ROM MEMORY AND DECODERS INEL4207

RANDOM ACCESS MEMORY

- Random Access Memory (RAM)
- read and write memory
- volatile
- Static RAM (SRAM)
- store information as long as power is applied
- will not lose data during a read cycle
- Dynamic RAM (DRAM)
- uses a capacitor to store data
- must be refreshed periodically to prevent data loss
- read cycles destroy DRAM data (must be re-written)
- SRAM takes $\sim 4 \times$ DRAM Silicon area

READ-ONLY MEMORY (ROM)

- Non-volatile
- ROM is often needed in digital systems such as:
-Holding the instruction set for a microprocessor
-Firmware
-Calculator plug-in modules
-Cartridge style video games

A 256-MBYTE MEMORY CHIP

READ-ONLY MEMORY (ROM)

- The basic structure of the NMOS static ROM is shown in the figure
- The existence of a NMOS means a " 0 " is stored at that address otherwise a "l" is stored
- The major downfall to this particular circuit is that it dissipates a lot of power

Figure 16.30 A simple MOS ROM organized as 8 words $\times 4$ bits.

READ-ONLY MEMORY (ROM)

- The domino CMOS ROM is one technique used to lower the amount of power dissipation

NAND-ARRAY STRUCTURE ROM

NMOS NOR ADDRESS DECODERS

- Output 0 is high if both A0 and Al are low

Row $0=(\mathrm{Al}+\mathrm{A} 0)^{\prime}$
Row I = (AI +A0')'
Row $2=\left(A I^{\prime}+A 0\right)^{\prime}$
Row $3=\left(A I^{\prime}+A 0^{\prime}\right)^{\prime}$

Figure 16.25 A NOR address decoder in array form. One out of eight lines (row lines) is selected using a 3-bit address.

NMOS NAND ADDRESS DECODERS

- Output 3 is low if both A0 and Al are high

Row $0=\left(A_{\mid}{ }^{\prime} \mathrm{A}_{0}{ }^{\prime}\right)^{\prime}$
Row I $=\left(A_{1}{ }^{\prime} A_{0}\right)^{\prime}$
Row $2=\left(A_{1} \cdot A_{0}\right)^{\prime}$
Row $3=\left(A_{1} \cdot A_{0}\right)^{\prime}$

DOMINO CMOS ADDRESS DECODERS

PASS-TRANSISTOR COLUMN DECODER

- 3-bit column data selector using pass-transistor logic

Figure 16.27 A tree column decoder. Note that the colored path shows the transistors that are conducting when $A_{0}=I, A_{1}=$ 0 , and $A_{2}=I$, the address that results in connecting B_{5} to the data line.

Figure 16.26 A column decoder realized by a combination of a NOR decoder and a pass-transistor multiplexer.

