Exam #2 \rightarrow Thursday, October 17

10/4/2019

Concepts Chapter #5:

- 1) Superposition
- 2) The venin's & Norton's Theorem
- 3) Source Transformation
- 4) Maximum Power Transfer

Concepts Chapter #6:

- **1) Capacitors**
- 2) Inductors

Concepts Chapter #4: 1) Op-Amps – Model 2) Op-Amps - Analysis

Last Lecture → Non-Ideal Analysis

10/4/2019

Using the op-amp model find the expression for the transfer function $V_o/V_{s.}$

Last Lecture → Ideal Analysis

- Stablish ideal op-amp conditions on the circuit schematic
- Write nodal equations at the op-amp input terminals
- Solve for the input/output relationship

 V_{s}

Last Lecture \rightarrow Basic Circuits

 V_{cc}

V_{EE}

 $\frac{V_0}{V_s} \approx 1$

 Unity – Gain Amp.
 Non-Inverting Amp.
 Inverting Amp vin O R_2 $- v_o$ R_1 (b)(d) V_o (a)(c) R_F v_{S} $\frac{V_0}{V_s} \approx 1 + \frac{R_F}{R_I}$ $\frac{V_0}{V_s} \approx -\frac{R_2}{R_1}$

5

Problem

10/4/2019

Determine v_0 in the circuit provided.

Capacitance and Inductance → Chapter #5

- Inductor / Capacitor Model → voltages, currents, powers, stored energy
- Concept of Continuity
 → inductor: current, capacitor: voltage
- Circuit Analysis with DC Sources
- Equivalent Inductance /Capacitance → series & parallel

Capacitor

10/4/2019

... a circuit element that consists of two conducting surfaces separated by dielectric material

10/4/2019

If the charge accumulated on two parallel conductors charge to 12V is 600 pC, what is the capacitance of the parallel conductors?

v = 12V q = 600 pC

$$q = C \cdot v$$

$$C = \frac{q}{v} = \frac{600p}{12} = 50pF$$

Example 6.2

If voltage across a 5-µF capacitor has the waveform shown below, determine the current waveform?

$$v(t) = 4k \cdot t \quad \rightarrow t = [0:6]$$

$$24 - 12k \cdot (t - 6m) \quad \rightarrow t = [6:8]$$

$$0 \quad \rightarrow t = [8:\infty]$$

$$i = C \cdot \frac{dv}{dt} = ?$$

Learning Assessment E6.2-E6.3

10/4/2019

The voltage across a 2-uF capacitor is provided below. Determine the waveforms for the current, power, and energy and compute the energy stored in the electric field of the capacitor at t=2ms.

Learning Assessment E6.2-E6.3

10/4/2019

The voltage across a 2-uF capacitor is provided below. Determine the waveforms for the current, power, and energy and compute the energy stored in the electric field of the capacitor at t=2ms.

Unit \rightarrow Henry (H) = 1 volt-second per ampere

Learning Assessment E6.6-E6.7

Learning Assessment E6.6-E6.7

10/4/2019

 $-50 mV \rightarrow t = [1:2]$

 $0 \rightarrow t = [2:3]$

 $v = L \cdot \frac{di}{dt} = 100 \ mV \rightarrow t = [0:1]$

The current across a 5-mH inductor is provided below. Determine the waveforms for the voltage, power, and energy and compute the energy stored in the magnetic field of the inductor at t=1.5ms.

p(t)

$$-50 \ mV \rightarrow t = [3:4]$$

$$p(t) = L \cdot i(t) \frac{di(t)}{dt} = 2 \cdot t \ W \rightarrow t = [0:1] -1m + 0.5 \cdot (t - 1m) \ W \rightarrow t = [1:2] 0 \rightarrow t = [2:3] -0.5m + 0.5 \cdot (t - 3m) \ W \rightarrow t = [3:4]$$

$$w_L(t) = \frac{1}{2}L \cdot i(t)^2 = t^2 \ J \rightarrow t = [0:1] 2.5 \cdot [30m - 10 \cdot t]^2 \ mJ \rightarrow t = [1:2] 250 \ nJ \rightarrow t = [2:3] 2.5 \cdot [40m - 10 \cdot t]^2 \ mJ \rightarrow t = [3:4]$$

$$w_L(t) = \frac{1}{2}L \cdot i(t) = \frac{1}{2}L \cdot i(t)^2 = \frac{1}{2}L \cdot i(t)^2$$