## Circuits 1

## Last Lecture $\rightarrow$ Capacitor

... a circuit element that consists of two conducting surfaces separated by dielectric material


Simplified Capacitor

(b)

Symbol
permittivity of free space

$$
\begin{aligned}
& q=C \cdot v \quad i=C \cdot \frac{d v}{d t} \\
& v(t)=v\left(t_{0}\right)+\frac{1}{C} \cdot \int_{t_{0}}^{t} i(x) d x \\
& p(t)=C \cdot v(t) \frac{d v(t)}{d t} \\
& w_{c}(t)=\frac{1}{2} C \cdot v(t)^{2}
\end{aligned}
$$

Unit $\rightarrow$ farads (F) = coulombs per volts

## Circuits 1

## Last Lecture $\rightarrow$ Inductor

... a circuit element that consists of a conducting wire usually in the form of a coil.

Flux lines

$$
\begin{aligned}
& v=L \cdot \frac{d i}{d t} \\
& i(t)=i\left(t_{0}\right)+\frac{1}{L} \cdot \int_{t_{0}}^{t} v(x) d x \\
& p(t)=L \cdot i(t) \frac{d i(t)}{d t} \\
& w_{L}(t)=\frac{1}{2} L \cdot i(t)^{2}
\end{aligned}
$$

Symbol

Inductance (L)
$\square$



Simplified Inductor

Unit $\rightarrow$ Henry (H) = 1 volt-second per ampere

## Circuits 1

## Learning Assessment E6.11

Two initially uncharged capacitors are connected as shown in the circuit below. After a period of time, the voltage reaches the value shown. Determine the value of $\mathrm{C}_{1}$.


## Circuits 1

## DC Analysis $\rightarrow$ Example 6.5

Find the total energy stored in the circuit provided.

@ $D C V_{L}=0 \& I_{C}=0$
$\rightarrow \mathrm{L}=$ short circuit
$\rightarrow \mathrm{C}=$ open circuit


## Circuits 1

## Series \Parallel Inductors

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t)+\cdots+v_{N}(t) \\
& =L_{1} \frac{d i(t)}{d t}+L_{2} \frac{d i(t)}{d t}+\cdots+L_{N} \frac{d i(t)}{d t} \\
& =\left[L_{1}+L_{2}+\cdots+L_{N}\right] \frac{d i(t)}{d t}
\end{aligned}
$$



$$
\begin{aligned}
i(t) & =i_{1}(t)+i_{2}(t)+\cdots+ \\
& =\frac{1}{L_{1}} v(t) d t+\frac{1}{L_{2}} v(t) d t+\cdots+\frac{1}{L_{N}} v(t) d t \\
& =\left[\frac{1}{L_{1}}+\frac{1}{L_{2}}+\cdots+\frac{1}{L_{N}}\right] v(t) d t
\end{aligned}
$$



$$
\frac{1}{L_{p}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\cdots+\frac{1}{L_{N}}
$$

## Circuits 1

## Series \Parallel Capacitors



$$
\begin{aligned}
& v(t)=v_{1}(t)+v_{2}(t)+\cdots+v_{N}(t) \\
&=\frac{1}{C_{1}} i(t) d t+\frac{1}{C_{2}} i(t) d t+\cdots+\frac{1}{C_{N}} i(t) d t \\
&=\left[\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots+\frac{1}{C_{N}}\right] i(t) d t \\
& i(t)
\end{aligned}
$$




$$
\begin{aligned}
& i(t)=i_{1}(t)+i_{2}(t)+\cdots+i_{N} \\
& =C_{1} \frac{d v(t)}{d t}+C_{2} \frac{d v(t)}{d t}+\cdots+C_{N} \frac{d v(t)}{d t} \\
& =\left[C_{1}+C_{2}+\cdots+C_{N}\right] \frac{d v(t)}{d t} \\
& C_{p}=C_{1}+C_{2}+\cdots+C_{N}
\end{aligned}
$$

## Learning Assessment E6.12

Compute the equivalent capacitance of the network provided.


## Circuits 1

## Learning Assessment E6.15

Find $\mathrm{L}_{\mathrm{T}}$ in the network provided.


## Circuits 1

## Problem 6.38

Find the value of C if the energy stored in the capacitor equals the energy stored in the inductor.


## Problem 6.57

If the total capacitance of the provided network is $10 \mu \mathrm{~F}$, find the value of C .


## Problem $\rightarrow$ P5. 124

For the given network find the value of $R_{L}$ for maximum power transfer and the maximum power that can be transferred to this load.


## Circuits 1

## Problem $\rightarrow$ P5. 106

Using source transformation, find $\mathrm{I}_{0}$ in the circuit provided.


## Circuits 1

## Problem $\rightarrow$ P5.87

Find the Thevenin's equivalent circuit of the provided network at terminals A-B.


## Circuits 1

## Example 4.5

The circuit shown is a precision differential voltage-gain device. It is used to provide a single-ended input for an analog-to-digital converter. Derive an expression for the output of the circuit in terms of the two inputs.


## Learning Assessment - E4.5

Assuming ideal op-amp behavior find Vo in terms of $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$. If $\mathrm{V}_{1}=\mathrm{V}_{2}=4$ find $\mathrm{V}_{0}$. If the op-amp power supplies are $\pm 15 \mathrm{~V}$ and $\mathrm{V}_{2}=2 \mathrm{~V}$, what is the allowable range of $\mathrm{V}_{1}$ ?
$\rightarrow$ Superposition: Inverting Amp. / Non-Inverting Amp.


## Learning Assessment E6.10

For the provided circuit find the energy stored in the capacitor and the inductor.


## Circuits 1

## Problem 4.43

Assuming ideal op-amp behavior, find the expression for $v_{0}$ in terms of $\left(v_{2}-v_{1}\right)$.


## Circuits 1

## Learning Assessment - E4.6

Assuming ideal op-amp behavior find $\mathrm{V}_{0}$ and $\mathrm{V}_{3}$ in the provided circuit.

$$
V_{2}=\left[1+\frac{10 k}{5 k}\right] V_{1}=3 \cdot V_{1}
$$

Superposition:

## Voltage Divider



$$
V_{3}=\left[\frac{10 k}{10 k+2.5 k}\right] V_{2}=\frac{4}{5} \cdot V_{2}=\frac{12}{5} \cdot V_{1}
$$

$$
V_{0}=\left[1+\frac{3 k}{2 k}\right] V_{3}-\left[\frac{3 k}{2 k}\right] V_{1}
$$

$$
=\frac{5}{2} \cdot V_{3}-\frac{3}{2} \cdot V_{1}=6 \cdot V_{1}-\frac{3}{2} \cdot V_{1}=\frac{9}{2} \cdot V_{1}
$$

$$
V_{1}=\left[\frac{2 k}{7 k}\right] 5+\left[\frac{5 k}{7 k}\right] V_{3}=\frac{10}{7}+\frac{12}{7} \cdot V_{1}
$$

$$
\begin{aligned}
& \therefore V_{1}=-2 V \\
& \quad \therefore V_{0}=-9 V
\end{aligned}
$$

Amp. Divider

$$
\therefore V_{3}=-4.8 \mathrm{~V}
$$

