BICMOS INEL 4207 - M. Toledo

Figure 15.37 Development of the BiCMOS inverter circuit. (a) The basic concept is to use an additional bipolar transistor to increase the output current drive of each of Q_N and Q_P of the CMOS inverter. (b) The circuit in (a) can be thought of as utilizing these composite devices.
(c) To reduce the turn-off times of Q₁ and Q₂, "bleeder resistors" R₁ and R₂ are added. (d) Implementation of the circuit in (c) using NMOS transistors to realize the resistors. (e) An improved version of the circuit in (c) obtained by connecting the lower end of R₁ to the output node.

Figure 15.38 Equivalent circuits for charging and discharging a load capacitance C. Note that C includes all the capacitances present at the output node.

Figure 15.39 A BiCMOS two-input NAND gate.

For the above BiCMOS circuit, estimate the time t_d that it takes to discharge C_L from its initial voltage $v_{out,i}$ (the largest value of v_{out} that the circuit can reach) to $v_{out,i}/2$. Assume that $v_{BE} = 0.7V$ and $\beta = 20$ for the bipolar transistors, $k_n = 300 \mu A/V^2$ for Q_N and $k_p = 100 \mu A/V^2$ for Q_P . For both MOSFETs the threshold voltage is $|V_{t0}| = 0.5V$ and $\gamma = 0$. Use $v_{IN} = 3V$.

I. Find Vout,i

$$i_{C1} = 0 \rightarrow i_{B1} = 0 \rightarrow i_{D,P} = i_{20k\Omega}$$

$$\frac{3V - v_{SD,P}}{20k\Omega} = (0.1mA/V^2) \left(2(3V - 0.5V)v_{DS,P} - v_{DS,P}^2\right)$$

$$\frac{3V - v_{SD,P}}{2} = 5v_{DS,P} - v_{DS,P}^2$$

$$v_{SD,P} = 5.2V, \ 0.29V \Rightarrow V_{OUT} \simeq 3V - 0.3V - 0.7 = 2V$$

2. Find the initial capacitor current

The initial voltage across the capacitor is $v_{out,i} = 2.0V$. At point 1, $v_{OUT} = 2.07$ and

$$v_{DS,N} = 2.0V - 0.7V = 1.3V$$

$$v_{GS,N} - V_{t0} = 3V - 0.7V - 0.5V = 1.8V$$

$$i_{D1} = (0.3mA/V^2)[2(1.8V)1.3V - (1.3V)^2] = 0.897mA$$

$$i_1 = \beta(i_{D1} - 0.7V/20k\Omega) + i_{D1} = 20(0.897mA - 0.035mA) + 0.897 = 18.147mA$$

3. Find the capacitor current when $v_{out} = v_{out,i}/2$

At point 2, $v_{out} = 2.0V/2 = 1.0V$ and

$$v_{DS,N} = 1.0V - 0.7V = 0.3V$$

$$v_{GS,N} - V_{t0} = 3V - 0.7V - 0.5V = 1.8V$$

$$i_{D2} = (0.3mA/V^2)[2(1.8V)0.3V - (0.3V)^2] \simeq 0.3mA$$

$$i_2 = \beta(i_{D2} - 0.7V/20k\Omega) + i_{D2}$$

$$= 20(0.3mA - 0.035mA) + 0.3mA = 5.6mA$$

4. Find iave and td

$$i_{av} = \frac{18.15mA + 5.6mA}{2} \simeq 11.9mA$$
$$t_d = 1pF\frac{1.0V}{11.9mA} = \boxed{84.2ps}$$

The threshold voltage of the BiCMOS inverter of Fig. 15.37(e) is the value of v_1 at which both Q_N and Q_P are conducting equal currents and operating in the saturation region. At this value of v_P, Q_2 will be on, causing the voltage at the source of Q_N to be approximately 0.7 V. It is required to design the circuit so that the threshold voltage is equal to $V_{DD}/2$. For $V_{DD} = 5$ V, $|V_t| = 0.6$ V, and assuming equal channel lengths for Q_N and Q_P and that $\mu_n \approx 2.5 \mu_p$, find the required ratio of widths, W_p/W_n .

The threshold voltage of the BiCMOS inverter of Fig. 15.37(e) is the value of v_I at which both Q_N and Q_P are conducting equal currents and operating in the saturation region. At this value of v_I , Q_2 will be on, causing the voltage at the source of Q_N to be approximately 0.7 V. It is required to design the circuit so that the threshold voltage is equal to $V_{DD}/2$. For $V_{DD} = 5$ V, $|V_t| = 0.6$ V, and assuming equal channel lengths for Q_N and Q_P and that $\mu_n \approx 2.5 \mu_p$, find the required ratio of widths, W_p/W_n .

$$v_{I} = 2.5V$$

$$v_{SG,P} - |V_{t}| = 5V - 2.5V - 0.6V = 1.9V$$

$$v_{GS,N} - V_{t} = 2.5V - 0.7V - 0.6V = 1.2V$$

$$\frac{2.5\mu_{p}C_{o}x}{2}\frac{W_{n}}{L}(1.2V)^{2} = \frac{\mu_{p}C_{o}x}{2}\frac{W_{p}}{L}(1.9V)^{2}$$

$$\frac{W_{p}}{W_{n}} = \boxed{0.997}$$