Circuits 1

Last Lecture \rightarrow Magnetically Coupled Coils

(a)

- Current enters the dotted terminal \rightarrow voltage at coupled coil is positive at the dotted terminal

$$
\begin{aligned}
& V_{1}=j X_{L 1} I_{1}+j X_{L M} I_{2} \\
& V_{2}=j X_{L 2} I_{2}+j X_{L M} I_{1}
\end{aligned}
$$

(b)

- Current enters the undotted terminal \rightarrow voltage at coupled coil is positive at the undotted terminal

$$
\begin{aligned}
& V_{1}=\boldsymbol{j} X_{L 1} I_{1}-\boldsymbol{j} X_{L M} I_{2} \\
& V_{2}=\boldsymbol{j} X_{L 2} I_{2}-j X_{L M} I_{1}
\end{aligned}
$$

Circuits 1

Problem

Determine the equivalent inductance $L_{\text {eq }}$ of the circuit.

Circuits 1

Magnetically Coupled Coils \rightarrow Energy

Coefficient of Coupling $\quad k=\frac{M}{\sqrt{L_{1} L_{2}}} \quad 0 \leq k \leq 1$

Circuits 1

Problem

Find the value of the coupling coefficient k that will make the 10Ω resistor dissipate 320W. For this value of k, find the energy stored in the coupled coils at $t=1.5 \mathrm{~s}$.

Circuits 1

The Ideal Transformer

Assuming an ideal magnetic core with infinite permeability...

$$
\left.\begin{array}{l}
P_{1}+P_{2}=0 \\
v_{1} \cdot i_{1}+v_{1} \cdot \frac{N_{2}}{N_{1}} \cdot i_{2}=0
\end{array}\right] \therefore \frac{i_{2}}{i_{1}}=-\frac{N_{1}}{N_{2}}
$$

$$
\begin{array}{ll}
\lambda_{1}=N_{1} \cdot \phi & \lambda_{2}=N_{2} \cdot \phi \\
v_{1}=\frac{d \lambda_{1}}{d t}=N_{1} \frac{d \phi}{d t} & v_{2}=\frac{d \lambda_{2}}{d t}=N_{2} \frac{d \phi}{d t}
\end{array}
$$

$$
\therefore \frac{v_{2}}{v_{1}}=\frac{N_{2}}{N_{1}}
$$

The Ideal Transformer

- If both voltages are referenced positive at the dotted terminals or un-dotted terminals, then $V_{2} / V_{1}=N_{2} / N_{1}$. If this is not true, then $V_{2} / V_{1}=-N_{2} / N_{1}$.
- If both currents are defined as entering at dotted terminals or un-dotted terminals, then $I_{2} / I_{1}=-N_{1} / N_{2}$. If this is not true, then $I_{2} / I_{1}=N_{1} / N_{2}$.

Circuits 1

Problem

Ten bulbs in parallel are supplied by a 7,200/120 V transformer as shown, where the bulbs are modeled by the 144Ω resistors. Find:
a) the turns ratio n,
b) the current through the primary winding.

Circuits 1

Problem

Obtain V_{1} and V_{2} in the ideal transformer circuit provided.

Circuits 1

Problem

A transformer is used to match an amplifier with an 8Ω load as shown in the figure provided. The Thevenin equivalent of the amplifier is: $\mathrm{V}_{\mathrm{th}}=10 \mathrm{~V}, \mathrm{Z}_{\mathrm{th}}=128 \Omega$.
a) Find the required turns ratio n for maximum energy power transfer
b) Determine the primary and secondary currents
c) Determine the primary and secondary voltages

Circuits 1

Problem

Find the Thevenin equivalent for the circuit provided at terminals a-b.

