ADC/DAC

INEL 4207 Digital Electronics

MIXED-SIGNAL SYSTEM

INVERTING AMPLIFIER

NON-INVERTING AMPLIFIER

BUFFER AMPLIFIER

SUMMING AMPLIFIER

SAMPLE AND HOLD

DAC

DAC

SIMPLE ADC

INTEGRATOR

DOUBLE-SLOPE ADC

At $t=0$ capacitor C is discharged and s_{2} is connected to v_{A}. At $t=T_{1} s_{2}$ is switched to V_{1}

1. A 12-bit dual-slope ADC of the type illustrated below

At $t=0$ capacitor C is discharged and s_{2} is connected to v_{A}. At $t=T_{1} s_{2}$ is switched to $V_{R E F}$.
utilises a $1-\mathrm{MHz}$ clock and has $V_{\text {ref }}=10 \mathrm{~V}$. Its analog input is in the range 0 to -10 V . The fixed interval T_{1} is the time taken for the counter to accumulate a count 2^{N}.
a) (10 points) What is the time required to convert an input voltage equal to the full-scale value?
b) (10 points) If the peak voltage reach at the output of the integrator is 10 V , what is the integrator time constant?
c) (10 points) If through ageing, R increases by 2% and C decreases by 1%, what does $V_{\text {peak }}$ become?

67

$$
\begin{aligned}
& T_{c}=\frac{1}{t_{\text {ak }}}=1 / 4 \mathrm{~s} \\
& T_{1}=2^{12} T_{c}=\underline{\overline{4.096 m s}} \\
& T=T_{1}+T_{2}-T_{1}\left(1+\frac{V_{A}}{V_{c e 4}}\right) \\
& =2 T_{1}=8.19 \mathrm{~ms} \\
& V_{\text {peak }}=10=\frac{V_{A}}{\tau} T_{1} \\
& \Rightarrow T=\frac{V_{A}}{V_{\text {perk }}} T_{1}=4.096 \mathrm{~ms}
\end{aligned}
$$

$\Delta \tau=-1 \%$ and causes a -1% Change in Speak

$$
\Rightarrow \quad V_{\text {Peak }}=9.9 \mathrm{~V}
$$

No. Final count does not depend on τ

1. The following diagram

sketches an ADC. Prior to $t=0$, capacitor C is discharged and the counter is erased by the control signal. At $t=0, s_{1}$ opens and the counter is allowed to count. The analog input voltage, $v_{I N}$, is in the range of 0 V to 5 V . If $V_{D C}=-10 \mathrm{~V}$,
a) (20 points) Find R and C so that the maximum conversion time equals 0.1 ms .
b) (10 points) If a 10 MHz clock $(1 \mathrm{MHz}=1024 \mathrm{kHz})$ is used, what is the number of bits of resolution?
a) (20 points) Find R and C so that the maximum conversion time equals 0.1 ms . ANSWER: The capacitor charges with a constant current $i=V_{D C} / R$, so for the opamp,

$$
\frac{d v_{O 1}}{d t}=\frac{10 V}{R C}
$$

A conversion will be done when $v_{O 1}=v_{I N}$, so when $v_{I N}=5 \mathrm{~V}$,

$$
\frac{5 \mathrm{~V}}{0.1 \mathrm{~ms}}=\frac{10 \mathrm{~V}}{R C} \Rightarrow R C=0.2 \mathrm{~ms}
$$

Any appropriate values will work. For example, select $R=10 k \Omega$ and $C=20 n F$.
b) (10 points) If a 10 MHz clock $(1 \mathrm{MHz}=1024 \mathrm{kHz})$ is used, what is the number of bits of resolution?
ANSWER: There will be $10.24 \times 10^{6} \times 0.1 \times 10^{-3}=1.024 \times 10^{7} \times 10^{-4}=1024$ clock pulses per conversion, for a resolution of 10 bits $\left(2^{10}=1024\right)$.
3. The following sketch shows a $R-2 R$ digital-to-analog converter (DAC).

If the circuit uses 10 bits, $R=1 k \Omega$ and $V_{R E F}=-5 V$,
(a) (20 points) find the value of R_{F} that should be used to have an output voltage range from 0 V to 10 V .
(b) (20 points) for the value of R_{F} found in part (a), what is the output voltage for a binary input equal to 0100011101 ?
3. The following sketch shows a $R-2 R$ digital-to-analog converter (DAC).

If the circuit uses 10 bits, $R=1 k \Omega$ and $V_{R E F}=-5 V$,
(a) (20 points) find the value of R_{F} (to within 0.1%) that should be used to have an output voltage range from 0 V to 10 V .
ANSWER: The maximum current, which flows through R_{F} when all input bits are logic-1, can be expressed as

$$
i_{\max }=\frac{5 V}{1 k \Omega}\left(\frac{2^{10}-1}{2^{10}}\right)=4995.12 \mu A
$$

so

$$
10 V=4995.12 \mu A \times R_{F} \Rightarrow R_{F}=10 V / 4995.12 \mu A=2002 \Omega
$$

(b) (20 points) for the value of R_{F} found in part (a), what is the output voltage for a binary input equal to $0100011101 ?$
ANSWER:

$$
v_{\text {out }}=2002 \Omega \times 2.5 m A\left(2^{-10}+2^{-8}+2^{-7}+2^{-6}+2^{-2}\right)=1.393 V
$$

