Additional Analysis Techniques \rightarrow Chapter #5

9/16/2019

- Linearity and Equivalence
- Superposition
- Thevenin Equivalent Circuit
- Norton Equivalent Circuit
- Source Transformation
- Maximum Power Transfer

Circuit Equivalence

An equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit.

 $R_1 R_2$

 $R_{1} + R_{2}$

 V_{S} (+

 $V_o = V_S$

 $R \leq$

 R_1

9/16/2019

 $I_o = I_S$

Circuit Linearity.

9/16/2019

Requires both additivity and homogeneity (scaling)

 $\frac{V_{out}}{V_0} = \frac{V_{out}'}{V_0'}$

$$V_{out}' = \mathbf{1}V \to V_o' = \mathbf{6}V$$

:
$$V_{out} = V_0 \cdot \frac{V_{out}'}{V_0'} = V_0 \cdot \frac{1}{6} = 2V$$

Example 5.1: Find V_{out} ... assuming $V_{out} = 1$, find V_o and then use linearity to obtain V_{out} for $V_o = 12V$.

Superposition

9/16/2019

Superposition

9/16/2019

Each independent source can be applied independently with the remaining source turned off:

- Turn off a voltage source → short circuit
 Turn off a current source → open circuit

The final solution is the algebraic sum of the independent results!

Learning Assessment E.5.4

Find V₀ using superposition.

6

Thevenin's and Norton's Theorems

9/16/2019

<u>Thevenin's Theorem:</u> an entire circuit or network can be replaced, exclusive of the load, by an equivalent circuit that contains only an independent voltage source in series with a resistor in such a way that the current-voltage relationship at the load is unchanged.

<u>Nortons's Theorem:</u> an entire circuit or network can be replaced, exclusive of the load, by an equivalent circuit that contains only an independent current source in parallel with a resistor in such a way that the current-voltage relationship at the load is unchanged.

Thevenin's and Norton's Theorems

9/16/2019

v_{oc}: open circuit voltage from circuit A measured at A-B

Thevenin's Theorem → Independent Sources Only

9/16/2019

Example 5.5: Use Thevenin's and Norton's theorems to find V₀ in the network provided.

