Exam \#2 \rightarrow Thursday, February 14

Concepts Chapter \#3:

\rightarrow Tuesday, February 21

1) Nodal Analysis

- Select node as reference
- \# of Eq. = \# of nodes - 1
- variables \rightarrow voltages
- KCL \rightarrow equations
- voltage source \rightarrow constraint eq. (express in terms of variables)
- voltage source between 2 non-reference nodes \rightarrow supernode

2) Loop Analysis

- \# of Eq. = \# of independent loops
- variables \rightarrow currents (assign a loop current to each independent loop)
- KVL \rightarrow equations
- current source \rightarrow constraint eq. (express in terms of variables)
*** "Bate": bring your own set of equations (no problems, photocopies, solutions, etc)... subject to approval by the professor

Last Lecture \rightarrow Nodal Analysis

Analysis Procedure

1) Identify \#of nodes
2) Select reference node
3) Label other node voltages
4) Identify branch currents

5) Identify supernode / dependent sources
6) Apply KCL to nodes and supernodes
7) Write constraint equation - supernodes $\longrightarrow V_{1}-V_{2}=4 k \cdot I_{x}$
8) Write controlling equation - dependent sources
9) Solve equation system

$$
I_{x}=\frac{V_{0}-V_{2}}{2 k}
$$

Mesh Analysis

Alternative \# 1

- B \rightarrow \# of branches
- $\mathbf{N} \rightarrow$ \# of nodes
- B-N+1 \rightarrow \# independent simultaneous equations

Alternative \# 2

- M \rightarrow \# of independent loops in a planar circuit
- $M \rightarrow$ \# independent simultaneous equations

$$
\begin{aligned}
& B=8 \quad M=4 \\
& N=5 \\
& \# E q .=4
\end{aligned}
$$

Stablish the currents around the loops

$$
\begin{aligned}
& i_{A}(t)=i_{1}(t) \\
& v_{1}=V_{R_{1}}+V_{R_{2}} \\
& -v_{2}=V_{R_{3}}+V_{R_{4}} \\
& v_{2}-v_{1}=V_{5}
\end{aligned}
$$

Loop Analysis \rightarrow with Independent Voltage Sources

***Use passive sign convention with respect the loop currents

$$
\begin{aligned}
& M=2 \\
& \# E q .=2
\end{aligned}
$$

- KVLs in terms of \underline{I}_{1} and I_{2}

$$
\begin{aligned}
12 & =6 k \cdot I_{1}+6 k \cdot\left(I_{1}-I_{2}\right) \\
-3 & =6 k \cdot\left(I_{2}-I_{1}\right)+3 k \cdot I_{2}
\end{aligned}
$$

using the outer loop...

Loop Analysis \rightarrow with Independent Current Sources

*** The current source will determine loop current

$$
\begin{aligned}
& M=3 \\
& \# E q .=3
\end{aligned}
$$

- Independent CS

$$
\begin{aligned}
& I_{1}=4 m A \\
& I_{2}=-2 m A
\end{aligned}
$$

- KVLs in terms of $\underline{I}_{12} \underline{I}_{2}$, and I_{3}

\[

\]

Loop Analysis \rightarrow with Dependent Voltage Sources

*** After the KVLs, write the controlling equation for the dependent sources
 $\longrightarrow M=2$
\# Eq. $=2$

- KVLs in terms of I_{1} and I_{2}

$$
\begin{aligned}
& 2 V_{x}=2 k \cdot I_{1}+4 k \cdot\left(I_{1}-I_{2}\right) \\
& 3=6 k \cdot I_{2}+4 k \cdot\left(I_{2}-I_{1}\right)
\end{aligned}
$$

- Controlling Eq.

$$
V_{x}=4 \boldsymbol{k} \cdot\left[I_{1}-I_{2}\right]
$$

$$
\begin{gathered}
I_{1}=3 m A \\
I_{2}=\frac{3}{2} m A \\
V_{0}=9 V
\end{gathered}
$$

Loop Analysis \rightarrow Super-mesh

Learning Assessment - E3.23: Find V_{o}.

$$
\begin{aligned}
& M=3 \\
& \# E q .=3
\end{aligned}
$$

- KVLs in terms of \underline{I}_{1}, and \underline{I}_{-2}

$$
\begin{gathered}
10-5 k \cdot I_{1}-V_{x}-3 k \cdot\left(I_{1}-I_{3}\right)-8=0 \\
12-6 k \cdot\left(I_{2}-I_{3}\right)+V_{x}-4 k \cdot I_{2}=0 \\
\end{gathered}
$$

- KVLs @ Super-mesh

$$
10-5 k \cdot I_{1}-4 k \cdot I_{2}+12-6 k \cdot\left(I_{2}-I_{3}\right)-3 k \cdot\left(I_{1}-I_{3}\right)-8=0
$$

Loop Analysis \rightarrow Super-mesh

Learning Assessment - E3.23: Find V_{o}.

- KVLs in terms of $\underline{I}_{12} \underline{I}_{2}$ and \underline{I}_{3}

$$
\begin{aligned}
& 14=8 k \cdot I_{1}+10 k \cdot I_{2}-9 k \cdot I_{3} \\
& 8=-3 k \cdot I_{1}-6 k \cdot I_{2}+15 k \cdot I_{3}
\end{aligned}
$$

- Controlling Eq.

$$
I_{x}=-I_{3}
$$

- Dependent CS

$$
I_{1}-I_{2}=\frac{1}{2} I_{x}
$$

$$
\begin{aligned}
& I_{1}=\frac{10}{9} m A \\
& I_{3}=\frac{3}{2} m A \\
& V_{0}=9 V
\end{aligned}
$$

