Exam \#2 \rightarrow Thursday, October 17

Concepts Chapter \#5:

1) Superposition
2) The venin's \& Norton's Theorem
3) Source Transformation
4) Maximum Power Transfer

Concepts Chapter \#6:

1) Capacitors
2) Inductors

Concepts Chapter \#4:

1) Op-Amps - Model
2) Op-Amps - Analysis

Circuits 1

Last Lecture \rightarrow Operational Amplifier

- Internal Circuit Diagram

- Symbol / Equivalent Circuit

Circuits 1

Last Lecture \rightarrow Non-Ideal Analysis

Using the op-amp model find the expression for the transfer function $\mathrm{V}_{0} / \mathrm{V}_{\mathrm{s}}$.

\[

\]

Last Lecture \rightarrow Ideal Analysis

- Stablish ideal op-amp conditions on the circuit schematic
- Write nodal equations at the op-amp

MODEL ASSUMPTION TERMINAL RESULT

```
\[
A_{0} \rightarrow \infty
\]
\[
\text { input voltage } \rightarrow 0 \mathrm{~V} \quad V_{+}=V_{-}
\]
\[
R_{f} \rightarrow \infty
\]
\[
\text { input current } \rightarrow 0 \mathrm{~A} \quad \boldsymbol{i}_{+}=\boldsymbol{i}_{-}=\mathbf{0}
\]
``` input terminals
- Solve for the input/output relationship

Unity Gain Buffer - Revisited

\(\therefore V_{0}=V_{s}\)

\section*{Circuits 1}

\section*{Last Lecture \(\rightarrow\) Basic Circuits}
- Unity - Gain Amp.

- Non-Inverting Amp.

\[
\frac{V_{0}}{V_{s}} \approx 1+\frac{R_{F}}{R_{I}}
\]
- Inverting Amp

\[
\frac{V_{0}}{V_{s}} \approx-\frac{R_{2}}{R_{1}}
\]

\section*{Circuits 1}

\section*{Problem}

\section*{Determine \(\mathrm{v}_{0}\) in the circuit provided.}

\section*{Capacitance and Inductance \(\rightarrow\) Chapter \#5}
- Inductor / Capacitor Model \(\rightarrow\) voltages, currents, powers, stored energy
- Concept of Continuity \(\rightarrow\) inductor: current, capacitor: voltage
- Circuit Analysis with DC Sources
- Equivalent Inductance /Capacitance \(\rightarrow\) series \& parallel

\section*{Capacitor}
... a circuit element that consists of two conducting surfaces separated by dielectric material

(a)

Simplified Capacitor

(b)

Symbol

Capacitance (C) \(\rightarrow C=\frac{\varepsilon_{0} A}{d}\)
permittivity of free space

Unit \(\rightarrow\) farads (F) = coulombs per volts
\[
\begin{aligned}
& q=C \cdot v \quad i=C \cdot \frac{d v}{d t} \\
& v(t)=v\left(t_{0}\right)+\frac{1}{C} \cdot \int_{t_{0}}^{t} i(x) d x \\
& p(t)=C \cdot v(t) \frac{d v(t)}{d t} \\
& w_{c}(t)=\frac{1}{2} C \cdot v(t)^{2}
\end{aligned}
\]

\section*{Circuits 1}

\section*{Example 6.1}

If the charge accumulated on two parallel conductors charge to 12 V is 600 pC , what is the capacitance of the parallel conductors?
\[
\begin{array}{rl}
v=12 V & q=600 p C \\
q= & C \cdot v \\
& \longleftrightarrow C=\frac{q}{v}=\frac{600 p}{12}=50 p F
\end{array}
\]

\section*{Circuits 1}

\section*{Example 6.2}

If voltage across a \(5-\mu \mathrm{F}\) capacitor has the waveform shown below, determine the current waveform?
\[
\begin{aligned}
v(t)= & 4 k \cdot t \rightarrow t=[0: 6] \\
& 24-12 k \cdot(t-6 m) \rightarrow t=[6: 8] \\
& 0 \rightarrow t=[8: \infty] \\
& i=C \cdot \frac{d v}{d t}=? \quad
\end{aligned}
\]

\section*{Learning Assessment E6.2-E6.3}

The voltage across a 2-uF capacitor is provided below. Determine the waveforms for the current, power, and energy and compute the energy stored in the electric field of the capacitor at \(\mathrm{t}=2 \mathrm{~ms}\).

\[
p(t)=C \cdot v(t) \frac{d v(t)}{d t}=
\]

\[
w_{c}(t)=\frac{1}{2} C \cdot v(t)^{2}=
\]
\[
w_{c}(t=2 m)=
\]

\section*{Circuits 1}

\section*{Learning Assessment E6.2-E6.3}

The voltage across a 2-uF capacitor is provided below. Determine the waveforms for the current, power, and energy and compute the energy stored in the electric field of the capacitor at t=2ms.

\[
w_{c}(t)=\frac{1}{2} C \cdot v(t)^{2}=36 \cdot t^{2} J \rightarrow t=[0: 2]
\]
\[
[17-3 k \cdot t]^{2} u J \rightarrow t=[2: 6]
\]
\[
\begin{aligned}
& v(t)=6 k \cdot t \rightarrow t=[0: 2] \\
& 12-3 k \cdot(t-2 m) \rightarrow t=[2: 6] \\
& i=C \cdot \frac{d v}{d t}=12 m A \rightarrow t=[0: 2] \\
& -6 m A \rightarrow t=[2: 6]
\end{aligned}
\]

\section*{Circuits 1}

\section*{Inductor}

... a circuit element that consists of a conducting wire usually in the form
of a coil.

Simplified Inductor
Inductance (L)
\(\square\)
Unit \(\rightarrow\) Henry (H) = 1 volt-second per ampere
\[
\begin{aligned}
& v=L \cdot \frac{d i}{d t} \\
& i(t)=i\left(t_{0}\right)+\frac{1}{L} \cdot \int_{t_{0}}^{t} v(x) d x \\
& p(t)=L \cdot i(t) \frac{d i(t)}{d t} \\
& w_{L}(t)=\frac{1}{2} L \cdot i(t)^{2}
\end{aligned}
\]

\section*{Circuits 1}

\section*{Learning Assessment E6.6-E6.7}

The current across a \(5-\mathrm{mH}\) inductor is provided below. Determine the waveforms for the voltage, power, and energy and compute the,\(v=L \cdot \frac{d i}{d t}=\) energy stored in the magnetic field of the inductor at \(t=1.5 \mathrm{~ms}\).

\[
w_{L}(t=1.5 m)=
\]

\section*{Circuits 1}

\section*{Learning Assessment E6.6-E6.7}

The current across a \(5-\mathrm{mH}\) inductor is provided below. Determine the waveforms for the voltage, power, and energy and compute the energy stored in the magnetic field of the inductor at \(t=1.5 \mathrm{~ms}\).
\[
\begin{aligned}
v=L \cdot \frac{d i}{d t}= & 100 \mathrm{mV} \rightarrow t=[0: 1] \\
& -50 \mathrm{mV} \rightarrow t=[1: 2] \\
& 0 \rightarrow t=[2: 3] \\
& -50 \mathrm{mV} \rightarrow t=[3: 4]
\end{aligned}
\]

\[
\begin{aligned}
i(t)= & 20 \cdot t A \rightarrow t=[0: 1] \\
& 20 m-10 \cdot(t-1 m) A \rightarrow t=[1: 2] \\
& 10 m A \rightarrow t=[2: 3] \\
& 10 m-10 \cdot(t-3 m) A \rightarrow t=[3: 4]
\end{aligned}
\]
\[
\begin{aligned}
p(t)=L \cdot i(t) \frac{d i(t)}{d t}= & 2 \cdot t W \rightarrow t=[0: 1] \\
& -1 m+0.5 \cdot(t-1 m) W \rightarrow t=[1: 2] \\
& 0 \rightarrow t=[2: 3] \\
& -0.5 m+0.5 \cdot(t-3 m) W \rightarrow t=[3: 4]
\end{aligned}
\]
\[
w_{L}(t)=\frac{1}{2} L \cdot i(t)^{2}=\quad t^{2} J \rightarrow t=[0: 1]
\]
\[
2.5 \cdot[30 m-10 \cdot t]^{2} m J \rightarrow t=[1: 2]
\]
\[
250 n J \rightarrow t=[2: 3]
\]
\[
2.5 \cdot[40 m-10 \cdot t]^{2} m J \rightarrow t=[3: 4]
\]
\[
w_{L}(t=1.5 m)=562 n J
\]```

