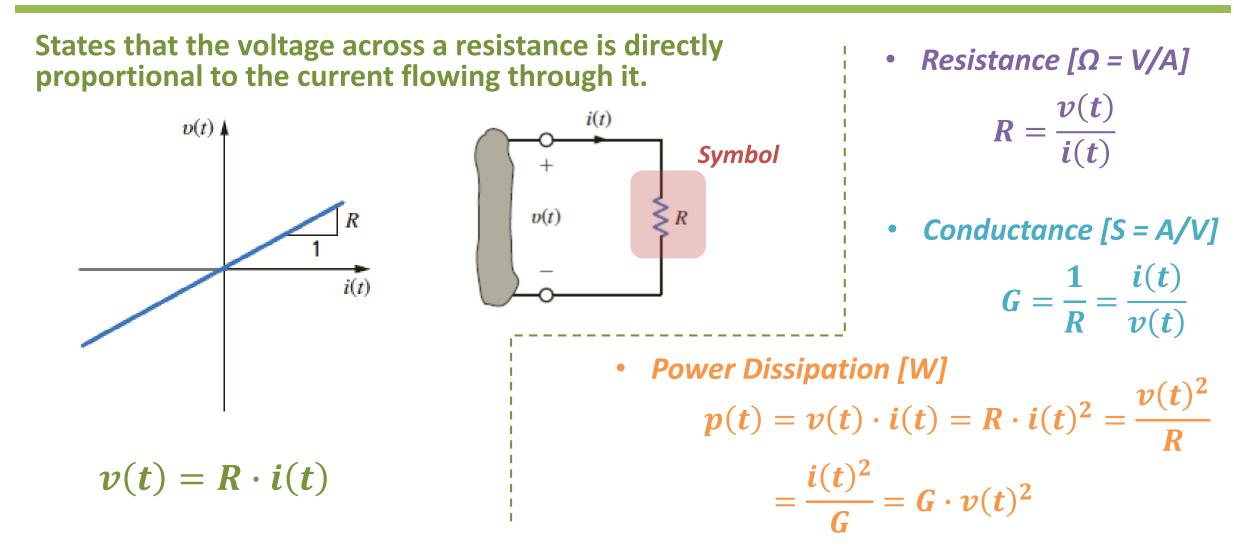
Last Lecture → Ohm's Law



Last Lecture — Kirchhoff's Laws

8/16/2019

KCL- the algebraic sum of the all the currents entering any node is zero

$$\sum_{h=1}^{K} i_h^{in}(t) = \mathbf{0} \quad \longrightarrow \quad \sum_{j=1}^{N} i_j^{in}(t) = \sum_{i=1}^{M} i_i^{out}(t)$$

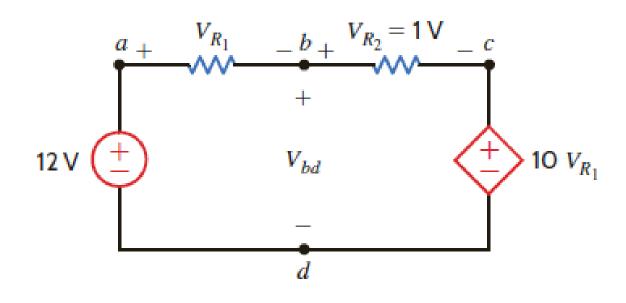
KVL- the algebraic sum of the voltages around any loop is zero

$$\sum_{h=1}^{K} v_h(t) = \mathbf{0} \implies \sum_{j=1}^{N} v_j^{\uparrow}(t) = \sum_{i=1}^{M} v_i^{\downarrow}(t)$$

Learning Assessment E2.9

8/16/2019

... find the voltage V_{bd} .



v(t)

Single Loop Circuits → Voltage Division

i(t) $v_{R_1} = ? v_{R_2} = ?$ • KVL: $v(t) = v_{R_1} + v_{R_2}$ • Ohm's: $v_{R_1} = R_1 \cdot i(t)$ $v_{R_2} = R_2 \cdot i(t)$ • $i(t) = \frac{v(t)}{R_1 + R_2}$ $\therefore v_{R1} = \frac{R_1}{R_1 + R_2} \cdot v(t)$ $v_{R2} = \frac{R_2}{R_1 + R_2} \cdot v(t)$

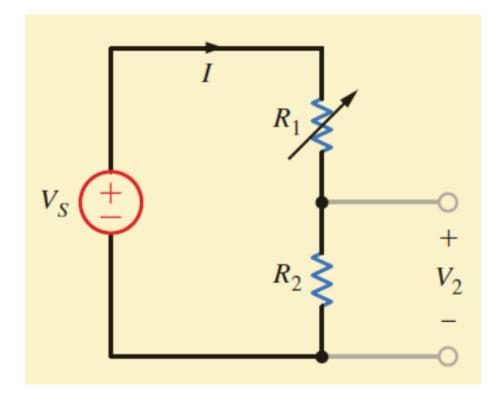
* $I_{R1} = I_{R2} = i(t)$ $\therefore R_1 \text{ and } R_2 \text{ are in series}$

The source voltage v(t) is divided between the resistors R_1 and R_2 in direct proportion to their resistances.

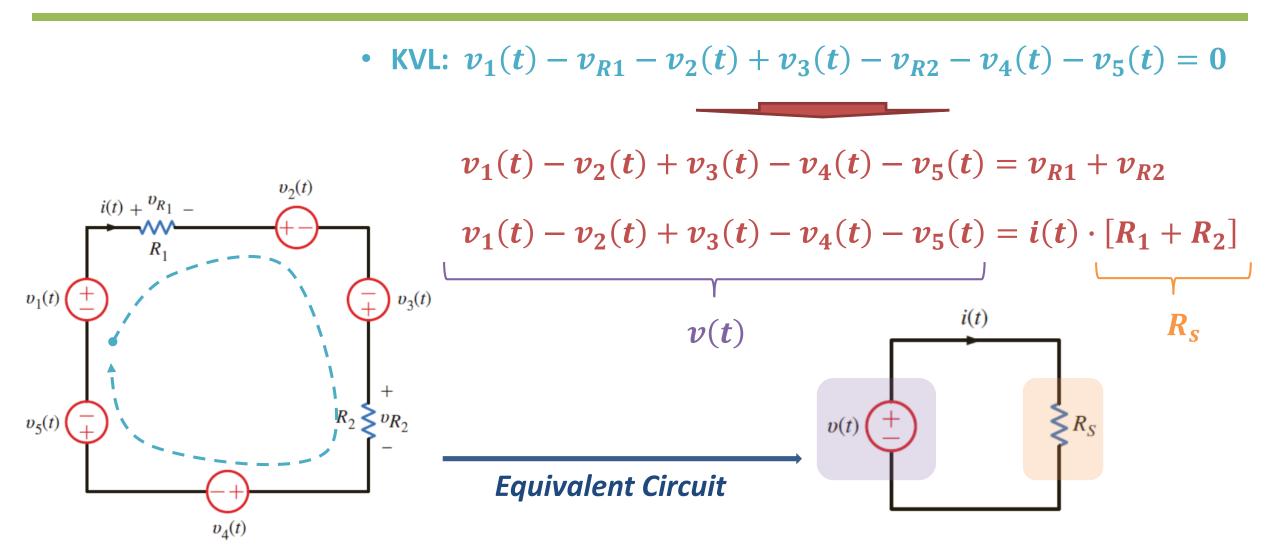
Example 2.13

8/16/2019

Assuming V_s=9V, R₁=90k Ω , and R₂=30k Ω , examine the change in both the voltage across R₂ and the power absorbed in the resistor as R₁ is changed from 90k Ω to 15k Ω .

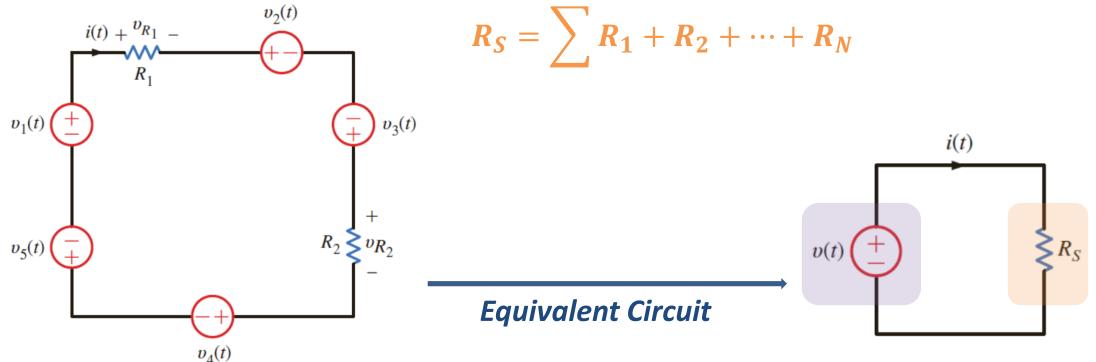


Single Loop Circuits → Multiple Source/Resistor Networks



Single Loop Circuits -> Multiple Source/Resistor Networks

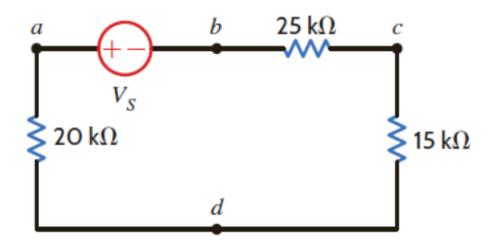
- ∴ The sum of several <u>voltage source in series</u> can be replaced by one source whose value is the algebraic sum of the individual source
- ∴ The equivalent resistance of <u>N resistors in series</u> is simply the sum of the individual resistances.



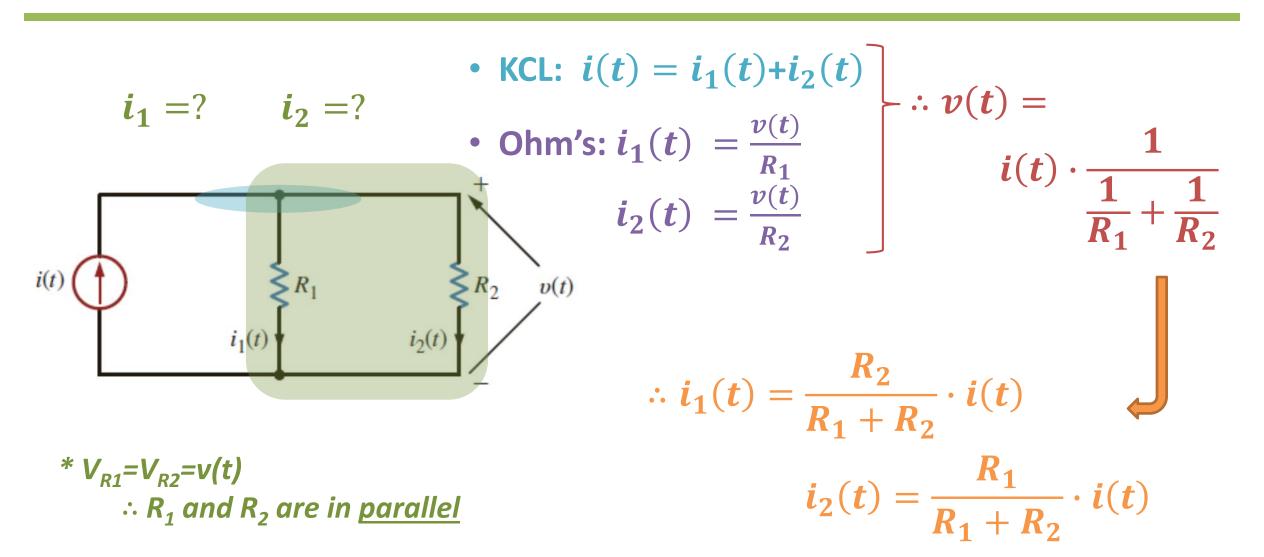
Learning Assessment E2.11

8/16/2019

In the network provided, if V_{ad} is 3V, find V_s .

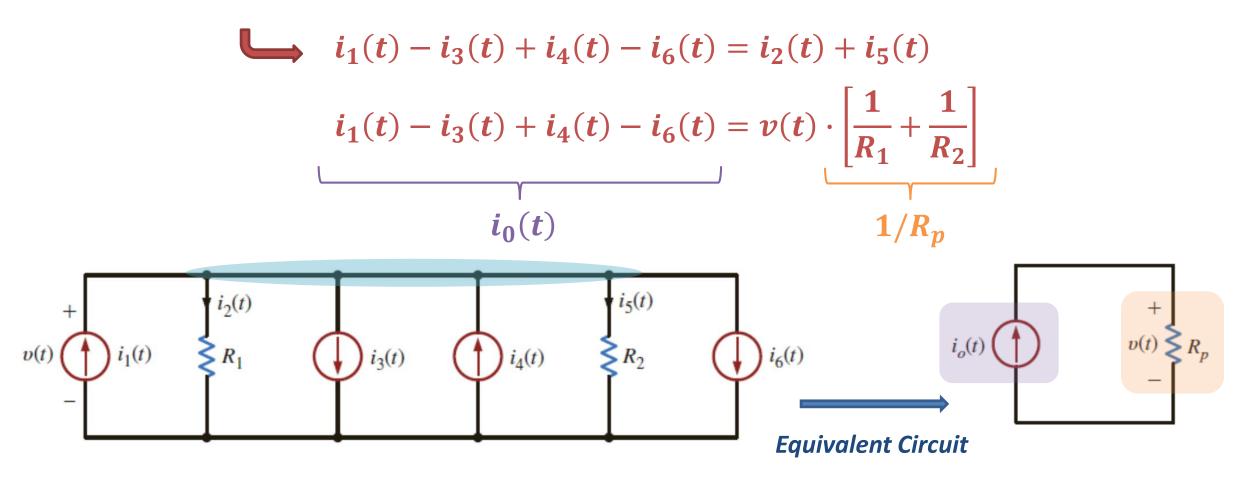


Current Division



Single Loop Circuits → Multiple Source/Resistor Networks

• KCL: $i_1(t) - i_2(t) - i_3(t) + i_4(t) - i_5(t) - i_6(t) = 0$

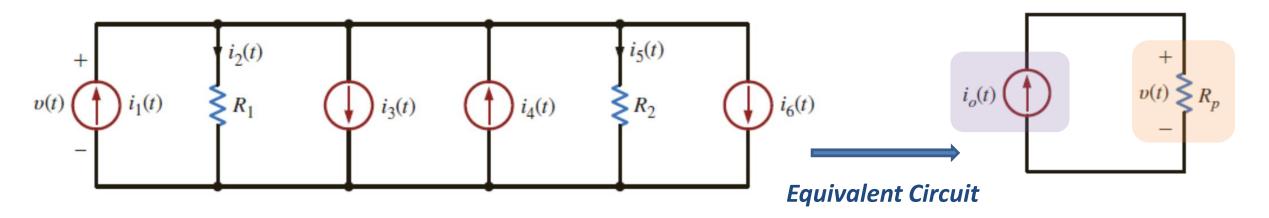


Single Loop Circuits → Multiple Source/Resistor Networks

- ∴ The sum of several <u>current sources in parallel</u> can be replaced by one source whose value is the algebraic sum of the individual source
- ∴ The reciprocal of the equivalent resistance of <u>N resistors in parallel</u> is equal to the sum of the reciprocal of the individual resistances.

$$\frac{1}{R_p} = \sum \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

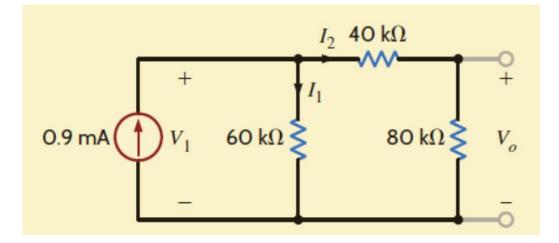
For 2 resistances in parallel R_p can be expressed as... $R_p = \frac{R_1 \cdot R_2}{R_1 + R_2}$



Example 2.17

8/16/2019

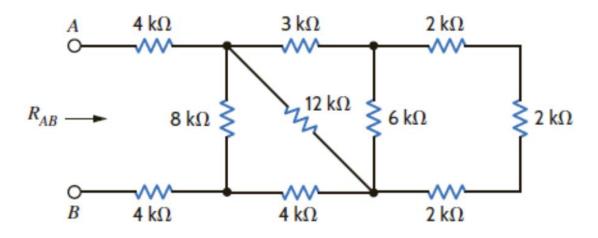
For the given network find I_1 , I_2 , and V_0 .



Series/Parallel Resistor Combinations

8/16/2019

E2.16: Find R_{AB} in the provided network.



- Series: $R_S = R_1 + R_2 + \dots + R_N$
- Parallel: $\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$

Learning Assessment E2.22

8/16/2019

Find V₀, V₁, and V₂ in the network provided.

