Steady State Power Analysis \rightarrow Chapter \#9

\checkmark Instantaneous and Average Power (AC Circuits)
\checkmark Maximum Average Power Transfer (AC Circuits)
\checkmark Effective / RMS Value (periodic waveform)

- Real Power, Reactive Power, Complex Power, \& Power Factor
- Power Factor Correction

Circuits 1

Last Lecture \rightarrow Average Power

The average value of any waveform can be computed by integrating the function over a complete period and dividing this result by the period:

$$
P=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} p(t) d t
$$

$$
\begin{aligned}
\therefore P= & \frac{1}{2} V_{M} I_{M} \cos \left(\theta_{v}-\theta_{i}\right) \\
& \cdot P_{\text {resistive }}=\frac{1}{2} V_{M} I_{M}=\frac{1}{2} R I_{M}{ }^{2}=\frac{1}{2} \frac{V_{M}{ }^{2}}{R} \\
& \cdot P_{\text {reactive }}=\frac{1}{2} V_{M} I_{M} \cos \left(\pm 90^{0}\right)=0
\end{aligned}
$$

$$
=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} \frac{V_{M} I_{M}}{2}\left[\cos \left(\theta_{v}-\theta_{i}\right)+\cos \left(2 \omega t+\theta_{v}+\theta_{i}\right)\right] d t
$$

Circuits 1

Last Lecture \rightarrow Maximum Power Transfer

Reexamining the maximum power transfer for AC sources.../

$$
Z_{t h}=R_{t h}+j X_{t h}
$$

$$
V_{L}=V_{o c} \frac{Z_{L}}{Z_{T h}+Z_{L}}
$$

$$
I_{L}=\frac{V_{o c}}{Z_{T h}+Z_{L}}
$$

$$
P_{L}=\frac{1}{2} \frac{V_{o c}^{2} R_{L}}{\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}}
$$

$$
\left.\begin{array}{l}
\therefore X_{L}=-X_{t h} \\
\therefore R_{L}=R_{t h}
\end{array}\right\} \quad Z_{L}=R_{t h}-j X_{t h}
$$

Circuits 1

Last Lecture \rightarrow RMS Value (Sinosoid)

$$
\begin{aligned}
& \begin{aligned}
& i(t)=I_{M} \cos (\omega t-\theta) \\
& T=2 \pi / \omega
\end{aligned} \\
& \begin{aligned}
I_{r m s}=\sqrt{\frac{1}{T} \int_{t_{0}}^{t_{0}+T} i^{2}(t) d t} & =I_{M} \sqrt{\frac{1}{T} \int_{0}^{T}\left[\frac{1}{2}+\frac{1}{2} \cos (2 \omega t-2 \theta)\right] d t} \\
=\sqrt{\frac{1}{T} \int_{0}^{T} I_{M}^{2} \cos ^{2}(\omega t-\theta) d t} & \therefore \int_{0}^{T} \frac{1}{2} d t=\frac{I_{M}}{\sqrt{2}} \\
& \therefore P=V_{r m s} I_{r m s} \cos \left(\theta_{v}-\theta_{i}\right) \\
& \therefore P_{R}=R I_{r m s}^{2}=\frac{V_{r m s}^{2}}{R}
\end{aligned}
\end{aligned}
$$

Circuits 1

Example E9.8

Calculate the rms value of the provided waveform.

Circuits 1

Power Factor

- $P=V_{r m s} I_{r m s} \cos \left(\theta_{v}-\theta_{i}\right) \rightarrow$ average power (W)
- $V_{r m s} I_{r m s} \rightarrow$ apparent power (VA)

$$
p f=\frac{P}{V_{r m s} I_{r m s}}=\cos \left(\theta_{v}-\theta_{i}\right) \rightarrow \text { power } \operatorname{factor}(V A)
$$

$$
\begin{aligned}
& \text { pf }=1 \rightarrow \text { purely resistive load } \\
& \text { pf }=0 \rightarrow \text { purely reactive load }
\end{aligned}
$$

Phase of the current with respect to the voltage

- leading $=\boldsymbol{\theta}_{v}-\boldsymbol{\theta}_{\boldsymbol{i}}<\mathbf{0}$
- lagging $=\boldsymbol{\theta}_{v}-\boldsymbol{\theta}_{\boldsymbol{i}}>0$

Circuits 1

Example 9.10

An industrial load consumes 88 kW at a pf of 0.707 lagging from a $480 \mathrm{~V}_{\text {rms }}$ line. The transmission line resistance from the power company's transformer to the plant is 0.08Ω. Determine the power that must be supplied by the power company
a) under present conditions and
b) if the pf is somehow change to 0.90 lagging.

Circuits 1

Complex Power

$$
\begin{aligned}
\mathbf{S} & =\boldsymbol{V}_{r m s} \boldsymbol{I}_{\boldsymbol{r m s}}{ }^{*} \quad\left(\boldsymbol{I}_{r m s}{ }^{*} \rightarrow \text { complex conjugate of } \boldsymbol{I}_{\boldsymbol{r m s}}\right) \\
& =V_{r m s} \boldsymbol{I}_{r m s}\left(\theta_{v}-\theta_{i}\right. \\
& =\underbrace{V_{r m s} I_{r m s} \cos \left(\theta_{v}-\theta_{i}\right)}_{\mathbf{P} \rightarrow \text { Real/Average Power }}+\underbrace{\mathrm{j} V_{r m s} I_{r m s} \sin \left(\theta_{v}-\theta_{i}\right)}_{\mathbf{Q} \rightarrow \text { Reactive Power }} \\
\mathbf{S} & =P+j Q \quad \tan \left(\theta_{v}-\theta_{i}\right)=\frac{Q}{P}
\end{aligned}
$$

Circuits 1

Example 9.11

A load operates at $20 \mathrm{~kW}, 0.8 \mathrm{pf}$ lagging. The load voltage is $220 \mathrm{~V}_{\mathrm{rms}}$ at 60 Hz . The impedance of the line is $0.09+\mathrm{j} 0.3 \Omega$. Determine the voltage and the power factor at the input to the line.

Circuits 1

Power Factor Correction

PF can be increased by decreasing the reactive power through a capacitor bank!

$$
S_{\text {new }}=S_{o l d}+S_{c a p}
$$

$$
S_{c a p}=-j \omega C V_{r m s}^{2}
$$

Example 9.14

Plastic kayaks are manufactured using a process called roto-molding. Molten plastic is injected into a mold, which is the spun on the long axis of the kayak until the plastic cools, resulting in a hollow on-piece craft. Suppose that the induction motors used to spin the molds consume 50 kW at a pf of 0.8 lagging from a $220 \mathrm{~V}_{\text {rms }}$, 60 Hz line. What would be the capacitor bank size to be placed in parallel to raise the pf to 0.95 lagging?

