RS FLIP FLOP BASIC OPERATION

INEL 4207 Digital Electronics - M.Toledo

Figure 16.11 A 2^{M+N}-bit memory chip organized as an array of 2^{M} rows $\times 2^{N}$ columns.

Figure 16.1 (a) Basic latch. (b) The latch with the feedback loop opened. (c) Determining the operating point(s) of the latch.

Figure 16.3 (a) The set/reset (SR) flip-flop and (b) its truth table.

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Assume $\mathrm{Q}=0, \mathrm{Q}^{\prime}=1$ Clock and S go high Q' is pulled down

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Assume $\mathrm{Q}=0, \mathrm{Q}^{\prime}=1$ Clock and S go high Q' is pulled down voltage at Q increases

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Assume $\mathrm{Q}=0, \mathrm{Q}^{\prime}=1$ Clock and S go high Q' is pulled down voltage at Q increases Q' reaches critical point

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Assume $\mathrm{Q}=0, \mathrm{Q}^{\prime}=1$ Clock and S go high Q' is pulled down voltage at Q increases Q' reaches critical point Q reaches critical point

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Assume $\mathrm{Q}=0, \mathrm{Q}^{\prime}=1$ Clock and S go high Q' is pulled down voltage at Q increases Q' reaches critical point Q reaches critical point S is be removed

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Assume $\mathrm{Q}=0, \mathrm{Q}^{\prime}=1$ Clock and S go high Q' is pulled down voltage at Q increases Q' reaches critical point Q reaches critical point S is be removed
Regenerative action restore levels

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

Assume $\mathrm{Q}=0, \mathrm{Q}^{\prime}=1$ Clock and S go high Q' is pulled down voltage at Q increases Q' reaches critical point Q reaches critical point S is be removed
Regenerative action restore levels FF is SET

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ.

EXAMPLE

The CMOS SR flip-flop in Fig. 16.4 is fabricated in a $0.18-\mu \mathrm{m}$ process for which $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=\mathbf{4} \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=\mathbf{3 0 0} \boldsymbol{\mu} \mathrm{A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=\left|\mathrm{V}_{\mathrm{tp}}\right|=\mathbf{0 . 5 V}$, and $\mathbf{V}_{\mathrm{DD}}=\mathbf{1 . 8 V}$. The inverters have $(\mathbf{W} / L)_{\mathrm{n}}=\mathbf{0 . 2 7} \boldsymbol{\mu m} / \mathbf{0 . 1 8 \mu m}$ and $(\mathbf{W} / \mathbf{L})_{\mathrm{p}}=4(\mathbf{W} / \mathbf{L})_{\mathrm{n}}$. The four NMOS transistors in the set-reset circuit have equal W/L ratios.
(a) Determine the minimum value required for this ratio to ensure that the flipflop will switch.
(b) Also, determine the minimum width the set pulse must have for the case in which the W/L ratio of each of the four transistors in the set-reset circuit is selected at twice the minimum value found in (a). Assume that the total capacitance at each of the Q and Q nodes and ground is $\mathbf{2 0 f F}$.

EXAMPLE

$\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=4 \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=\mathbf{3 0 0} \mu \mathrm{A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=\left|\mathrm{V}_{\mathrm{tp}}\right|=\mathbf{0 . 5 V}$, and $\mathbf{V}_{\mathrm{DD}}=\mathbf{1 . 8 V}$. The inverters have $(\mathbf{W} / \mathbf{L})_{\mathrm{n}}=\mathbf{0 . 2 7} \mu \mathrm{m} / \mathbf{0} .18 \mu \mathrm{~m}$ and $(\mathbf{W} /$ $L)_{p}=4(W / L)_{n}$. (a) Determine the minimum value of $(W / L)_{5,6,7,8}$ required to ensure that the flip-flop will switch.

Solution:

- Assume $Q=0$ and that you want to Set the flip flop
- Replace Q_{5} and Q_{6} with an equivalent transistor $Q_{e q}$ for which $(W / L)_{e q}=$ $(W / L)_{5,6} / 2$
- Assume that v_{Q} does not change, i.e. remains fixed at $0 V$
- Observe that Q_{2} operates in triode mode when $V_{\bar{Q}}=V_{D D} / 2=0.9 \mathrm{~V}$ because $v_{S D, 2}=0.9 \mathrm{~V}<v_{S G_{2}}-V_{t p}=1.8 \mathrm{~V}-0.5 \mathrm{~V}=1.3 \mathrm{~V}$. Likewise, $Q_{e q}$ operates in triode mode.
- Equate $i_{D, 2}$ and $i_{D, e q}$

$$
\begin{array}{ll}
\frac{\mu_{n} C_{o x}}{2}\left(\frac{W}{L}\right)_{e q} & {\left[2(1.3 V) 0.9 \mathrm{~V}-(0.9 \mathrm{~V})^{2}\right]=} \\
& \frac{1}{4} \frac{\mu_{n} C_{o x}}{2}\left(\frac{0.27 \mu m}{0.18 \mu m}\right)(4)\left[2(1.3 \mathrm{~V}) 0.9 \mathrm{~V}-(0.9 \mathrm{~V})^{2}\right]
\end{array}
$$

- Simplify to obtain

$$
\left(\frac{W}{L}\right)_{e q}=\frac{1}{2}\left(\frac{W}{L}\right)_{5,6,7,8}=\frac{0.27 \mu m}{0.18 \mu m}
$$

EXAMPLE

(b) Also, determine the minimum width the set pulse must have for the case in which the W/L ratio of each of the four transistors in the set-reset circuit is selected at twice the minimum value found in (a). Assume that the total capacitance at each of the Q and Q nodes and ground is $\mathbf{2 0 f F}$.

Solution: Set $(W / L)_{5}=(W / L)_{6}=(W / L)_{7}=(W / L)_{8}=1.08 u m / 0.18 u m$.

Set

$$
\mathrm{t}_{\mathrm{s}}=\mathrm{t}_{\mathrm{PHL}}+\mathrm{t}_{\mathrm{t} L \mathrm{H}}
$$

where

$t_{P H L}$ is the time it takes for V_{Q} to go from V_{DD} to $\mathrm{V}_{\mathrm{DD}} / 2$ and

$t_{P L H}$ is the time it takes for v_{Q} to go from OV to $\mathrm{V}_{\mathrm{DD}} / 2$
To find $t_{\text {PHL }}$, use $i_{c}=i_{D, e q}-i_{D 2}$. At $t=0, v_{Q^{\prime}}=V_{D D}$ and Q_{2} is off, $Q_{e q}$ is saturated and $\mathrm{i}_{\mathrm{C}_{1}}=760.5 \mathrm{uA}$. At $\mathrm{t}=\mathrm{t}_{\mathrm{PHL}}, \mathrm{v}_{\mathrm{Q}^{\prime}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{i}_{\mathrm{D} 2}=344.25 \mathrm{uA}$, $\mathrm{i}_{\text {Deq }}=688.5 \mathrm{uA}$ and $\mathrm{i}_{\mathrm{c} 2}$ $=344.25 \mathrm{uA}$. So $\mathrm{i}_{\mathrm{C}, \mathrm{AVE}}=552.4 \mathrm{uA}$ and $\mathrm{t}_{\mathrm{PLL}}=(2 \mathrm{fF})(0.9 \mathrm{~V}) / 552 \mathrm{uA}=32.6 \mathrm{ps}$.

To find tpLh, you can use the formula from ch. 14 that use a to get $t_{\text {PLH }}=49.5 \mathrm{ps}$.
$\mathrm{T}_{\text {min }}=\mathrm{t}_{\mathrm{PHL}}+\mathrm{t}_{\mathrm{PLH}}=82.1 \mathrm{ps}$

A simpler CMOS implementation of the clocked SR flip-flop. This circuit is popular as the basic cell in the design of static random-access memory (SRAM) chips.

Figure 16.8 A block diagram representation of the D flip-flop.

Figure 16.10 (a) A master-slave D flip-flop. The switches can be, and usually are, implemented with CMOS transmission gates.
(b) Waveforms of the two-phase non-overlapping clock required.

