Example

For the BiCMOS gate shown in the following diagram,

use the average current method to estimate

1. the rise time \(t_r \),
2. the fall time \(t_f \), and
3. \(t_{PLH} \)

if \(C_L = 1pF \), \(\beta = 100 \), \(\mu_n C_{ox} = 4\mu_p C_{ox} = 0.3mA/V^2 \), \(V_{tn} = -V_{tp} = 0.5V\) and \(v_{BE} = 0.7V\)

for transistors that are ON. Neglect the body effect. Use \(V_{DD} = 3V \), \(W/L = 1\) for both FETs, and \(R_1 = R_2 = 20k\Omega\).

ANSWER:

1. To find \(t_r \), consider \(v_{IN} = 0V\), and the two conditions when \(v_{OUT} = 0.1 \times 3V = 0.3V\) and \(v_{OUT} = 0.9 \times 3V = 2.7V\).

On the first case there is enough voltage difference from the power supply to the output to provide \(Q_1 \) with a base-to-emitter voltage of 0.7V, and the transistor is ON.

\(t_r \) is the time it takes for \(v_{OUT} \) to go from 10\% to 90\% of \(V_{DD} \)

\(t_f \) is the time it takes for \(v_{OUT} \) to go from 90\% to 10\% of \(V_{DD} \)
Therefore the capacitor charging current is given by

\[i_{\text{cap},1} = i_{c1} + i_{R1} = \beta i_{b1} + i_{R1} \]
\[= \beta (i_{DP} - i_{R1}) + i_{R1} \]
\[= \beta i_{DP} - (\beta - 1) \frac{0.7V}{R_1} \]

Since \(v_{SD,P} = 3V - 0.7V - 0.3V = 2.0V < v_{SG,P} + V_{ip} = 3V - 0V - 0.5V = 2.5V \), the pmosfet is operating in triode mode. Thus

\[i_{D,P} = \frac{1}{2} \frac{0.3mA/V^2}{2} (2(2.5V)2V - (2V)^2) = 0.225mA \]

and

\[i_{\text{cap},1} = 100(0.225mA) - (99) \frac{0.7V}{20k\Omega} = 22.5mA - 3.465mA = 19.035mA \]

For the second case the voltage difference between supply and output is only 0.3V and the transistor will be OFF. The capacitor current will be flowing through the \(Q_P \) and \(R_1 \). To find the current, consider the current equation

\[i_{D,P} = \frac{1}{2} \frac{0.3mA/V^2}{2} (2(2.5V)v_{SD,P} - v_{SD,P}^2) = 37.5\mu A/V^2 (5v_{SD,P} - v_{SD,P}^2) \]

and

\[V_{DD} - v_{OUT} = 0.3V = v_{SD,P} + 20k\Omega \times i_{D,P} \]

These equations will have to be satisfied simultaneously. Solving the second equation for \(i_{D,P} \), substituting into the first equation and rearranging, one obtains

\[0.3V - v_{SD,P} = 0.75V^{-1} ((5V)v_{SD,P} - v_{SD,P}^2) \]

which can be solved to get \(v_{DS,P} = 63.8mV \) and \(i_{D,P} = 11.81\mu A = i_{\text{cap},2} \). The small magnitude of this current indicates that once the transistor turns off, the capacitor charges at a considerably slower speed.

The average current is \(\frac{19.035mA + 0.01181mA}{2} = 9.52mA \) and

\[t_r \approx 1pF \frac{2.7V - 0.3V}{9.52mA} = 252ps \]

2. To find \(t_f \), consider \(v_{IN} = 3V \), and the two conditions when \(v_{OUT} = 0.9 \times 3V = 2.7V \) and \(v_{OUT} = 0.1 \times 3V = 0.3V \).

When \(v_{OUT} = 2.7V \), \(Q_2 \) will be ON and \(v_{BE,2} = 0.7V \). Thus

\[i_{\text{cap},3} = i_{c2} + i_{D,N} = \beta \left(i_{D,N} - \frac{0.7V}{20k\Omega} \right) + i_{D,N} = 101i_{D,N} - 3.5mA \]

For \(Q_N \), \(v_{DS,N} = 2.7V - 0.7V = 2V > v_{GS,N} - V_{in} = 3V - 0.7V - 0.5V = 1.8V \) so the NMOS is saturated and

\[i_{D,N} = \frac{0.3mA/V^2}{2} (1.8V)^2 = 486\mu A \]
and
\[i_{cap,3} = 101(0.486mA) - 3.5mA = 45.586mA \]

When \(v_{OUT} = 0.3V \), \(Q_2 \) will be OFF. The NMOS transistor will operate in triode mode with \(v_{GS,N} = 3V - 20k\Omega \times i_{D,N} \) and \(v_{DS,N} = 0.3V - 20k\Omega \times i_{D,N} \). The current equation is
\[
i_{cap,4} = i_{D,N} = \frac{0.3mA/V^2}{2} (2(3V - 20k\Omega \times i_{D,N} - 0.5V)(0.3V - 20k\Omega \times i_{D,N}) - (0.3V - 20k\Omega \times i_{D,N})^2)
\]

which after solving yields a current of only 0.24\(\mu \)A so it can be neglected.

The average current for discharging is thus about 22.8mA and
\[t_f \simeq 1pF \frac{2.4V}{22.8mA} = 105ps \]

3. To estimate \(t_{PLH} \) we must consider \(v_{IN} = 0V \) and two values for the output: \(v_{OUT} = 0V \) and \(V_{OUT} = 1.5V \).

When \(v_{OUT} = 0V \), \(v_{SD,P} = 3V - 0.7V = 2.3V < v_{SG,P} + V_{tp} = 3V - 0.5V = 2.5V \), and \(Q_P \) operates in triode mode. Since there is enough voltage for \(Q_1 \) to be ON, the situation is similar to the one described for the above \(i_{cap,1} \), and charging current is
\[
i_{cap} = i_{e1} + i_{R1} = \beta i_{DP} - (\beta - 1) \frac{0.7V}{R_1}
\]
\[
i_{DP} = \frac{10.3mA/V^2}{2} (2(2.5V) 2.3V - (2.3V)^2) = 0.233mA
\]
\[
i_{cap} = 100 \times 0.233mA - 99 \times \frac{0.7V}{20k\Omega} = 19.8mA
\]

When \(v_{OUT} = 1.5V \), \(v_{SD,P} = 3V - 0.7V - 1.5V = 0.8V < v_{SG,P} + V_{tp} = 3V - 0.5V = 2.5V \), and \(Q_P \) operates in triode mode. Since there is enough voltage for \(Q_1 \) to be ON, the charging current is
\[
i_{cap} = 100i_{DP} - 99\frac{0.7V}{R_1}
\]
\[
i_{DP} = \frac{10.3mA/V^2}{2} (2(2.5V) 0.8V - (0.8V)^2) = 0.126mA
\]
\[
i_{cap} = 100 \times 0.126mA - 99 \times \frac{0.7V}{20k\Omega} = 9.135mA
\]

The average current is 14.5mA and
\[t_{PLH} = 1pF \frac{1.5V}{14.5mA} = 104ps \]