PASS-TRANSISTOR LOGIC INEL 4207 - Fall 2014

Figure 15.5 Conceptual pass-transistor logic gates. (a) Two switches, controlled by the input variables B and C, when connected in series in the path between the input node to which an input variable \boldsymbol{A} is applied and the output node (with an implied load to ground) realize the function $Y=$ $A B C$. (b) When the two switches are connected in parallel, the function realized is $Y=A(B+C)$.

Figure 15.6 Two possible implementations of a voltage-controlled switch connecting nodes A and Y : (a) single NMOS transistor and (b) CMOS transmission gate.

(a)

(b)

Figure 15.7 A basic design requirement of PTL circuits is that every node have, at all times, a low resistance path to either ground or $V_{D D}$. Such a path does not exist in (\mathbf{a}) when B is low and S_{1} is open. It is provided in
(b) through switch S_{2}.

Figure 15.9 Operation of the NMOS switch as the input goes low ($v_{l}=0 \mathrm{~V}$). Note that the drain of an NMOS transistor is always higher in voltage than the source; correspondingly, the drain and source terminals interchange roles in comparison to the circuit in Fig. 15.8.

Example

Consider the NMOS switch shown in figs. 15.8 and 15.9 for which $\mu_{n} C_{o x}=$ $50 \mu A / V^{2}, \mu_{p} C_{o x}=20 \mu A / V^{2},\left|V_{t 0}\right|=1 V, \gamma=0.5 \sqrt{V}, 2 \phi_{f}=0.6 V$ and $V_{D D}=$ 5 V . Let the transistor have $W / L=4 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$, and assume $C=50 \mathrm{fF}$.

1. For v_{i} high, (fig. 15.8) find $V_{O H}$.
2. If the output feeds a CMOS inverter whose $(W / L)_{p}=2.5(W / L)_{n}=$ $10 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$, find the static current in the inverter and its power dissipation when its input is the value found in (1). Find the inverter output voltage.
3. Find $t_{P L H}$.
4. Find $t_{P H L}$ for the case with v_{i} going low (fig. 15.9).
5. Find t_{p}.

Example

Consider the NMOS switch shown in figs. 15.8 and 15.9 for which $\mu_{n} C_{o x}=$ $50 \mu A / V^{2}, \mu_{p} C_{o x}=20 \mu A / V^{2},\left|V_{t 0}\right|=1 V, \gamma=0.5 \sqrt{V}, 2 \phi_{f}=0.6 V$ and $V_{D D}=$ 5 V . Let the transistor have $W / L=4 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$, and assume $C=50 \mathrm{fF}$.

1. For v_{i} high, (fig. 15.8) find $V_{O H}$.
2. If the output feeds a CMOS inverter whose $(W / L)_{p}=2.5(W / L)_{n}=$ $10 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$, find the static current in the inverter and its power dissipation when its input is the value found in (1). Find the inverter output voltage.
3. Find $t_{P L H}$.
4. Find $t_{P H L}$ for the case with v_{i} going low (fig. 15.9).
5. Find t_{p}.

Answer: (1) $\mathrm{V}_{\mathrm{OH}}=3.4 \mathrm{~V}$. (2) $\mathrm{idP}_{\mathrm{DP}}=18 \mu \mathrm{~A}, \mathrm{P}_{\mathrm{D}}=90 \mu \mathrm{~W}$, $\mathrm{vo}_{\mathrm{o}}=0.08$. (3) $\mathrm{id}_{\mathrm{D}}(0)=800 \mu \mathrm{~A}, \mathrm{i}_{\mathrm{D}}(\mathrm{tPLH})=50 \mu \mathrm{~A}$, $\mathrm{i}_{\mathrm{D}, \mathrm{AV}}=425 \mu \mathrm{~A}, \mathrm{t}_{\mathrm{PL}}=\mathrm{C}\left(\mathrm{V}_{\mathrm{DD}} / 2\right) / \mathrm{i}_{\mathrm{D}, \mathrm{AV}}=0.29 \mathrm{~ns}$. (4) $\mathrm{t}_{\mathrm{PHL}}=0.17 \mathrm{~ns}$. (5) $\mathrm{t}_{\mathrm{p}}=0.23 \mathrm{~ns}$.

Figure 15.11 The CMOS transmission gate and its circuit symbol.

Transmission gate resistance empirical formula (for submicron technologies) (eq. 15.36)

Figure 15.13 Plot of the equivalent resistances of the two transistors of the transmission gate in Fig. 15.12(a) and the overall resistance $R_{T G}$ versus v_{O}. The data apply to the situation specified in Exercise 15.5.

Figure 15.14 (a) A transmission gate connects the output of a CMOS inverter to the input of another. (b) Equivalent circuit for the purpose of analyzing the propagation delay of the circuit in (a).

Elmore delay formula (eq. 15.37): $t_{p}=0.69\left[C_{1} R_{1}+C_{2}\left(R_{1}+R_{2}\right)+C_{3}\left(R_{1}+R_{2}+R_{3}\right)\right]$

Figure 15.15 A three-section $R C$ ladder network.

For the circuit if fig. 15.14, fabricated using $0.13 \mu \mathrm{~m}$ technology, Q_{p} of the first inverter has $W / L=2$, and both transistors in the t.g. have $W / L=1$. The caps are $C_{o u t 1}=10 f F, C_{T G 1}=C_{T G 2}=5 f F$, and $C_{i n 2}=10 \mathrm{fF}$. Use empirical formulas to obtain $R_{P 1}$ and $R_{T G}$; the find t_{p}.
2. The following diagram shows an NMOS transistor operating as a switch.

Assuming that $\mu_{n} C_{o x}=300 \mu \mathrm{~A} / V^{2}, W / L=1.5, V_{t 0}=1 V, \gamma=0.5 \mathrm{~V}^{1 / 3}$, and $2 \phi_{F}=0.6 \mathrm{~V}$, find
(a) the maximum voltage across the capacitor, v_{Y}, if $v_{A}=v_{C}=5 \mathrm{~V}$. (15 pts)
(b) the voltage that must be applied to v_{C} so that the voltage across the capacitor, v_{Y}, reaches 5 V if $v_{A}=5 \mathrm{~V}$. (10 pts)
(c) an estimate of the fall time t_{f} that it takes for v_{Y} to drop from 90% to 10% of its initial value of 5 V , using the average current method. Assume $C=1 p F, v_{A}=0 \mathrm{~V}$ and $v_{C}=5 V .(10 \mathrm{pts})$
2. The following diagram shows an NMOS transistor operating as a switch.

Assuming that $\mu_{n} C_{o x}=300 \mu \mathrm{~A} / V^{2}, W / L=1.5, V_{t 0}=1 V, \gamma=0.5 \mathrm{~V}^{1 / 3}$, and $2 \phi_{F}=0.6 \mathrm{~V}$, find
(a) the maximum voltage across the capacitor, v_{Y}, if $v_{A}=v_{C}=5 \mathrm{~V}$. (15 pts)
(b) the voltage that must be applied to v_{C} so that the voltage across the capacitor, v_{Y}, reaches 5 V if $v_{A}=5 \mathrm{~V}$. (10 pts)
(c) an estimate of the fall time t_{f} that it takes for v_{Y} to drop from 90% to 10% of its initial value of 5 V , using the average current method. Assume $C=1 p F, v_{A}=0 \mathrm{~V}$ and $v_{C}=5 V .(10 \mathrm{pts})$

$$
\text { Ans.: (a) } v_{Y}=3.4 \mathrm{~V} \text {; (b) } v_{C}=6.8 \mathrm{~V} ;(c) i_{D I}=3.6 \mathrm{~mA} ; i_{D 2}=0.84 \mathrm{~mA} ; \mathrm{t}_{\mathrm{f}}=1.8 \mathrm{~ns}
$$

Figure 15.16 Realization of a two-to-one multiplexer using pass-transistor logic.

Figure 15.17 Realization of the $\mathrm{X} O \mathrm{R}$ function using pass-transistor logic.

Figure 15.18 An example of a pass-transistor logic gate utilizing both the input variables and their complements. This type of circuit is therefore known as complementary pass-transistor logic, or CPL. Note that both the output function and its complement are generated.

Probs. | $3,16,2 \mid$

Dynamic Logic

Figure 15.19 (a) Basic structure of dynamic-MOS logic circuits. (b) Waveform of the clock needed to operate the dynamic logic circuit. (c) An example circuit.

