Exam \#1 \rightarrow Tuesday Aug. 10, 2019 @ 7:00pm

Concepts Chapter \#1:

- Current/Charge Relationship
- Power/Energy/Current/Voltage Relationships
- Conservation of Energy

Concepts Chapter \#2:

- Ohm's Law (passive sign convention)
- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)
- Voltage/Current Divider
- Equivalent Resistance
- Wye/Delta Transformations
- Solving Circuits

Exam \#1 \rightarrow Tuesday Aug. 10, 2019 @ 7:00pm

Concepts Chapter \#3:

1) Nodal Analysis

Location: Chardon 124

- Select node as reference
- \# of Eq. = \# of nodes - 1
- variables \rightarrow voltages
- KCL \rightarrow equations
- voltage source \rightarrow constraint eq. (express in terms of variables)
- voltage source between 2 non-reference nodes \rightarrow supernode

2) Loop Analysis

- \# of Eq. = \# of independent loops
- variables \rightarrow currents (assign a loop current to each independent loop)
- KVL \rightarrow equations
- current source \rightarrow constraint eq. (express in terms of variables)

Circuits 1

Last Lecture \rightarrow Mesh Analysis

- $M \rightarrow$ \# of independent loops in a planar circuit
- $M \rightarrow$ \# independent simultaneous equations

Analysis Procedure

1) Identify \#of equations
2) Stablish current around loops
3) Identify voltage drops according currents
4) Identify current sources / dependent sources
5) Apply KVL to loops
6) Write constraint equation - current sources

7) Write controlling equation - dependent sources
8) Solve equation system

Additional Analysis Techniques \rightarrow Chapter \#5

- Linearity and Equivalence
- Superposition
- Thevenin Equivalent Circuit
- Norton Equivalent Circuit
- Source Transformation
- Maximum Power Transfer

Circuits 1

Circuit Equivalence

An equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit.

Circuit Linearity

Requires both additivity and homogeneity (scaling)

$$
\begin{gathered}
\frac{V_{\text {out }}}{V_{0}}=\frac{V_{\text {out }}^{\prime}}{V_{0}^{\prime}} \\
V_{\text {out }}{ }^{\prime}=1 V \rightarrow V_{o}^{\prime}=6 \mathrm{~V} \\
\therefore V_{\text {out }}=V_{0} \cdot \frac{V_{\text {out }}{ }^{\prime}}{V_{0}^{\prime}}=V_{0} \cdot \frac{1}{6}=2 \mathrm{~V}
\end{gathered}
$$

Example 5.1: Find $V_{\text {out }}$... assuming $V_{\text {out }}=1$, find V_{o} and then use linearity to obtain $V_{\text {out }}$ for $V_{o}=12 \mathrm{~V}$.

Circuits 1

Superposition

In any linear circuit containing multiple independent sources, the current or voltage at any point in the network may be calculated as the algebraic sum of the individual contributions of each source acting alone.

$$
v_{2}(t)=0
$$

(b)

(a)

$$
i_{1}(t)=\frac{v_{1}(t)}{5 k}-\frac{v_{2}(t)}{15 k}
$$

$$
i_{1}^{\prime}(t)=\frac{v_{1}(t)}{5 k}
$$

$$
i_{1}^{\prime \prime}(t)=-\frac{v_{2}(t)}{15 k}
$$

$$
i_{1}(t)=i_{1}^{\prime}(t)+i_{1}^{\prime \prime}(t)
$$

Superposition

Each independent source can be applied independently with the remaining source turned off:

- Turn off a voltage source \rightarrow short circuit
- Turn off a current source \rightarrow open circuit

The final solution is the algebraic sum of the independent results!

Circuits 1

Problem 2.65

Find $R_{A B}$ in the circuit provided.

Learning Assessment E2.33

If the power supplied by the 3 A current source is 12 W , find V_{s} and the power supplied by the 10 V source.

Circuits 1

Problem 2.121

Find V_{0} in the provided network.

Circuits 1

Problem $\rightarrow 3.31$

Find I_{0} using both nodal and mesh analysis

Circuits 1

Problem $\rightarrow 3.310$

Find V_{0} using both nodal and mesh analysis

