to a sinusoid of frequency  is
completely described by the magnitude  and phase  of the transfer function.

Bode plots are frequency response diagrams of magnitude and phase versus frequency .

In Bode plots the -  frequencies, denoted as , are referred to as the corner frequencies.

In Bode plots, the transfer function is expressed in linear factors of the form  for the zero
(numerator) linear factors and  for the pole linear factors. When quadratic factors with
complex roots occur in addition to the linear factors, these quadratic factors are expressed in the
form .

In magnitude Bode plots with quadratic factors the difference between the asymptotic plot and the
actual curves depends on the value of the damping factor . But regardless of the value of , the
actual curve approaches the asymptotes at both low and high frequencies.

In Bode plots the corner frequencies  are easily identified by expressing the linear terms as
 and  for the zeros and poles respectively. For quadratic factor the cor-

ner frequency  appears in the expression  or 
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Summary

In both the magnitude and phase Bode plots the frequency (abscissa) scale is logarithmic. The
ordinate in the magnitude plot is expressed in  and in the phase plot is expressed in degrees.

In magnitude Bode plots, the asymptotes corresponding to the linear terms of the form
 and  have a slope  where the positive slope applies to

zero (numerator) linear factors, and the negative slope applies to pole (denominator) linear factors.

In magnitude Bode plots, the asymptotes corresponding to the quadratic terms of the form
 have a slope  where the positive slope applies to zero

(numerator) quadratic factors, and the negative slope applies to pole (denominator) quadratic fac-
tors.

In phase Bode plots with linear factors, for frequencies less than one tenth the corner frequency
we assume that the phase angle is zero. At the corner frequency the phase angle is . For fre-
quencies ten times or greater than the corner frequency, the phase angle is approximately 
where the positive angle applies to zero (numerator) linear factors, and the negative angle applies
to pole (denominator) linear factors.

In phase Bode plots with quadratic factors, the phase angle is zero for frequencies less than one
tenth the corner frequency. At the corner frequency the phase angle is . For frequencies ten
times or greater than the corner frequency, the phase angle is approximately  where the pos-
itive angle applies to zero (numerator) quadratic factors, and the negative angle applies to pole
(denominator) quadratic factors.

Bode plots can be easily constructed and verified with the MATLAB function bode(sys) func-
tion. With this function, the frequency range and number of points are chosen automatically. The
function bode(sys),{wmin,wmax}) draws the Bode plot for frequencies between wmin and
wmax (in radian/second) and the function bode(sys,w) uses the user-supplied vector w of fre-
quencies, in radian/second, at which the Bode response is to be evaluated. To generate logarithmi-
cally spaced frequency vectors, we use the command logspace(first_exponent,last_exponent,
number_of_values).

dB

j zi 1+ j pi 1+ 20 dB decade

j n
2 j2 n 1+ + 40 dB decade

45
90
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7.9 Exercises

1. For the transfer function

a. Draw the magnitude Bode plot and find the approximate maximum value of  in .

b. Find the value of  where  for 

c. Check your plot with the plot generated with MATLAB.

2. For the transfer function of Exercise 1

a. Draw a Bode plot for the phase angle and find the approximate phase angle at ,
, , and 

b. Compute the actual values of the phase angle at the frequencies specified in (a).

c. Check your magnitude plot of Exercise 1 and the phase plot of this exercise with the plots gen-
erated with MATLAB.

3. For the circuit of Figure 7.34

a. Compute the transfer function.

b. Draw the Bode amplitude plot for 

c. From the plot of part (b) determine the type of filter represented by this circuit and estimate the
cutoff frequency.

d. Compute the actual cutoff frequency of this filter.

e. Draw a straight line phase angle plot of .

f. Determine the value of  at the cutoff frequency from the plot of part (c).

g. Compute the actual value of  at the cutoff frequency.

Figure 7.34. Circuit for Exercise 3
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7.10  Answers to Exercises

1. a.

The corner frequencies are at , , and . The asymptotes
are shown as solid lines. 

From this plot we observe that  for the interval 

G j 105 j 5+
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b. By inspection,  at 

2. From the solution of Exercise 1

and in magnitude-phase form

that is,  where , , and 

The corner frequencies are at , , and  where at those fre-
quencies , , and  respectively. The asymptotes are shown as solid
lines.

From the phase plot we observe that , , , and

20 G jlog 0 dB= 9.85 104 r s=

G j 1 j 5+
1 j 100+ 1 j 5000+

--------------------------------------------------------------------------=

G j 1 j 5+
1 j 100+ 1 j 5000+

-------------------------------------------------------------------------------- – –=

– –= 51–tan= – 1001–tan–= – 50001–tan–=

5 r s= 100 r s= 5000 r s=

45= – 45–= – 45–=

30 r s 60 50 r s 53 100 r s 38
5000 r s 39–

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

P
ha

se
an

gl
e

in
de

gr
ee

s

r s
100 101 102 103 104 105

51–tan=

– 1001–tan–=

– 50001–tan–=



Circuit Analysis II with MATLAB Applications 7-41
Orchard Publications

Answers to Exercises

b. We use MATLAB for the computations.

theta_g30=(1+30j/5)/((1+30j/100)*(1+30j/5000));...
theta_g50=(1+50j/5)/((1+50j/100)*(1+50j/5000));...
theta_g100=(1+100j/5)/((1+100j/100)*(1+100j/5000));...
theta_g5000=(1+5000j/5)/((1+5000j/100)*(1+5000j/5000));...
printf(' \n');...
fprintf('theta30r = %5.2f deg. \t', angle(theta_g30)*180/pi);...
fprintf('theta50r = %5.2f deg. ', angle(theta_g50)*180/pi);...
fprintf(' \n');...
fprintf('theta100r = %5.2f deg. \t', angle(theta_g100)*180/pi);...
fprintf('theta5000r = %5.2f deg. ', angle(theta_g5000)*180/pi);...
fprintf(' \n')

theta30r = 63.49 deg. theta50r = 57.15 deg.
theta100r = 40.99 deg. theta5000r = -43.91 deg.

Thus, the actual values are

c. The Bode plot generated with MATLAB is shown below.

syms s; expand((s+100)*(s+5000))

ans =
s^2+5100*s+500000

num=[0 10^5 5*10^5]; den=[1 5.1*10^3 5*10^5]; w=logspace(0,5,10^4);...
bode(num,den,w)
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------------------------------------------------------------------------------ 63.49= =
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------------------------------------------------------------------------------ 57.15= =
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------------------------------------------------------------------------------------ 40.99= =
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1 j5000 100+ 1 j5000 5000+

------------------------------------------------------------------------------------------ 43.91–= =
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3. a. The equivalent  circuit is shown below. 

By the voltage division expression

and

  (1)

b. From (1) with 

  (2)

From (7.53)
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  (3)

and from (1) and (3) , , and , 

Following the procedure of page 7-26 we let . The numerator of (2) is a lin-
ear factor and thus we express it as . Then (2) is written as

or

  (4)

The amplitude of  in  is

  (5)

The asymptote of the first term on the right side of (5) has a corner frequency of  and
rises with slope of . The second term has a corner frequency of  and rises
with slope of . The amplitude plot is shown below.

c. The plot above indicates that the circuit is a low-pass filter and the  cutoff frequency 
occurs at approximately .
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d. The actual cutoff frequency occurs where

At this frequency (2) is written as

and considering its magnitude we get

We will use MATLAB to find the four roots of this equation.

syms w; solve(w^4 216*w^2 10000)

ans =

[  2*(27+1354^(1/2))^(1/2)]  [ -2*(27+1354^(1/2))^(1/2)]
[  2*(27-1354^(1/2))^(1/2)]  [ -2*(27-1354^(1/2))^(1/2)]

w1=2*(27+1354^(1/2))^(1/2)

w1 =
   15.9746

w2= 2*(27+1354^(1/2))^(1/2)

w2 =
  -15.9746

w3=2*(27 1354^(1/2))^(1/2)

w3 =
   0.0000 + 6.2599i

w4= 2*(27 1354^(1/2))^(1/2)

w4 =
  -0.0000 - 6.2599i

G j c G j max 2 1 2 0.70= = =
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-----------------------------------------=
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From these four roots we accept only the first, that is, 

e. From (4)

and

For a first order zero or pole not at the origin, the straight line phase angle plot approximations
are as follows:

I. For frequencies less than one tenth the corner frequency we assume that the phase angle is
zero. For this exercise the corner frequency of  is  and thus for

 the phase angle is zero as shown on the Bode plot below.

II For frequencies ten times or greater than the corner frequency, the phase angle is approxi-
mately . The numerator phase angle  is zero at one tenth the corner frequency,
it is  at the corner frequency, and  for frequencies ten times or greater the corner
frequency. For this exercise, in the interval  the phase angle is zero at

 and rises to  at .
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III As shown in Figure 7.20, for complex poles the phase angle is zero at zero frequency,
 at the corner frequency and approaches  as the frequency becomes large. The

phase angle asymptotes are shown on the plot of the previous page.

f. From the plot of the previous page we observe that the phase angle at the cutoff frequency is
approximately 

g. The exact phase angle at the cutoff frequency  is found from (1) with .

We need not simplify this expression since we can use MATLAB.

g16=(64j+100)/((16j)^2+64j+100); angle(g16)*180/pi

ans =
 -125.0746

This value is about twice as that we observed from the asymptotic plot of the previous page.
Errors such as this occur because of the high non-linearity between frequency intervals. There-
fore, we should use the straight line asymptotes only to observe the shape of the phase angle. It
is best to use MATLAB as shown below.

num=[0  4  100]; den=[1  4 100]; w=logspace(0,2,1000);bode(num,den,w)

90– 180–

63–

c 16 r s= s j16=

G j16 4 j16 25+

j16 2 4 j16 100+ +
-----------------------------------------------------=
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