STATIC \& DYNAMIC RAMS INEL4207 - Digital Electronics - M.Toledo

READING

READING

READING

READING

READING

READING

Example

A CMOS SRAM cell shown in the previous slide is fabricated in a $0.18-\mu \mathrm{m}$ process for which $\mathrm{V}_{\mathrm{tn}}=\left|\mathrm{V}_{\mathrm{tp}}\right|=\mathbf{0 . 5 V}$ and $\mathrm{V}_{\mathrm{DD}}=\mathbf{I} .8 \mathrm{~V}$. The inverters have $(\mathrm{W} / \mathrm{L})_{\mathbf{n}}=$ $0.27 \mu \mathrm{~m} / 0.18 \mu \mathrm{~m}$. Assume that a cell containing a I must be read.
(a) Determine the maximum value of $(W / L) 5$ to ensure that the cell will not change state.
(b) Determine the read delay Δt in two cases: (i) $(W / L)_{5}=2.5$ and (i) $(\mathrm{W} / \mathrm{L})_{5}=$ 1.5. Let $\mu_{\mathrm{n}} \mathrm{C}_{o x}=300 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{C}_{B^{\prime}}=2 \mathrm{pF}$, and the minimum change in voltage required by the sense amplifier be $\Delta V=0.2 \mathrm{~V}$.

WRITING

WRITING

WRITING

WRITING

Example

A 0 must be stored on the SRAM cell described in the previous example, which initially contains a I. Determine the maximum value of $(\mathrm{W} / \mathrm{L}) 4$ needed to ensure that the cell will change state.

DYNAMIC RAM

$$
\begin{gathered}
C_{S} V_{C S}+C_{B} \frac{V_{D D}}{2}=\left(C_{B}+C_{S}\right)\left(\frac{V_{D D}}{2}+\Delta V\right) \\
\Delta V=\frac{C_{S}}{C_{B}+C_{S}}\left(V_{C S}-\frac{V_{D D}}{2}\right) \\
c_{S}=c_{B} \\
=\quad=
\end{gathered}
$$

Figure 16.19 When the voltage of the selected word line is raised, the transistor conducts, thus connecting the storage capacitor C_{S} to the bit-line capacitance C_{B}.

1. (25 points) For the following dynamic RAM circuit. $C_{C}=50 f F, V_{D D}=5 \mathrm{~V}$, and $V_{t}=1.4 \mathrm{~V}$ (including body effect). There are n cells connected to the bit line, and each cell represents a capacitive load on the bit line of $2 f F$. The sense amplifier and other circuitry attached to the bit line has a $20 f F$ capacitance, so that the total bit line capacitance is $2 n+20$, in $f F$. Consider a reading process in which the bit line is pre-charged to a voltage of $V_{D D} / 2$. What is the maximum number of cells that can be attached to a bit line while ensuring a minimum change on the bit line voltage, once steady state is reached, of 0.1 V ?

ANSWER: The bit line capacitance is $C_{B L}=n \times 2 f F+20 f F$. Due to charge sharing,

$$
V_{f}\left(C_{B L}+C_{C}\right)=2.5 V \times C_{B L}+V_{i, C} \times C_{C}
$$

where $V_{i, C}$ represents the initial voltage in the cell.
Let $V_{f}=2.5 V+\Delta V$ and consider a cell containing a logic-1, so that $V_{i, C}=5 V-1.4 V=3.6 \mathrm{~V}$. then

$$
\begin{gathered}
\Delta V\left(C_{B L}+C_{C}\right)=2.5 V \times C_{B L}+V_{i, C} \times C_{C}-2.5 V\left(C_{B L}+C_{C}\right) \\
\Delta V\left(C_{B L}+C_{C}\right)=2.5 V \times C_{B L}+V_{i, C} \times C_{C}-2.5 V \times C_{B L}-2.5 V \times C_{C} \\
0.1 V(n \times 2 f F+20 f F)=(3.6 V-2.5 V-0.1 V) \times 50 f F \\
n=\frac{10 \times 50 f F-20 f F}{2 f F}=240
\end{gathered}
$$

Now repeat, but this time consider a cell containing a logic-0. The procedure is similar, but $V_{i, C}=0 V$.

$$
\begin{gathered}
-0.1 V(n \times 2 f F+20 f F)=-2.4 V \times C_{C} \\
n=\frac{24 \times 50 f F-20 f F}{2 f F}=590
\end{gathered}
$$

So $n=240$.
2. (25 points) For the following static RAM circuit, $(W / L)_{1,3}=2 / 1$ and $(W / L)_{A 1, A 2}=4 / 5$, $V_{D D}=3.3 V, \mu_{n} C_{O X}=4 \mu_{p} C_{O X}=300 \mu A / V^{2}, V_{t 0}=0.6 V$ for NMOS transistors and $V_{t 0}=-0.6 \mathrm{~V}$ for PMOS transistors, $\gamma=0.5 \sqrt{V}$ and $2 \phi_{F}=0.6 \mathrm{~V}$.

Use the average current method to determine the minimum time needed to read the cell if a change $\Delta V_{B L}=100 \mathrm{mV}$ is needed by a sense amplifier. The bit line capacitance is $C_{B L}=0.1 p F$ and a logic-0 is stored in the cell. Assume that the bit line was pre-charged with 3.3 V and that during the reading process V_{Q} remains at or below the threshold voltage. Neglect the cell's internal capacitances.

ANSWER: The voltage reduction happens when current flows through $Q_{A 2}$ and Q_{3}. Assume $v_{D S, 3} \leq 0.6 \mathrm{~V}$ so that the cell's data is not disturbed. We can use the average current method. At point $1, V_{Q 3}$ is very close to $0 V, Q_{A 2}$ operates in saturation mode, and

$$
i_{1}=\frac{300 \mu A / V^{2}}{2}\left(\frac{4}{5}\right)(3.3 V-0.6 V)^{2}=875 \mu A
$$

At point $2, V_{Q 3}=0.6 \mathrm{~V}$. Thus, Q_{3} and $Q_{A 2}$ operate in triode and saturation mode, respectively, and

$$
\begin{aligned}
V_{t, A 1} & =0.6 V+(0.5 \sqrt{V})(\sqrt{0.6 V+0.6 V}-\sqrt{0.6 V})=0.76 V \\
I_{2} & =\frac{300 \mu A / V^{2}}{2}\left(\frac{4}{5}\right)(3.3 V-0.6 V-0.76 V)^{2}=452 \mu A
\end{aligned}
$$

The average current is $(452 \mu A+875 \mu A) / 2=663 \mu A$ and

$$
\Delta t=0.1 p F \times \frac{0.1 V}{663 \mu A} \simeq 15 p s
$$

Figure 16.20 A differential sense amplifier connected to the bit lines of a particular column. This arrangement can be used directly for SRAMs (which utilize both the B and \bar{B} lines). DRAMs can be turned into differential circuits by using the "dummy-cell" arrangement shown later (Fig. 16.22).

