
Section 6

Mathematical Functions and
Applications

Outline

• Signals
• Polynomials
• Partial fraction expansion
• Functions of two variables
• User-defined functions
• Plotting functions

6.1 Signal Representation, Processing, and Plotting

As we have seen, one application of a one-dimensional array in Matlab is to represent a function
by its uniformly spaced samples. One example of such a function is a signal, which represents a
physical quantity such as voltage or force as a function of time, denoted mathematically as x(t).
The value of x is known generically as the signal amplitude.

Sinusoidal Signal

A sinusoidal signal is a periodic signal, which satisfies the condition

x(t) = x(t+ nT), n = 1, 2, 3, . . .

where T is a positive constant known as the period. The smallest non-zero value of T for which
this condition holds is the fundamental period T0. Thus, the amplitude of the signal repeats
every T0.

101

Consider the signal

x(t) = A cos(ωt+ θ)

with signal parameters:

• A is the amplitude, which characterizes the peak-to-peak swing of 2A, with units of the
physical quantity being represented, such as volts.

• t is the independent time variable, with units of seconds (s).
• ω is the angular frequency, with units of radians per second (rad/s), which defines the fun-
damental period T0 = 2π/ω between successive positive or negative peaks.

• θ is the initial phase angle with respect to the time origin, with units of radians, which defines
the time shift τ = −θ/ω when the signal reaches its first peak.

With τ so defined, the signal x(t) may also be written as

x(t) = A cosω(t− τ)

When τ is positive, it is a “time delay,” that describes the time (greater than zero) when the first
peak is reached. When τ is negative, it is a “time advance” that describes the time (less than zero)
when the last peak was achieved. This sinusoidal signal is shown in Figure 6.1.

Figure 6.1: Sinusoidal signal A cos(ωt+ θ) with −π/2 < θ < 0.

Consider computing and plotting the following cosine signal

x(t) = 2 cos 2πt

Identifying the parameters:

102

• Amplitude A = 2
• Frequency ω = 2π. The fundamental period T0 = 2π/ω = 2π/2π = 1s.

• Phase θ = 0.

A time-shifted version of this signal, having the same amplitude and frequency is

y(t) = 2 cos[2π(t− 0.125)]

where the time shift τ = 0.125s and the corresponding phase is θ = 2π(−0.125) = −π/4.
A third signal is the related sine signal having the same amplitude and frequency

z(t) = 2 sin 2πt

Preparing a script to compute and plot x(t), y(t), and z(t) over two periods, from t = −1s to
t = 1s:

% sinusoidal representation and plotting
%
t = linspace(-1,1,101);
x = 2*cos(2*pi*t);
y = 2*cos(2*pi*(t-0.125));
z = 2*sin(2*pi*t);
plot(t,x,t,y,t,z),...

axis([-1,1,-3,3]),...
title(’Sinusoidal Signals’),...
ylabel(’Amplitude’),...
xlabel(’Time (s)’),...
text(-0.13,1.75,’x’),...
text(-0.07,1.25,’y’),...
text(0.01,0.80,’z’),grid

Thus, linspace has been used to compute the time row vector t having 101 samples or elements
with values from −1 to 1. The three signals are computed as row vectors and plotted, with axis
control, labels and annotation. The resulting plot is shown in Figure 6.2. Observe that x(t) reaches
its peak value of 2 at time t = 0, which we can verify as being correct since we know cos 0 = 1. The
signal y(t) is x(t) delayed by τ = 0.125s. The signal z(t) is 0 for t = 0, since sin 0 = 0. It reaches
its first peak at t = T0/4 = 0.25s, as sin(2π · 0.25) = sin(π/2) = 1.

Phasor Representation of a Sinusoidal Signal

An important and very useful representation of a sinusoidal signal is as a function of a complex
exponential signal.

103

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
Sinusoidal Signals

A
m

pl
itu

de

Time (s)

x

y

z

Figure 6.2: Sinusoidal signals

Recall

ejθ = cos θ + j sin θ

Thus,

cos θ = Re
[
ejθ

]

As a result, the signal

x(t) = A cos(ωt+ φ)

can be represented as the real part of the complex exponential

x(t) = Re
[
Aej(ωt+φ)

]

= Re
[
Aejφejωt

]

We call Aejφejωt the complex representation of x(t) and write

x(t) ←→ Aejφejωt

meaning that the signal x(t) may be reconstructed by taking the real part of Aejφejωt. In this
representation, we call Aejφ the phasor or complex amplitude representation of x(t) and write

x(t) ←→ Aejφ

104

meaning that the signal x(t) may be reconstructed from Aejφ by multiplying by ejωt and taking
the real part.

The phasor representation of the sinusoid x(t) = A cos(ωt+φ) is shown in the complex plane in Fig-
ure 6.3. At t = 0, the complex representation produces the phasor Aejφ, where φ is approximately

Figure 6.3: Rotating phasor

−π/10. If time t increases to time t1, then the complex representation produces

Aejφejωt1

From our discussion of complex numbers, we know that ejωt1 rotates the phasor Aejφ through an
angle ωt1. Therefore, as we increase t from 0, we rotate the phasor from Aejφ, producing the circular
trajectory around the circle of radius A shown in Figure 6.3. When t = 2π/ω, then ejωt = ejπ = 1.
Therefore, every 2π/ω seconds, the phasor revisits any given position on the circle. The quantity
Aejφejωt is called a rotating phasor whose rotation rate is the frequency ω:

d

dt
ωt = ω

The rotation rate is also the frequency of the sinusoidal signal x(t) = A cos(ωt+ φ).

The real part of the complex, or rotating phasor, representation Aejφejωt is the desired signal
x(t) = A cos(ωt+ φ). This real part is read off of the rotating phasor diagram as shown in Figure
6.4.

Consider computing and plotting the phasor

x(t) = ejωt

where ω = 2000π rad/s and t ranges from −2× 10−3 s to 2× 10−3 s, in steps of 0.02× 10−3 s. Also
to be plotted are y(t) = Re[x(t)] and z(t) = Im[x(t)]. The script file is

105

Figure 6.4: Reading a real signal from a complex, rotating phasor

% Phasor computation and plot
%
t = (-2e-03:0.02e-03:2e-03);
x = exp(j*2000*pi*t);
y = real(x);
z = imag(x);
subplot(2,1,1),plot(x,’:’),...

axis square,...
title(’exp(jwt)’),...
xlabel(’Real’),...
ylabel(’Imaginary’),...

subplot(2,1,2),plot(t,y,’-’,t,z,’:’),...
title(’Re[exp(jwt)] and Im[exp(jwt)] vs t w=1000*2*pi’),...
xlabel(’Time (s)’),grid on,...
legend(’Re[exp(j \omega t)]’,’Im[exp(j \omega t)]’,-1)

and the resulting plot is shown in Figure 6.5, where y(t) is plotted with a solid line and z(t) is
plotted with a dotted line.

Harmonic Motion

A periodic motion that can be described by a sinusoidal function of time is called harmonic
motion. A mechanism that produces such motion is a scotch yoke, shown in Figure 6.6. This
mechanism is used in machines known as shakers, for testing the behavior of equipment subject to
vibrations. The driving element is a rotating disk with a pin mounted a distance A from the center.
The pin can slide in the slot of the element marked x-yoke. The motion of the x-yoke is restricted
by a guided rod attached to it, so that this yoke can move only horizontally. A similar slotted
element, marked y-yoke, is assembled above the x-yoke. The motion of the y-yoke is restricted by
a guided rod that allows only vertical displacements.

106

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
exp(jwt)

Real
Im

ag
in

ar
y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−3

−1

−0.5

0

0.5

1
Re[exp(jwt)] and Im[exp(jwt)] vs t w=1000*2*pi

Time (s)

Re[exp(j ω t)]
Im[exp(j ω t)]

Figure 6.5: The signals ejωt, Re
[
ejωt

]
, and Im

[
ejωt

]

Figure 6.6: Scotch yoke mechanism

107

The motion is described mathematically by first assuming that at time t = 0 the position of the
pin relative to the x axis is defined by the angle φ. The x-coordinate of the point P1 is

x(0) = A cos(φ)

and the y-coordinate of the point P2 is

y(0) = A sin(φ)

If the angular speed of the disk is ω radians per second, then the x-coordinate of the point P1 at
time t is

x(t) = A cos(ωt+ φ)

and the y-coordinate of the point P2 is

y(t) = A sin(ωt+ φ)

Using the phasor representation for this motion, we can define

z(t) = Aejωt+φ

and we observe that x(t) is the real part and y(t) is the imaginary part of z(t). The point z can be
considered to be the end of a vector with origin at the coordinate origin and magnitude A. This
vector rotates with angular velocity ω, starting from angle φ.

If y(t) is the displacement of the harmonic motion, the velocity is

v(t) =
dy

dt
= ωA cos(ωt+ φ) = ωA sin(ωt+ φ+ π/2)

and the acceleration is

a(t) =
d2y(t)
dt2

= −ω2A sin(ωt+ φ) = ω2A sin(ωt+ φ+ π)

We conclude that the velocity of the harmonic motion can be represented by a rotating vector
leading the displacement by the phase π/2, and the acceleration can be represented by another
rotating vector, leading the displacement by the phase angle π.

Phasor Properties

Positive and Negative Frequencies

108

An alternative phasor representation for the signal

x(t) = A cos(ωt+ φ)

is obtained by using the Euler identity

cos θ =
1
2

(
ejθ + e−jθ

)

which yields

x(t) =
A

2

[
ej(ωt+φ) + e−j(ωt+φ)

]

=
A

2
ejφejωt +

A

2
e−jφe−jωt

In this equation, the term A
2 e

jφejωt is a rotating phasor that begins at the phasor value A
2 e

jφ

and rotates counterclockwise with frequency ω. The term A
2 e

−jφe−jωt is a rotating phasor that
begins at the (complex conjugate) phasor value A

2 e
−jφ (for t = 0) and rotates clockwise with

(negative) frequency ω. The physically meaningful frequency for a cosine is ω, a positive quantity.
A negative frequency is not physically meaningful, but just means that the direction of rotation for
the rotating phasor is clockwise, not counterclockwise, in the complex exponential representation
of the real sinusoid. Thus, the concept of negative frequency is just an artifact of the two-phasor
representation. In the one-phasor representation, when we take the “real part,” the artifact does
not arise. You are likely to encounter both the one-phasor and two-phasor representations, so you
should be familiar with both.

Adding Phasors

The sum of two signals with common frequencies but different amplitudes and phases is

A1 cos(ωt+ φ1) +A2 cos(ωt+ φ2).

The rotating phasor representation for this sum is

(
A1e

jφ1 +A2e
jφ2

)
ejωt

The new phasor is

A1e
jφ1 +A2e

jφ2

and the corresponding real signal is

x(t) = Re
[(
A1e

jφ1 +A2e
jφ2

)
ejωt

]

The new phasor is shown in Figure 6.7, where the parallelogram rule for adding complex numbers
applies.

109

Figure 6.7: Adding phasors

Beating Between Tones

If you have heard two slightly mistuned musical instruments playing pure tones whose frequencies
were close but not equal, you have sensed a beating phenomenon in which you perceive a single
pure tone whose amplitude slowly varies periodically. The single perceived tone can be shown to
have a frequency that is the average of the two mismatched frequencies, amplitude modulated by a
tone whose “beat” frequency is half the difference between the two mismatched frequencies. This
effect is shown in Figure 6.8.

To understand this phenomenon, begin with two pure tones whose frequencies are ω0 + ωb and
ω0 − ωb (for example, ω0 = 2π × 1400 rad/s and ωb = 2π × 100 rad/s). The average frequency is
ω0 and the difference frequency is 2ωb. You hear the sum of the two tones:

x(t) = A1 cos [(ω0 + ωb)t+ φ1] +A2 cos [(ω0 − ωb)t+ φ2]

Assume that the amplitudes are equal, with A = A1 = A2. The phases may be written as

φ1 = φ+ ψ and φ2 = φ− ψ

with

φ =
1
2
(φ1 + φ2) and ψ =

1
2
(φ1 − φ2)

Representing x(t) as a complex phasor

x(t) = A Re
{
ej[(ω0+ωb)t+φ+ψ] + ej[(ω0−ωb)t+φ−ψ]

}

= A Re
{
ej(ω0t+φ)

[
ej(ωbt+ψ) + e−j(ωbt+ψ)

]}

= 2A Re
{
ej(ω0t+φ) cos(ωbt+ ψ)

}
= 2A cos(ω0t+ φ) cos(ωbt+ ψ)

110

This is an amplitude modulated waveform, in which a low frequency signal with beat frequency
ωb modulates a high frequency signal with carrier frequency ω0 rad/s. Over short periods of time,
the modulating signal cos(ωbt + ψ) remains relatively constant while the carrier term cos(ω0 + φ)
produces many cycles of its pure tone. Thus, we perceive the pure tone at the carrier frequency
ω0, having an amplitude that varies sinusoidally at the beat frequency ωb.

The following is the script to simulate beating tones in which ω0 = 2π×1400 rad/s and ωb = 2π×100
rad/s, resulting in the plot shown in Figure 6.8.

% beating sinusoidal tones
%
t = linspace(-1e-2,1e-2,1001);
x = cos(2*pi*1500*t) + cos(2*pi*1300*t);
m = 2*cos(2*pi*100*t);
plot(t,m,’b:’,t,-m,’b:’,t,x,’k’),...

axis([-0.01 0.01 -2.4 2.4]),...
title(’Beating between tones’),...
xlabel(’Time (s)’),...
ylabel(’Amplitude’)

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Beating between tones

Time (s)

A
m

pl
itu

de

Figure 6.8: Beating between tones

6.2 Polynomials

A polynomial is a function of a single variable that can be expressed in the general form

A(s) = a1s
N + a2s

N−1 + a3s
N−2 + · · ·+ aNs+ aN+1

111

where the variable is s and the polynomial coefficients are the N +1 constants a1, a2, . . . , aN+1.
The polynomial is of degree N, the largest value used as an exponent. The general form of a degree
3 (cubic) polynomial is

A(s) = a1s
3 + a2s

2 + a3s+ a4

and a specific example of a cubic polynomial is

A(s) = s3 + 4s3 − 7s− 10

Note that the notation used here is nonstandard, as the coefficient of term sk is usually denoted as
ak. However, the nonstandard notation is more compatible with the indexing of arrays inMatlab,
as will be explained below.

For information on Matlab functions supporting polynomial computations, type help polyfun.

Polynomial Evaluation

There are several ways to evaluate a polynomial for a set of values. Consider the cubic polynomial:

A(s) = s3 + 4s2 − 7s− 10

• Scalar s: use scalar operations

A = s^3 + 4*s^2 - 7*s - 10;

• Vector or matrix s: use array or element-by-element operations:

A = s.^3 + 4*s.^2 - 7*s - 10;

The size of the vector or matrix A will be the same as that of s.

• Using polyval(a,s): Evaluates a polynomial with coefficients in vector a for the values in
s. The result is a matrix the same size as s. Element a(1) corresponds to coefficient a1.

Consider evaluating and plotting A(s) over the interval [-1,3]:

s = linspace(-1,3,201);
a = [1 4 -7 -10];
A = polyval(a,s);
plot(s,A),...

title(’Polynomial Function A(s) = s^3 + 4s^2 -7s -10’),...
xlabel(’s’),...
ylabel(’A(s)’)

The resulting plot is shown in Figure 6.9.

112

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

25

30

35
Polynomial Function A(s) = s3 + 4s2 −7s −10

s

A
(s

)

Figure 6.9: Plot of polynomial function A(s)

Polynomial Operations

By characterizing polynomial A(s) by coefficients ak stored in vector a and polynomial B(s) by
coefficients bk stored in vector b, algebraic operations can be performed on the two polynomials.

• Addition: The coefficients of the sum of two polynomials is the sum of the coefficients of
the two polynomials. The vectors containing the coefficients must be of the same length. For
example, to add

A(s) = s4 − 3s3 − s+ 2

B(s) = 4s3 − 2s2 + 5s− 16

C(s) = A(s) +B(s)
= s4 + (4− 3)s3 − 2s2 + (5− 2)s+ (2− 16)
= s4 + s3 − 2s2 + 4s− 14

The script to perform this addition:

>> a = [1 -3 0 -1 2];
>> b = [0 4 -2 5 -16];
>> c = a + b
c =

1 1 -2 4 -14

113

Thus,

C(s) = s4 + s3 − 2s2 + 4s− 14

• Scalar multiple: The coefficient vector of the scalar multiple of a polynomial is simply the
scalar times the coefficient vector of the polynomial. To specify

C(s) = 3A(s)

for A(s) above, the following commands are used:

>> a = [1 -3 0 -1 2];
>> c = 3*a
c =

3 -9 0 -3 6

Thus

C(s) = 3s4 − 9s3 − 3s+ 6

• Multiplication: Apply the function conv(a,b), which returns the coefficient vector for the
polynomial resulting from the product of polynomials represented by the coefficients in a and
b. The vectors a and b don’t have to be of the same length. The resulting vector has length
equal to the sum of the lengths of a and b minus one.

Consider the following polynomial product, evaluated by hand using the “first-outer-inner-
last” (FOIL) method:

F (s) = (s+ 2)(s+ 3) = s2 + 3s+ 2s+ 6 = s2 + 5s+ 6

Using a Matlab script

>> a = [1 2];
>> b = [1 3];
>> c = conv(a,b)
c =

1 5 6

Now consider multiplying polynomials A(s) and B(s) above:

C(s) = A(s)B(s) = (s4 − 3s3 − s+ 2)(4s3 − 2s2 + 5s− 16)

Recall from your algebra class that evaluation by hand is a tedious process. Using aMatlab
script:

>> a = [1 -3 0 -1 2];
>> b = [4 -2 5 -16];
>> c = conv(a,b)
c =

4 -14 11 -35 58 -9 26 -32

114

Thus,

C(s) = 4s7 − 14s6 + 11s5 − 35s4 + 58s3 − 9s2 + 26s− 32

• Division: You may have learned the “long division” method for evaluating the division of
two polynomials. This method won’t be reviewed here, except to remind you that two results
are determined: the quotient and the remainder. The result, expressed mathematically, is

N(s)
D(s)

= Q(s) +
R(s)
D(s)

where N(s) is the numerator polynomial, D(s) is the denominator polynomial, Q(s) is the
quotient polynomial, and R(s) is the remainder polynomial.

The Matlab function to perform polynomial division:
[q,r] = deconv(n,d) Returns quotient polynomial coefficients q and remainder

polynomial coefficients r from numerator coefficients n and
denominator coefficients d.

Consider the evaluation of polynomial division in which the numerator is C(s) and the de-
nominator is A(s), both from the multiplication example above. The result for the quotient
should then be B(s) above and the remainder should be all zeroes.

>> c = [4 -14 11 -35 58 -9 26 -32];
>> a = [1 -3 0 -1 2];
>> [q r] = deconv(c,a)
q =

4 -2 5 -16
r =

0 0 0 0 0 0 0 0

Now consider the following:

H(s) =
N(s)
D(s)

=
s3 + 5s2 + 11s+ 13

s2 + 2s+ 4

In Matlab:

>> n = [1 5 11 13];
>> d = [1 2 4];
>> [q r] = deconv(n,d)
q =

1 3
r =

0 0 1 1

Placing the result in mathematical form:

H(s) = Q(s) +
R(s)
D(s)

= s+ 3 +
s+ 1

s2 + 2s+ 4

115

• Derivatives: You should be familiar with the rule for differentiating a polynomial term

d

ds
asn = nasn−1

Applying this rule to the polynomial

P (s) = s3 + 4s2 − 7s− 10

produces the derivative

d

ds
P (s) = 3s2 + 8s− 7

Matlab provides function polyder for polynomial differentiation.

polyder(p) Returns the coefficients of the derivative of the polynomial
whose coefficients are the elements of vector p.

polyder(a,b) Returns the coefficients of the derivative of the product poly-
nomial A(s) ∗B(s).

[n,d] = polyder(b,a) Returns the derivative of the polynomial ratio B(s)/A(s),
represented as N(s)/D(s).

Confirming the example above using the first form of polyder:

>> p = [1 4 -7 -10];
>> d = polyder(p)
d =

3 8 -7

The second form of polyder returns the coefficients of the derivative of a product of two
polynomials. This is equivalent to multiplying the two polynomials with conv and then
differentiating using the first form of polyder. Consider applying the second form of polyder
to the second example of polynomial multiplication above. The result can be confirmed by
differentiating C(s) above by hand.

>> a = [1 -3 0 -1 2];
>> b = [4 -2 5 -16];
>> dc = polyder(a,b)
dc =

28 -84 55 -140 174 -18 26

The derivative of a polynomial ratio is more difficult to evaluate by hand. Using the derivative
notation

f ′ =
df

ds
,

recall the quotient rule for differentiation

(
f

g

)′
=
gf ′ − fg′
g2

116

Thus, for the polynomial ratio

H(s) =
s+ 2
s+ 3

the derivative is

dH(s)
ds

=
(s+ 3)− (s+ 2)

(s+ 3)2
=

1
(s+ 3)2

=
1

s2 + 6s+ 9

Applying the third form of polyder

>> b = [1 2];
>> a = [1 3];
>> [q,d] = polyder(b,a)
q =

1
d =

1 6 9

Note that the denominator polynomial d in the result is in expanded, rather than factored
form.

Roots of Polynomials

In many engineering problems, there is a need to find the roots of a polynomial P (s), which are
the values of s for which P (s) = 0. When P (s) is of degree N , then there are exactly N roots,
which may be repeated roots or complex roots. If the polynomial coefficients (a1, a2, . . .) are
real, then any complex roots will always occur in complex conjugate pairs.

For degree one (linear) or two (quadratic), the roots are easily determined. The quadratic equation
can be used for degree two, as described earlier. For polynomials of degree 3 and higher, numerical
techniques are required to find the roots. The Matlab function for finding the roots:

roots(a) Returns as a vector the roots of the polynomial represented
by the coefficient vector a.

Consider the denominator polynomial from the example above

D(s) = (s+ 3)2 = s2 + 6s+ 9

>> d = [1 6 9];
>> roots(d)
ans =

-3
-3

117

This confirms that there are two roots at −3 in the denominator.
Consider the cubic polynomial

P (s) = s3 − 2s2 − 3s+ 10

The commands to compute and display the roots:

>> p = [1,-2,-3,10];
>> r = roots(p)
r =

2.0000+ 1.0000i
2.0000- 1.0000i
-2.0000

Note that there are 3 roots for the degree 3 polynomial, with a complex conjugate pair of roots
and a real root. To verify that these values are roots, evaluate the polynomial at the roots:

>> P= polyval(p,r)
P =

1.0e-013 *
-0.0355+ 0.1377i
-0.0355- 0.1377i
0.0711

While P (r) is not exactly zero, due to the limitations on numerical accuracy, for each root it is of
the order of 10−14.

The roots can be used to express the polynomial in factored form. For example:

P (s) = s3 − 2s2 − 3s+ 10 = (s− r1)(s− r2)(s− r3) = (s− 2− j)(s− 2 + j)(s+ 2)

The coefficients of the polynomial can be determined from the roots using the poly function:

poly(r) Returns as a row vector the coefficients of the polynomial
whose roots are contained in the vector r.

For example:

>> a = poly(r)
a =

1.0000 -2.0000 -3.0000 10.0000

Example 6.1 Finding the depth of a well using roots of a polynomial

118

Consider the problem of finding the depth of a well by dropping a stone and measuring the time
t to hear a splash. This time is composed of the time t1 of free fall from release to reaching the
water and the time t2 that the sound takes to travel from the water surface to the ear of the person
dropping the stone. Let g denote the acceleration of gravity, d the well depth (approximately equal
to the distance between the hand or the ear of the person and the water surface), and c the speed
of sound in air. The depth d, the distance traveled by the stone during time t1 is

d =
g

2
· t21

or

t1 =
√
2d/g

The same distance traveled by the sound during t2 is

d = c · t2

or

t2 = d/c

The total time is

t = t1 + t2 =
√
2d/g + d/c

Squaring the equation above and rearranging the terms

d2 − 2(tc+ c2/g)d+ c2t2 = 0

The depth d is the solution (roots) of the quadratic polynomial equation above. If the measured
time t was 2.5s and the speed of sound c in air at atmospheric pressure and 20◦ Celsius is 343m/s,
the following Matlab script can be used to calculate the depth d.

% Well depth problem
%
% Define input values
t = 2.5; % time to hear splash (s)
g = 9.81; % acceleration of gravity (m/s^2)
c = 343; % speed of sound in air (m/s)

% Calculate polynomial coefficients
a(1) = 1;
a(2) = -2*(t*c + c^2/g);

119

a(3) = (c*t)^2;

% Find roots corresponding to depth
depth = roots(a)

The displayed results from this script:

depth =
1.0e+004 *
2.5672
0.0029

As is the case in many problems involving roots of a quadratic equation, one of the solutions is not
physically reasonable. In this problem, the first root gives an impossibly large well depth, while
the second root gives a reasonable depth. Investigating this solution with Matlab:

>> d = depth(2)
d =

28.6425
>> t1 = sqrt(2*d/g)
t1 =

2.4165
>> t2 = d/c
t2 =

0.0835
>> t = t1 + t2
t =

2.5000

Thus, the depth is 28.6m, confirming the time of 2.5s.

6.3 Partial Fraction Expansion

A rational function is a ratio of polynomials having the form

H(s) =
B(s)
A(s)

=
b1s

m + b2sm−1 + · · ·+ bms+ bm+1

a1sn + a2sn−1 + · · ·+ ans+ an+1

For m < n, H(s) is known as a proper rational function and for m ≥ n, it is known as an
improper rational function. Denoting the roots of the denominator by r1, r2, . . . rn, A(s) can
be written in factored form as

A(s) = a1(s− r1)(s− r2) · · · (s− rn)

120

and H(s) can be written as

H(s) =
B(s)

a1(s− r1)(s− r2) · · · (s− rn)

Partial fraction expansion is a technique to express H(s) as a sum of terms.

Expansion of Proper Rational Functions

For a proper rational function (m < n), there are three different cases of partial fraction expansion
that must be considered:

1. Distinct (nonrepeated) real roots.

2. Distinct complex roots.

3. Repeated roots.

Distinct Real Roots

When the roots r1, r2, . . . , rn are distinct and real, then by partial fraction expansion H(s) can
be expressed as

H(s) =
c1

s− r1 +
c2

s− r2 + · · ·+ cn
s− rn

where the constants ci are called the residues, which can be computed using the residue command:

[c,r] = residue(b,a) finds the residues c and roots r of a partial fraction expansion of the
ratio of two polynomials B(s)/A(s). Vectors b and a specify the coefficients of the numerator and
denominator polynomials in descending powers of s. The residues are returned in the column vector
c and the roots in column vector r.

Example:

H(s) =
s+ 2

s3 + 4s2 + 3s

>> b = [1 2];
>> a = [1 4 3 0];
>> [c,r] = residue(b,a)
c =

-0.1667
-0.5000
0.6667

121

r =
-3
-1
0

H(s) = − 0.1667
s− (−3) −

0.5000
s− (−1) +

0.6667
s− 0

= − 1/6
s+ 3

− 1/2
s+ 1

+
2/3
s

Distinct Complex Roots

Partial fraction expansion applies as well to distinct complex roots. Note that if root r1 is complex,
then the complex conjugate r∗1 is also a root. It can also be shown that the residue c2 corresponding
to the root r2 is equal to the conjugate c∗1 of the residue corresponding to the root r1.

Example:

H(s) =
s2 − 2s+ 1

s3 + 3s2 + 4s+ 2

>> b = [1 -2 1];
>> a = [1 3 4 2];
>> [c,r] = residue(b,a)
c =

-1.5000+ 2.0000i
-1.5000- 2.0000i
4.0000

r =
-1.0000+ 1.0000i
-1.0000- 1.0000i
-1.0000

H(s) =
−1.5 + j2
s+ 1− j +

−1.5− j2
s+ 1 + j

+
4

s+ 1

Repeated Roots

Again consider the general case where m < n and

H(s) =
B(s)
A(s)

122

Suppose that root r1 of A(s) is repeated p times and the other n−p roots (denoted rp+1, rp+2, . . . , rn)
are distinct. Then H(s) has the partial fraction expansion

H(s) =
c1

s− r1 +
c2

(s− r1)2 + · · ·+ cp
(s− r1)p +

cp+1

s− rp+1
+ · · ·+ cn

s− rn

Example:

H(s) =
5s− 1

s3 − 3s− 2

>> b = [5 -1];
>> a = [1 0 -3 -2];
>> [c,r] = residue(b,a)
c =

1.0000
-1.0000
2.0000

r =
2.0000
-1.0000
-1.0000

H(s) =
1

s− 2 − 1
s+ 1

+
2

(s+ 1)2

Expansion of Improper Rational Functions

Again consider the rational function

H(s) =
B(s)
A(s)

with the degree of B(s) greater than or equal to the degree of A(s) (m ≥ n). By polynomial
division, H(s) can be written in the form

H(s) = Q(s) +
R(s)
A(s)

where the quotient Q(s) is a polynomial in s with degree m − n, and the remainder R(s) is a
polynomial in s with degree strictly less than n. Thus, R(s)/A(s) is a proper rational function that
can be expanded using partial fraction expansion.

The expansion of an improper rational function in Matlab is computed with a variation of the
residue function:

123

[c,r,q] = residue(b,a) finds the residues, roots and quotient of a partial fraction expansion of
the ratio of two polynomials B(s)/A(s). The coefficients of the quotient Q(s) are returned in the row
vector q. The number of roots is n = length(a)-1 = length(c) = length(r). The quotient co-
efficient vector is empty if length(b) < length(a), otherwise length(q) = length(b)-length(a)+1.

Example:

H(s) =
s3 + 2s− 4
s2 + 4s− 2

>> b = [1 0 2 -4];
>> a = [1 4 -2];
>> [c,r,q] = residue(b,a)
c =

20.6145
-0.6145

r =
-4.4495
0.4495

q =
1 -4

H(s) = s− 4 + 20.6145
s+ 4.4495

− 0.6145
s− 0.4495

Recovering the Rational Function

The coefficients of the rational function can be recovered from the residues, the roots, and the
coefficients of the quotient term using yet another form of the residue function.

[b,a] = residue(c,r,q), with three input arguments and two output arguments, converts the
partial fraction expansion back to the polynomials with coefficients in b and a.

Consider the continuation of the example above.

>> [b,a] = residue(c,r,q)
b =

1.0000 0 2.0000 -4.0000
a =

1 4 -2

H(s) =
s2 + 2s− 4
s2 + 4s− 2

124

6.4 Functions of Two Variables

To evaluate a function of two variables f(x, y), first define a two-dimensional grid in the xy
plane, then evaluate the function at the grid points to determine points on the three-dimensional
surface. This is shown in Figure 6.10, where the surface values z = f(x, y) are plotted above the
grid of xy values.

Figure 6.10: Function of two variables plotted in three dimensions

A two-dimensional grid in the xy plane is defined in Matlab by two vectors, one containing the
x-coordinates at all the points in the grid, and the other containing the y-coordinates. For example,
to define a grid in x varying from −2 to 2 in increments of 1 and a grid in y varying from −1 to 2
in increments of 1, using colon notation:

>> x = -2:2
x =

-2 -1 0 1 2
>> y = -1:2
y =

-1 0 1 2

The meshgrid function generates two matrices that define the underlying grid for a two-dimensional
function.

[X,Y] = meshgrid(x,y) Transforms the domain specified by vectors x and y into ar-
rays X and Y that can be used for the evaluation of functions
of two variables and 3-D surface plots. The rows of the out-
put array X are copies of the vector x and the columns of the
output array Y are copies of the vector y. If x has length n
and y has length m, then X and Y are m× n arrays.

[X,Y] = meshgrid(x) Abbreviation for [X,Y] = meshgrid(x,x)

For example:

>> [X,Y] = meshgrid(x,y)

125

X =
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2

Y =
-1 -1 -1 -1 -1
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2

After the underlying grid matrices have been defined, the corresponding function values can be
computed. For example, for the following function

f(x, y) = ye−(x2+y2)

the function values would be computed as

Z = Y.* exp(-(X.^2 + Y.^2));

The operations are element-by-element, so the value Z(1,1) is computed from X(1,1) and Y(1,1),
and so on. Note that Z must be computed from X and Y and not from x and y, a common error.

Three-dimensional plots

Among several ways to plot a three-dimensional (3D) surface in Matlab, a mesh plot and a
surface plot will be described, followed by a description of a contour plot. For further information
on 3D plots, type help graph3d.

mesh(x_pts,y_pts,Z) Generates an open mesh plot of the surface defined by matrix
Z. The arguments x_pts and y_pts can be vectors defining
the ranges of the values of the x- and y-coordinates, or they
can be matrices defining the underlying grid of x- and y-
coordinates.

surf(x_pts,y_pts,Z) Generates a shaded mesh plot of the surface defined by matrix
Z. The arguments x_pts and y_pts can be vectors defining
the ranges of the values of the x- and y-coordinates, or they
can be matrices defining the underlying grid of x- and y-
coordinates.

For example, to plot the function f(x, y) in the example above, the following commands are executed

% Mesh and surface plots of a function of two variables
%
x = -2:0.1:2;
y = -1:0.1:2;

126

[X Y] = meshgrid(x,y);
Z = Y.*exp(-(X.^2 + Y.^2));
subplot(2,1,1),mesh(X,Y,Z),...

title(’Mesh Plot’),xlabel(’x’),...
ylabel(’y’),zlabel(’z’),...

subplot(2,1,2),surf(X,Y,Z),...
title(’Surface Plot’),xlabel(’x’),...
ylabel(’y’),zlabel(’z’)

Note that the xy grid has been made finer by incrementing both x and y by 0.1. Also note that
the arguments X and Y could have been replaced by x and y in both the mesh and surf commands.
The resulting plots are shown in Figure 6.11. Note that you need to know something about the

−2
−1

0
1

2

−1
0

1
2

−0.5

0

0.5

x

Mesh Plot

y

z

−2
−1

0
1

2

−1
0

1
2

−0.5

0

0.5

x

Surface Plot

y

z

Figure 6.11: Mesh and surface plots of a function of two variables

properties of the two-dimensional function f(x, y) to know what range of values on x and y that
you want it to be plotted.

A contour plot is an elevation or topographic map consisting of curves representing equal eleva-
tions or values of z, called contours of constant elevation.

127

contour(x,y,Z) Generates a contour plot of the surface defined by the matrix
Z. The arguments x and y are vectors defining the ranges of
values of the x- and y-coordinates. The number of contour
lines and their values are chosen automatically.

contour(x,y,Z,v) Generates a contour plot of the surface defined by the matrix
Z. The arguments x and y are vectors defining the ranges of
values of the x- and y-coordinates. The vector v defines the
values to use for the contour lines.

meshc(x_pts,y_pts,Z) Generates an open mesh plot of the surface defined by the
matrix Z. The arguments x_pts and y_pts can be vectors
defining the ranges of values of the x- and y-coordinates or
they can be matrices defining the underlying grid of x- and
y-coordinates. In addition, a contour plot is generated below
the mesh plot.

The commands to produce the contour plot shown in Figure 6.12 from the function f(x, y) consid-
ered in the examples above:

contour(x,y,Z),...
title(’Contour Plot’),xlabel(’x’),...
ylabel(’y’),grid

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2
Contour Plot

x

y

Figure 6.12: Contour plot of a function of two variables

The commands to produce the mesh/contour plot shown in Figure 6.13 from the function f(x, y)
considered in the examples above:

meshc(X,Y,Z),...

128

title(’Mesh/Contour Plot’),xlabel(’x’),...
ylabel(’y’),zlabel(’z’)

−2

−1

0

1

2

−1

−0.5

0

0.5

1

1.5

2
−0.5

0

0.5

x

Mesh/Contour Plot

y

z

Figure 6.13: Mesh/contour plot of a function of two variables

6.5 User-Defined Functions

For more information, type help function in Matlab.

If you find that you are often building a function from severalMatlab commands, you can develop
a user-defined function that can can be used in a same way as the built-in Matlab functions.

A user-defined function is similar to a script file in that it is a text file having a .m extension and
it is thus called a function M-file. Their variables are local, meaning that their values are available
only within the function. They are the building blocks of larger scripts, facilitating a modular
approach to the development of scripts.

For example, consider writing a function to compute the sine of an angle, with the angle in degrees
rather than radians. The user-defined function is the following:

function y = sind(x)
% SIND Sine in degrees
% SIND(X) is the sine of the elements of X, in degrees
y = sin(x*pi/180);

This function is written to a file named sind.m. Matlab programs and scripts can refer to this
function in the same way that they refer to functions such as sqrt and abs. An example of the use
of this to simplify a command in the script written for Example 4.2 is:

129

>> AC = 245/sind(30)
AC =

490.0000

The rules for writing an M-file function are the following:

1. Function definition line: The first line of a function has the following syntax:

function [output variables] = function_name(input variables);

Thus, it must contain the word function, followed by the output variables, an equal sign,
and the name of the function. The input variables, called arguments, of the function follow
the function name and are enclosed in parentheses. This line distinguishes the function file
from a script file. The definition line for the example above is:

function y = sind(x)

The output variable is y, the function name is sind, and the input argument is x.

2. Function call: A user-defined function is called by the name of the M-file in which it is
defined, not by the name given the function in the first line of the file. Thus, if the function
script above were renamed dsin.m, but the script itself were unchanged, then it would have
to be called by the name dsin, as follows:

>> y = dsin(30)
y =

0.5000

An attempt to call it by the function name sind results in an error message:

>> y = sind(30)
??? Undefined function or variable ’sind’.

To avoid confusion, use the same name for the function and the M-file.

3. Comments: The first few lines should be comments, as they will be displayed if help
is requested for the function name. The first comment line is referenced by the lookfor
command. Each comment line must start with a percent character (%). For the example
above:

>> help sind

SIND Sine in degrees
SIND(X) is the sine of the elements of X, in degrees

4. Information returned: The only information returned from the function is contained in
the output variables (also called output arguments). A statement must always be included
that assigns a value to the output variables specified in the function definition line. These
output variables will be arrays. Thus, while we thought of the function sind as operating on
a scalar and returning a scalar, it can also operate on an array and return an array:

130

>> lengths = 100*sind([30 60 90; 120 150 180])
lengths =

50.0000 86.6025 100.0000
86.6025 50.0000 0.0000

Note that output variables are optional. This allows a function to be written to perform an
operation such as toggling diary, but not to return any information.

5. Communication: A function communicates with the Matlab workspace only through the
variables passed to it and through the output variables it creates. Intermediate variables
within the function do not appear in, or interact with, the Matlab workspace. Thus, each
function has its own workspace separate from the Matlab workspace. Variables in the
function M-file that are not output are input variables are said to be local to the function.

6. Multiple outputs: To return more than one output variable, they must be listed in a vector,
separated by commas, as in the following example that will return three variables:

function [distance, velocity, accel] = position(x)

Since the function is returning multiple arguments, it must be used as follows:

>> [d v a] = position(A)

7. Multiple inputs: When there are multiple input arguments, they must be separated by
commas. For example:

function c = hypot(a,b)

8. Semicolons: The use of semicolons (;) at the end of commands in a function script have the
same purpose that they serve an any other Matlab command, suppressing display of the
results of the command. In most cases, it is not desirable to display the results of commands
internal to a function.

Many of the commands available in Matlab are written as function M-files. You can find the
locations of these files using the which command. For example:

>> which linspace
/usr/pkg/matlab52/toolbox/matlab/elmat/linspace.m

You could display this M-file using the type command and take ideas from the function script for
use in writing your own function scripts.

Application: Minimizing a Function of One Variable

To find the minimum of a function of a single variable:

131

x = fminbnd(’F’,x1,x2) Returns a value of x that is the local minimizer of F(x) in the interval
[x1, x2], where F is a string containing the name of the function.

[x,fval] = fminbnd(...) Also returns the value of the objective function, fval, computed in
F, at x.

For example:

>> fminbnd(’cos’,0,4)
ans =

3.1416

To use this command to find the minimum of more complicated functions, it is convenient to define
the function in a function M-file. For example, consider the polynomial function

y = 0.025x5 − 0.0625x4 − 0.333x3 + x2

Defining the function file fp5.m:

function y = fp5(x)
% FP5, fifth degree polynomial function
y = 0.025*x.^5 - 0.0625*x.^4 - 0.333*x.^3 + x.^2

Observe in Figure 6.5 that this function has two minima in the interval −1 ≤ x ≤ 4. The minimum
near x = 3 is called a relative or local minimum because it forms a valley whose lowest point is
higher than the minimum at x = 0. The minimum at x = 0 is the true minimum and is also called
the global minimum. Searching for the minimum over the interval −1 ≤ x ≤ 4:

>> xmin = fminbnd(’fp5’,-1,4)
xmin =

2.0438e-006

The resulting value for xmin is essentially 0, the true minimum point. Searching for the minimum
over the interval 0.1 ≤ x ≤ 2.5:

>> xmin = fminbnd(’fp5’,0.1,2.5)
xmin =

0.1001

This misses the true minimum point, as it is not included in the specified interval. Also, fminbnd
can give incorrect answers. If the interval is 1 ≤ x ≤ 4:

>> xmin = fminbnd(’fp5’,1,4)
xmin =

2.8236

132

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

Figure 6.14: Plot of the function y = 0.025x5 − 0.0625x4 − 0.333x3 + x2

The result corresponds to the “valley” shown in the plot, but which is not the minimum point on
this interval, which is at the boundary x = 1. The fminbnd function first looks for a minimum
point corresponding to a zero slope; if it finds one, it stops. If it does not find one, it looks at
the function values at the boundaries of the specified interval for x. In this example, a zero-slope
minimum was found, so the true minimum at the boundary was missed.

6.6 Plotting Functions

As described previously, a function such as a polynomial can be evaluated and then plotted with
the plot command. This can also be done in one step with the fplot command.

fplot(fun,lims) plots the function specified by the string fun between the x-axis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y-axis limits.
funmust be the name of an M-file function or a string with variable x, such as sin(x), diric(x,10)
or [sin(x),cos(x)]. The function fun(x) must return a row vector for each element of vector x.

Consider the plotting the following function, known as the sinc or sampling function:

sinc(x) =
sin(πx)
πx

This is a function available in Matlab, which can be plotted with the command:

fplot(’sinc’,[-10 10]),ylabel(’sinc(x)’),xlabel(’x’)

This generates the plot shown in Figure 6.15

133

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

si
nc

(x
)

x

Figure 6.15: Sinc signal

134

	Contents
	Section 1 - Engineering Problem Solving
	Section 2 - Matlab Technical Computing Environment
	Section 3 - Files and File Management
	Section 4 - Trigonometry and Complex Numbers
	Section 5 - Arrays and Array Operations
	Section 6 - Mathematical Functions and Applications
	Section 7 - Data Analysis
	Section 8 - Selection Programming
	Section 9 - Vectors, Matrices and Linear Algebra
	Section 10 - Curve Fitting and Interpolation
	Section 11 - Integration and Di.erentiation
	Section 12 - Strings, Time, Base Conversion and
Bit Operations
	Section 13 - Symbolic Processing

