Objetivos del Curso

Desarrollar el conocimiento, las destrezas y las técnicas fundamentales para el análisis DC y AC de circuitos eléctricos sencillos. Estudiar y analizar circuitos con elementos básicos, tales como transformadores, amplificadores operacionales, resistores, inductores y capacitores, utilizando las leyes de Kirchhoff y los teoremas de simplificación eléctrica de Thevenin y Norton.

8/13/2019

Basic Concepts → Chapter #1

- System of Units
 - Basic Electrical Quantities
 - Independent & Dependent Sources

SI - Standard Prefixes

Circuit Analysis

Systeme International des Unites – SI:

- Meter (m)
- Kilogram (Kg)
- Second (s)
- Ampere (A)
- Kelvin (K)
- Candela (cd)

Basic Electrical Quantities → Current Electric Current – rate of change of charge

* Convention:

- <u>Absorbing Energy</u>: positive current enters the positive terminal
- <u>Supplying Energy: positive current enters the negative terminal</u>

Basic Electrical Quantities → Voltage

Voltage (potential) -
$$v_{AB}(t) = v_A(t) - v_B(t) = \frac{dw}{dq}$$
 [V = J/C]

difference in energy level of a unit charge located at each of the two points

Basic Electrical Quantities \rightarrow Power **Power (potential)** – *rate of change of energy* $p = \frac{dw}{dt} = v \cdot i$ [W = J/s]

<u>Passive Sign Convention:</u> the variable for the voltage v(t) is defined as the voltage across the element with the positive reference at the same terminal that the current variable i(t) is entering

- Power positive power being absorbed
- Power negative power being supplied

<u>Tellegen's Theorem: the sum of the powers absorbed</u> by all elements in an electrical network is zero!

Learning Assessment E1.1

Determine the amount of power absorbed or supplied by the elements.

Example 1.3

Determine the unknown voltage or current.

Problem

How much energy (in kW·Hr) does a 100 W electric bulb consume in two hours? Assuming the energy cost is 0.20 \$/kW·Hr, how much will it cost to operate the bulb 8 hours per day for one year?

Independent Sources

A two-terminal element that maintains a specified voltage/current between it terminals regardless of the current through it.

Learning Assessment E1.1

Find the power that is absorbed or supplied by the elements.

Problem 1.13

Assuming the power absorbed by the BOX is given by $2 \cdot e^{-2t}$ W, calculate the amount of charge that enters the BOX between 0.1 and 0.4 seconds.

