Exam #1 → Tuesday Aug. 10, 2019 @ 7:00pm

9/4/2019

Concepts Chapter #1:

- Current/Charge Relationship
- Power/Energy/Current/Voltage Relationships
- Conservation of Energy

Concepts Chapter #2:

- Ohm's Law (passive sign convention)
- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)
- Voltage/Current Divider
- Equivalent Resistance
- Wye/Delta Transformations
- Solving Circuits

Location: Chardon 124

Exam #1 \rightarrow Tuesday Aug. 10, 2019 @ 7:00pm

9/4/2019

Concepts Chapter #3:

- 1) Nodal Analysis
 - Select node as reference
 - # of Eq. = # of nodes 1
 - variables \rightarrow voltages
 - KCL \rightarrow equations
 - voltage source \rightarrow constraint eq. (express in terms of variables)
 - voltage source between 2 non-reference nodes \rightarrow supernode
- 2) Loop Analysis
 - # of Eq. = # of independent loops
 - variables → currents (assign a loop current to each independent loop)
 - KVL \rightarrow equations
 - current source → constraint eq. (express in terms of variables)

Location: Chardon 124

Last Lecture — Mesh Analysis

Additional Analysis Techniques \rightarrow Chapter #5

- Linearity and Equivalence
- Superposition
- Thevenin Equivalent Circuit
- Norton Equivalent Circuit
- Source Transformation
- Maximum Power Transfer

Circuit Equivalence

An equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit.

 $R_1 R_2$

 $R_{1} + R_{2}$

 V_{S} (+

 $V_o = V_S$

 $R \leq$

 R_1

9/4/2019

 $I_o = I_S$

Circuit Linearity.

9/4/2019

Requires both additivity and homogeneity (scaling)

$$\frac{V_{out}}{V_0} = \frac{V_{out}'}{V_0'}$$

$$V_{out}' = \mathbf{1}V \rightarrow V_o' = \mathbf{6}V$$

:
$$V_{out} = V_0 \cdot \frac{V_{out}'}{V_0'} = V_0 \cdot \frac{1}{6} = 2V$$

Example 5.1: Find V_{out} ... assuming $V_{out} = 1$, find V_o and then use linearity to obtain V_{out} for $V_o = 12V$.

Superposition

Superposition

9/4/2019

Each independent source can be applied independently with the remaining source turned off:

- Turn off a voltage source → short circuit
 Turn off a current source → open circuit

The final solution is the algebraic sum of the independent results!

Problem 2.65

9/4/2019

Find R_{AB} in the circuit provided.

Learning Assessment E2.33

9/4/2019

If the power supplied by the 3A current source is 12W, find V_s and the power supplied by the 10V source.

Problem 2.121

Find V₀ in the provided network.

Problem \rightarrow 3.31

Find I₀ using both nodal and mesh analysis

12

Problem \rightarrow 3.310

Find V₀ using both nodal and mesh analysis

13