Objetivos del Curso

Desarrollar el conocimiento, las destrezas y las técnicas fundamentales para el análisis DC y AC de circuitos eléctricos sencillos. Estudiar y analizar circuitos con elementos básicos, tales como transformadores, amplificadores operacionales, resistores, inductores y capacitores, utilizando las leyes de Kirchhoff y los teoremas de simplificación eléctrica de Thevenin y Norton.

Basic Engineering

 Circuit Analysis

WILEY

Basic Concepts \rightarrow Chapter \#1

- System of Units
- Basic Electrical Quantities
- Independent \& Dependent Sources
- Circuit Analysis

Systeme International des Unites - SI:

- Meter (m)
- Kilogram (Kg)
- Second (s)
- Ampere (A)
- Kelvin (K)
- Candela (cd)

SI - Standard Prefixes

Basic Electrical Quantities \rightarrow Current

Electric Current - rate of change of charge

$$
i(t)=\frac{d q(t)}{d t} \quad[\mathrm{~A}=\mathrm{C} / \mathrm{s}]
$$

Alternating Current (AC)

(a)

(b)

Basic Electrical Quantities \rightarrow Energy

Energy - ability to do work

$$
\mathrm{w}(t) \quad[\mathrm{J}=\mathrm{N} \cdot \mathrm{~m}]
$$

* Convention:
- Absorbing Energy: positive current enters the positive terminal
- Supplying Energy: positive current enters the negative terminal

Basic Electrical Quantities \rightarrow Voltage

$$
\text { Voltage (potential) - } \quad v_{A B}(t)=v_{A}(t)-v_{B}(t)=\frac{d w}{d q} \quad[\mathrm{~V}=\mathrm{J} / \mathrm{C}]
$$ difference in energy level of a unit charge located at each of the two points

Voltage Representations

The + and - signs \rightarrow define a reference

$$
v_{A B}(t)=
$$

$$
v_{A B}(t)=
$$

$$
v_{A B}(t)=
$$

(a)

(b)

(c)

Basic Electrical Quantities \rightarrow Power

Power (potential) -
rate of change of energy

Passive Sign Convention: the variable for the voltage $v(t)$ is defined as the voltage across the element with the positive reference at the same terminal that the current variable i(t) is entering

- Power positive - power being absorbed
- Power negative - power being supplied

Tellegen's Theorem: the sum of the powers absorbed by all elements in an electrical network is zero!

Learning Assessment E1.1

Determine the amount of power absorbed or supplied by the elements.

Example 1.3

Determine the unknown voltage or current.

Problem

How much energy (in $\mathrm{kW} \cdot \mathrm{Hr}$) does a 100 W electric bulb consume in two hours? Assuming the energy cost is $0.20 \$ / \mathrm{kW} \cdot \mathrm{Hr}$, how much will it cost to operate the bulb 8 hours per day for one year?

Independent Sources

A two-terminal element that maintains a specified voltage/current between it terminals regardless of the current through it.

- Voltage Source

- Current Source

Learning Assessment E1.1

Find the power that is absorbed or supplied by the elements.

Problem 1.13

Assuming the power absorbed by the BOX is given by $2 \cdot e^{-2 t} \mathrm{~W}$, calculate the amount of charge that enters the BOX between 0.1 and 0.4 seconds.

