Circuits 1

Last Lecture \rightarrow Impedance

The ratio of the phasor voltage V to the phasor current I .

$$
\begin{aligned}
Z & =\frac{V}{I}[\text { Ohms }] \\
& =\frac{V_{M}\left\langle\theta_{v}\right.}{I_{M}\left\langle\theta_{i}\right.}=\frac{V_{M}}{I_{M}}\left\langle\left(\theta_{v}-\theta_{i}\right)=Z\left\langle\theta_{z}\right.\right.
\end{aligned}
$$

Resistance

$$
Z\left\langle\theta_{z}=R+j X\right.
$$

KVL \& KCL are valid in the frequency domain!

```
PASSIVE ELEMENT
```

IMPEDANCE

$$
\begin{aligned}
& \mathbf{z}=R \\
& \mathbf{z}=j \omega L=j X_{L}, X_{L}=\omega L \\
& \mathbf{z}=\frac{1}{j \omega C}=-\frac{j}{\omega C}=-j X_{C}, X_{C}=\frac{1}{\omega C}
\end{aligned}
$$

Series \rightarrow Equivalent Impedance

$$
Z_{s}=Z_{1}+Z_{2}+\cdots+Z_{n}
$$

Parallel \rightarrow Equivalent Impedance

$$
\frac{\mathbf{1}}{Z_{p}}=\frac{\mathbf{1}}{Z_{1}}+\frac{1}{Z_{2}}+\cdots+\frac{\mathbf{1}}{Z_{n}}
$$

Circuits 1

Last Lecture \rightarrow Admitance

The ratio of the phasor current I to the phasor voltage V .

$$
Y=\frac{I}{V}=\frac{1}{Z}[\text { Siemens }]
$$

Conductance

$$
Y\left\langle\theta_{y}=G+j B\right.
$$

KVL \& KCL are valid in the frequency domain!

```
PASSIVE ELEMENT
```

IMPEDANCE

```
\(R\)
\(\mathbf{Z}=R\)
\(\mathbf{Z}=j \omega L=j X_{L}, X_{L}=\omega L\)
\(\mathbf{Z}=\frac{1}{j \omega C}=-\frac{j}{\omega C}=-j X_{C}, X_{C}=\frac{1}{\omega C}\)
```

Parallel \rightarrow Equivalent Admittance

$$
Y_{p}=Y_{1}+Y_{2}+\cdots+Y_{n}
$$

Series \rightarrow Equivalent Admittance

$$
\frac{\mathbf{1}}{Y_{s}}=\frac{\mathbf{1}}{Y_{1}}+\frac{\mathbf{1}}{Y_{2}}+\cdots+\frac{\mathbf{1}}{Y_{n}}
$$

Circuits 1

Problem 8.17

Find the frequency-domain impedance, Z, shown below.

Problem

An industrial load is modeled as a series combination of an inductor and a resistance as shown in the provided figure. Calculate the value of a capacitor C across the series combination so that the net impedance is resistive at a frequency of 2 kHz .

Problem

An industrial load is modeled as a series combination of an inductor and a resistance as shown in the provided figure. Calculate the value of a capacitor C across the series combination so that the net impedance is resistive at a frequency of 2 kHz .

Circuits 1

Example 8.15

For the given network determine I_{0} using nodal analysis.

Circuits 1

Learning Assessment E8.20

For the given network use (a) mesh equations and (b) Thevenin's theorem to find V_{0}.

Circuits 1

Learning Assessment E8.23

For the given network use (a) superposition and (b) source transformation to find V_{0}.

