Circuits 1

Last Lecture \rightarrow Ohm's Law

States that the voltage across a resistance is directly proportional to the current flowing through it.

$v(t)=R \cdot i(t)$

- Resistance [$\Omega=\mathrm{V} / \mathrm{A}$]

$$
R=\frac{v(t)}{i(t)}
$$

- Conductance [S = A/V]

$$
G=\frac{\mathbf{1}}{R}=\frac{i(t)}{v(t)}
$$

- Power Dissipation [W]

$$
\begin{aligned}
\boldsymbol{p}(\boldsymbol{t}) & =\boldsymbol{v}(\boldsymbol{t}) \cdot \boldsymbol{i}(\boldsymbol{t})=\boldsymbol{R} \cdot \boldsymbol{i}(\boldsymbol{t})^{2}=\frac{v(t)^{2}}{\boldsymbol{R}} \\
& =\frac{i(t)^{2}}{G}=G \cdot v(t)^{2}
\end{aligned}
$$

Circuits 1

Last Lecture \rightarrow Kirchhoff's Laws

KCL- the algebraic sum of the all the currents entering any node is zero

$$
\sum_{h=1}^{K} i_{h}^{i n}(t)=0 \longmapsto \sum_{j=1}^{N} i_{j}^{i n}(t)=\sum_{i=1}^{M} i_{i}^{\text {out }}(t)
$$

KVL- the algebraic sum of the voltages around any loop is zero

$$
\sum_{h=1}^{K} v_{h}(t)=0 \longmapsto \sum_{j=1}^{N} v_{j}^{\uparrow}(t)=\sum_{i=1}^{M} v_{i}^{\downarrow}(t)
$$

Circuits 1

Learning Assessment E2.9

... find the voltage V_{bd}.

Circuits 1

Single Loop Circuits \rightarrow Voltage Division

* $I_{R 1}=I_{R 2}=i(t)$
$\therefore R_{1}$ and R_{2} are in series
- KVL: $\left.v(t)=v_{R_{1}}+v_{R_{2}}\right] \quad$?
$\left.\begin{array}{rl}\text { - KVL: } v(t) & =v_{R_{1}}+v_{R_{2}} \\ \text { Ohm's: } v_{R_{1}} & =R_{1} \cdot i(t) \\ v_{R_{2}} & =R_{2} \cdot i(t)\end{array}\right\} \therefore \mathrm{i}(t)=\frac{v(t)}{R_{1}+R_{2}}$

$$
\begin{aligned}
\therefore v_{R 1}= & \frac{R_{1}}{R_{1}+R_{2}} \cdot v(t) \\
& v_{R 2}=\frac{R_{2}}{R_{1}+R_{2}} \cdot v(t)
\end{aligned}
$$

The source voltage $v(t)$ is divided between the resistors R_{1} and R_{2} in direct proportion to their resistances.

Circuits 1

Example 2.13

Assuming $\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}, \mathrm{R}_{1}=90 \mathrm{k} \Omega$, and $\mathrm{R}_{2}=30 \mathrm{k} \Omega$, examine the change in both the voltage across R_{2} and the power absorbed in the resistor as R_{1} is changed from $90 \mathrm{k} \Omega$ to $15 \mathrm{k} \Omega$.

Circuits 1

Single Loop Circuits \rightarrow Multiple Source/Resistor Networks

-KVL: $v_{1}(t)-v_{R 1}-v_{2}(t)+v_{3}(t)-v_{R 2}-v_{4}(t)-v_{5}(t)=0$

Circuits 1

Single Loop Circuits \rightarrow Multiple Source/Resistor Networks

\therefore The sum of several voltage source in series can be replaced by one source whose value is the algebraic sum of the individual source
\therefore The equivalent resistance of N resistors in series is simply the sum of the individual resistances.

$$
\boldsymbol{R}_{S}=\sum \boldsymbol{R}_{1}+\boldsymbol{R}_{2}+\cdots+\boldsymbol{R}_{N}
$$

Equivalent Circuit

Circuits 1

Learning Assessment E2.11

In the network provided, if $\mathrm{V}_{\text {ad }}$ is 3 V , find V_{s}.

Circuits 1

Current Division

Circuits 1

Single Loop Circuits \rightarrow Multiple Source/Resistor Networks

- KCL: $i_{1}(t)-i_{2}(t)-i_{3}(t)+i_{4}(t)-i_{5}(t)-i_{6}(t)=0$

$$
\underbrace{\begin{array}{l}
i_{1}(t)-i_{3}(t)+i_{4}(t)-i_{6}(t)
\end{array} i_{2}(t)+i_{5}(t)}_{i_{0}(t)} \begin{aligned}
& i_{1}(t)-i_{3}(t)+i_{4}(t)-i_{6}(t)
\end{aligned}=v(t) \cdot \underbrace{\left[\frac{1}{R_{1}}+\frac{\mathbb{1}}{R_{2}}\right]}_{\mathbb{1} / R_{p}}
$$

Circuits 1

Single Loop Circuits \rightarrow Multiple Source/Resistor Networks

\therefore The sum of several current sources in parallel can be replaced by one source whose value is the algebraic sum of the individual source
\therefore The reciprocal of the equivalent resistance of N resistors in parallel is equal to the sum of the reciprocal of the individual resistances.

$$
\frac{1}{R_{p}}=\sum \frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}
$$

For 2 resistances in parallel R_{p} can be expressed as...

$$
R_{p}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}
$$

Circuits 1

Example 2.17

For the given network find $\mathrm{I}_{1}, \mathrm{I}_{2}$, and V_{0}.

Series/Parallel Resistor Combinations

E2.16: Find R_{AB} in the provided network.

- Series: $\boldsymbol{R}_{S}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{2}+\cdots+\boldsymbol{R}_{N}$
- Parallel: $\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}$

Learning Assessment E2.22

Find $\mathrm{V}_{0}, \mathrm{~V}_{1}$, and V_{2} in the network provided.

