Circuits 1

Last Lecture \rightarrow Current / Voltage Division

$$
\begin{aligned}
& * I_{R 1}=I_{R 2}=i(t) \\
& \quad \therefore R_{1} \text { and } R_{2} \text { are in series }
\end{aligned}
$$

$$
\begin{aligned}
\therefore i_{1}(t)= & \frac{R_{2}}{R_{1}+R_{2}} \cdot i(t) \\
& i_{2}(t)=\frac{R_{1}}{R_{1}+R_{2}} \cdot i(t)
\end{aligned}
$$

$$
\begin{aligned}
\therefore v_{R 1}=\frac{R_{1}}{R_{1}+R_{2}} & \cdot v(t) \\
& v_{R 2}=\frac{R_{2}}{R_{1}+R_{2}} \cdot v(t)
\end{aligned}
$$

Circuits 1

Last Lecture \rightarrow Multiple Source/Resistor Networks

- Series

The sum of several voltage source in series can be replaced by one source whose value is the algebraic sum of the individual source

The equivalent resistance of N resistors in series is simply the sum of the individual resistances.

$$
\boldsymbol{R}_{s}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{2}+\cdots+\boldsymbol{R}_{N}
$$

- Parallel

The sum of several current source in series can be replaced by one source whose value is the algebraic sum of the individual source
The reciprocal of the equivalent resistance of \mathbf{N} resistors in parallel is equal to the sum of the reciprocal of the individual resistances.

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}
$$

Circuits 1

Series/Parallel Resistor Combinations

E2.16: Find $R_{A B}$ in the provided network.

Circuits 1

Learning Assessment E2.22

Find $\mathrm{V}_{0}, \mathrm{~V}_{1}$, and V_{2} in the network provided.

$$
V_{0}=V_{x}\left[\frac{3.3 k}{6.7 k+3.3 k}\right]=3.3 V
$$

$$
V_{2}=6\left[\frac{8 k}{4 k+8 k}\right]=4 V
$$

$$
\begin{aligned}
& V_{x}=16\left[\frac{10 k \| 10 k}{3 k+10 k \| 10 k}\right]=10 V \\
& V_{1}=-V_{x}\left[\frac{4 k}{6 k+4 k}\right]=-4 V \\
& V_{y}=V_{x}+V_{1}=10-4=6 V
\end{aligned}
$$

Circuits 1

Wye \leftrightarrows Delta Transformations

For the two networks to be equivalent at each corresponding pair of terminals, it is necessary that the resistance at the corresponding terminals be equal (e.g., the resistance at terminals a and b with c opencircuited must be the same for both networks.

$$
\Delta \leftarrow \mathbb{Y} \quad\left\{\begin{array}{l}
R_{1}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{b}} \\
\boldsymbol{R}_{2}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{c}} \\
R_{3}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{a}}
\end{array}\right.
$$

(a)

(b)

$$
Y \leftarrow \Delta\left\{\begin{aligned}
R_{a} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}} \\
R_{b} & =\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}} \\
R_{c} & =\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}}
\end{aligned}\right.
$$

Circuits 1

Wye \leftrightarrows Delta Transformations

For the two networks to be equivalent at each corresponding pair of terminals, it is necessary that the resistance at the corresponding terminals be equal (e.g., the resistance at terminals a and b with c opencircuited must be the same for both networks.

(a)

(b)
... for $\quad \boldsymbol{R}_{\boldsymbol{a}}=\boldsymbol{R}_{\boldsymbol{b}}=\boldsymbol{R}_{\boldsymbol{c}}=\boldsymbol{R}_{Y}$
$\boldsymbol{R}_{\mathbf{1}}=\boldsymbol{R}_{\mathbf{2}}=\boldsymbol{R}_{\mathbf{3}}=\boldsymbol{R}_{\Delta}$
$\Delta \leftarrow Y \quad\left\{\boldsymbol{R}_{\Delta}=3 R_{Y}\right.$
$Y \leftarrow \Delta \quad\left\{R_{Y}=\frac{1}{3} \boldsymbol{R}_{\Delta}\right.$

Learning Assessment E2.26

Find I_{1} in the network provided.

Circuits with Dependent Sources

1) Write KVL and/or KCL equations for the network
\rightarrow treat the dependent CS as an independent CS
2) Write the equation that specifies the relationship of the dependent source to the controlling parameter.
3) Solve the equations for the unknowns.
\rightarrow Be sure the number of linearly independent equations matches the number of unknowns.

Circuits 1

Learning Assessment E2.29

Find V_{A} in the network provided.

Circuits 1

Problem 2.35

Find the power absorbed by the dependent source in the circuit provided.

Nodal and Loop Analysis \rightarrow Chapter \#3

- Solve circuits with multiple nodes using nodal analysis
- Solve circuits with multiple loops using loop analysis
- Identify the most appropriate analysis technique that should be utilized to solve a particular problem

Circuits 1

Nodal Analysis

- One node is selected as the reference node
- KCL is applied to the remaining $N-1$ nodes

Ohm's Law:

$$
i=\frac{v_{m}-v_{n}}{R}
$$

- Current defined by Ohm's law

- Variables are node voltages
- Voltages are defined with respect to a common point (the reference)

N -1 independent simultaneous equations!

Circuits 1

Nodal Analysis \rightarrow Known Node Voltages

- Define node voltages to be positive with respect to the reference node
- Define currents with respect to node voltages
- Voltage across resistors

$$
V_{a}=3 \mathrm{~V} \quad V_{b}=\frac{3}{2} \mathrm{~V} \quad V_{c}=\frac{3}{8} \mathrm{v}
$$

- Current in resistors

$$
I_{1}=\frac{V_{1}}{9 k}=\frac{V_{S}-V_{a}}{9 k}=1 m A
$$

$$
I_{2}=\frac{V_{a}-0}{6 k}=1 / 2 m A \quad I_{3}=\frac{V_{3}}{3 k}=\frac{V_{a}-V_{b}}{3 k}=1 / 2 m A
$$

$$
I_{4}=\frac{V_{b}-0}{4 k}=3 / 8 m A \quad I_{5}=\frac{V_{5}}{9 k}=\frac{V_{b}-V_{c}}{9 k}=1 / 8 m A
$$

Circuits 1

Nodal Analysis \rightarrow with Independent CS

1) Identify \#of nodes: 3 node circuit

$$
\begin{array}{cll}
\text { assume: } & I_{A}=1 m A & R_{1}=12 k \Omega \\
\hdashline & I_{B}=4 m A & R_{2}=6 k \Omega \\
& R_{3}=6 k \Omega
\end{array}
$$

3) Label other node voltages: $\mathrm{v}_{1}, \mathrm{v}_{2}$
4) Identify branch currents: i_{1}, i_{2}, i_{3}
5) Apply KCL to nodes: $1,2 \rightarrow 2$ independent equations

$$
\underline{\mathrm{KCLs}:} \quad I_{A}=I_{1}+I_{2}=\frac{V_{1}}{R_{1}}+\frac{V_{1}-V_{2}}{R_{2}}=V_{1}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]-V_{2}\left[\frac{1}{R_{2}}\right]
$$

$$
I_{B}=I_{2}+I_{3}=\frac{V_{1}-V_{2}}{R_{2}}-\frac{V_{2}}{R_{3}}=V_{1}\left[\frac{1}{R_{2}}\right]-V_{2}\left[\frac{1}{R_{2}}+\frac{1}{R_{3}}\right]
$$

matrix eq.

$$
\begin{aligned}
& \text { q. } \\
& {\left[\begin{array}{l}
\boldsymbol{I}_{A} \\
I_{B}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\boldsymbol{R}_{1} \| \boldsymbol{R}_{2}} & -\frac{\mathbb{1}}{\boldsymbol{R}_{2}} \\
\frac{1}{\boldsymbol{R}_{2}} & -\frac{\mathbb{1}}{\boldsymbol{R}_{2} \| \boldsymbol{R}_{3}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]}
\end{aligned}
$$

