Exam \#1 \rightarrow Thursday January 31

\rightarrow Tuesday February 5

Concepts Chapter \#1:

- Current/Charge Relationship
- Power/Energy/Current/Voltage Relationships
- Conservation of Energy

Concepts Chapter \#2:

- Ohm's Law (passive sign convention)
- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)
- Voltage/Current Divider
- Equivalent Resistance
- Wye/Delta Transformations
*** "Bate": bring your own set of equations (no problems, photocopies, solutions, etc)... subject to approval by the professor
- Solving Circuits

Last Lecture \rightarrow Ohm's Law

$\left[\begin{array}{l}\text { States that the voltage } \\ \text { proportional to the curr } \\ \boldsymbol{v}(\boldsymbol{t})=\mathbf{R} \cdot \boldsymbol{i}(\boldsymbol{t})\end{array}\right.$

across a resistance is directly rent flowing through it.

- Resistance [$\Omega=\mathrm{V} / \mathrm{A}$]

$$
R=\frac{v(t)}{i(t)}
$$

- Conductance [S = A/V]

$$
G=\frac{\mathbf{1}}{R}=\frac{i(t)}{v(t)}
$$

- Power Dissipation [W]

$$
\begin{aligned}
\boldsymbol{p}(\boldsymbol{t}) & =\boldsymbol{v}(\boldsymbol{t}) \cdot \boldsymbol{i}(\boldsymbol{t})=\boldsymbol{R} \cdot \boldsymbol{i}(\boldsymbol{t})^{2}=\frac{v(t)^{2}}{\boldsymbol{R}} \\
& =\frac{i(t)^{2}}{G}=G \cdot v(t)^{2}
\end{aligned}
$$

Last Lecture \rightarrow Kirchhoff's Laws

KCL- the algebraic sum of the all the currents entering any node is zero

$$
\sum_{h=1}^{K} i_{h}^{i n}(t)=0 \quad \sum_{j=1}^{N} i_{j}^{i n}(t)=\sum_{i=1}^{M} i_{i}^{\text {out }}(t)
$$

KVL- the algebraic sum of the voltages around any loop is zero

$$
\sum_{h=1}^{K} v_{h}(t)=0 \longmapsto \sum_{j=1}^{N} v_{j}^{\uparrow}(t)=\sum_{i=1}^{M} v_{i}^{\downarrow}(t)
$$

Single Loop Circuits \rightarrow Voltage Division

$$
v_{R_{1}}=? \quad v_{R_{2}}=?
$$

$$
\begin{aligned}
& * I_{R 1}=I_{R 2}=i(t) \\
& \quad \therefore R_{1} \text { and } R_{2} \text { are in series }
\end{aligned}
$$

$\left.\begin{array}{l}\text { - KVL: } v(t)=v_{R_{1}}+v_{R_{2}} \\ \text { - Ohm's: } v_{R_{1}}=R_{1} \cdot i(t)\end{array}\right\} \therefore \mathrm{i}(t)=\frac{v(t)}{\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}}$

$$
v_{R_{2}}=R_{2} \cdot i(t)
$$

$$
\begin{array}{r}
\therefore v_{R 1}=\frac{R_{1}}{R_{1}+R_{2}} \cdot v(t) \\
v_{R 2}=\frac{R_{2}}{R_{1}+R_{2}} \cdot v(t)
\end{array}
$$

The source voltage $v(t)$ is divided between the resistors R_{1} and R_{2} in direct proportion to their resistances.

Example 2.13

Assuming $\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}, \mathrm{R}_{1}=90 \mathrm{k} \Omega$, and $\mathrm{R}_{2}=30 \mathrm{k} \Omega$, examine the change in both the voltage across R_{2} and the power absorbed in the resistor as R_{1} is changed from $90 \mathrm{k} \Omega$ to $15 \mathrm{k} \Omega$.

Single Loop Circuits \rightarrow Multiple Source/Resistor Networks

- KVL: $v_{1}(t)-v_{R 1}-v_{2}(t)+v_{3}(t)-v_{R 2}-v_{4}(t)-v_{5}(t)=0$

$$
v_{1}(t)-v_{2}(t)+v_{3}(t)-v_{4}(t)-v_{5}(t)=v_{R 1}+v_{R 2}
$$

Single Loop Circuits \rightarrow Multiple Source/Resistor Networks

\therefore The sum of several voltage source in series can be replaced by one source whose value is the algebraic sum of the individual source
\therefore The equivalent resistance of \mathbf{N} resistors in series is simply the sum of the individual resistances.

$$
\boldsymbol{R}_{S}=\sum \boldsymbol{R}_{1}+\boldsymbol{R}_{2}+\cdots+\boldsymbol{R}_{N}
$$

Equivalent Circuit

Learning Assessment E2.11

In the network provided, if V_{ad} is 3 V , find V_{s}.

Current Division

$$
i_{1}=? \quad i_{2}=?
$$

- KCL: $\left.i(t)=i_{1}(t)+i_{2}(t)\right] \quad \therefore v(t)=$
- Ohm's: $\boldsymbol{i}_{1}(\boldsymbol{t})=\frac{v(t)}{R_{1}}$

$$
i_{2}(t)=\frac{v(t)}{R_{2}}
$$

$$
i(t) \cdot \frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}
$$

$$
\therefore i_{1}(t)=\frac{R_{2}}{R_{1}+R_{2}} \cdot i(t)
$$

$$
\begin{aligned}
& * V_{R 1}=V_{R 2}=v(t) \\
& \quad \therefore R_{1} \text { and } R_{2} \text { are in parallel }
\end{aligned}
$$

$$
i_{2}(t)=\frac{R_{1}}{R_{1}+R_{2}} \cdot i(t)
$$

Single Loop Circuits \rightarrow Multiple Source/Resistor Networks

- KCL: $i_{1}(t)-i_{2}(t)-i_{3}(t)+i_{4}(t)-i_{5}(t)-i_{6}(t)=0$

$$
\underbrace{i_{1}(t)+i_{2}(t)+i_{5}(t)+i_{4}(t)-i_{6}(t)}_{i_{i_{0}(t)}^{\longrightarrow} i_{1}(t)-i_{3}(t)+i_{4}(t)-i_{6}(t)}=v(t) \cdot \underbrace{\left.i_{1}(t)-\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]}_{1 / R_{p}} \text {, }
$$

Single Loop Circuits \rightarrow Multiple Source/Resistor Networks

\therefore The sum of several current sources in series can be replaced by one source whose value is the algebraic sum of the individual source
\therefore The reciprocal of the equivalent resistance of N resistors in parallel is equal to the sum of the reciprocal of the individual resistances.

$$
\frac{1}{R_{p}}=\sum \frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}
$$

For 2 resistances in parallel R_{p} can be expressed as...

$$
R_{p}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}
$$

Equivalent Circuit

Example 2.17

For the given network find I_{1}, I_{2}, and V_{0}.

Series/Parallel Resistor Combinations

E2.16: Find $R_{A B}$ in the provided network.

- Series: $\boldsymbol{R}_{S}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{2}+\cdots+\boldsymbol{R}_{N}$
- Parallel: $\frac{1}{R_{P}}=\frac{\mathbf{1}}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}$

Learning Assessment E2.22

Find V_{0}, V_{1}, and V_{2} in the network provided.

