Magnetically Coupled Networks → Chapter #10

- Mutual Inductance / Coefficient of Coupling / Turns Ration
- Circuit Analysis with Mutual Inductance
- Circuit Analysis with Ideal Transformers

Single Coil Behavior

Two Coils → Magnetically Coupled

Magnetically Coupled Coils

Magnetically Coupled Coils → Circuit Diagram

11/12/2019

Current enters the dotted terminal → voltage at coupled coil is positive at the dotted terminal

 Current enters the undotted terminal → voltage at coupled coil is positive at the undotted terminal

Example 10.4

Determine V₀ for the given circuit.

 $V_1 = jX_{L1}I_1 - jX_{LM}I_2$ $V_2 = jX_{L2}I_2 - jX_{LM}I_1$

6

11/12/2019

Find V_x in the provided circuit.

Problem

11/12/2019

Determine the equivalent inductance L_{eq} of the circuit.

