Last Lecture → Impedance

11/12/2019

The ratio of the phasor voltage V to the phasor current I.

 $Z = \frac{V}{I} \quad [Ohms]$

$$=\frac{V_M \langle \theta_v}{I_M \langle \theta_i} = \frac{V_M}{I_M} \langle (\theta_v - \theta_i) = Z \langle \theta_z \rangle$$

Resistance

 $Z\langle \theta_z = R + jX \leftarrow Reactance$

KVL & KCL are valid in the frequency domain!

	PASSIVE ELEMENT	IMPEDANCE
2	R	$\mathbf{Z} = R$
	L	$\mathbf{Z} = j\omega L = jX_L, X_L = \omega L$
	С	$\mathbf{Z} = \frac{1}{j\omega C} = -\frac{j}{\omega C} = -jX_C, X_C = \frac{1}{\omega C}$
θ	z Series	$s \rightarrow $ Equivalent Impedance $Z_s = Z_1 + Z_2 + \dots + Z_n$
	Paral	$lel \rightarrow Equivalent Impedance$
		$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1}$
	i	$Z_p Z_1 Z_2 Z_n$

Last Lecture → Admitance

11/12/2019

The ratio of the phasor current I to the phasor voltage V.

$$Y = \frac{I}{V} = \frac{1}{Z} [Siemens]$$

Conductance

 $Y \left\langle \boldsymbol{\theta}_{y} = \boldsymbol{G} + \boldsymbol{j}\boldsymbol{B} \right\rangle$

Susceptance

KVL & KCL are valid in the frequency domain!

PASSIVE ELEMENT	IMPEDANCE
R	$\mathbf{Z} = R$
L	$\mathbf{Z} = j\omega L = jX_L, X_L = \omega L$
С	$\mathbf{Z} = \frac{1}{j\omega C} = -\frac{j}{\omega C} = -jX_C, \ X_C = \frac{1}{\omega C}$

Parallel → Equivalent Admittance

$$Y_p = Y_1 + Y_2 + \dots + Y_n$$

Series → Equivalent Admittance

$$\frac{1}{Y_s} = \frac{1}{Y_1} + \frac{1}{Y_2} + \dots + \frac{1}{Y_n}$$

Circuits 1

Problem 8.17

11/12/2019

Find the frequency-domain impedance, Z, shown below.

Problem

An industrial load is modeled as a series combination of an inductor and a resistance as shown in the provided figure. Calculate the value of a capacitor C across the series combination so that the net impedance is resistive at a frequency of 2 kHz.

Problem

An industrial load is modeled as a series combination of an inductor and a resistance as shown in the provided figure. Calculate the value of a capacitor C across the series combination so that the net impedance is resistive at a frequency of 2 kHz.

Circuits 1

Example 8.15

11/12/2019

For the given network determine I₀ using nodal analysis.

Learning Assessment E8.20

11/12/2019

For the given network use (a) mesh equations and (b) Thevenin's theorem to find V_o.

Learning Assessment E8.23

11/12/2019

For the given network use (a) superposition and (b) source transformation to find V_o .

