Exam #2 → Thursday, February 14

Concepts Chapter #3:

\rightarrow Tuesday, February 21

- 1) Nodal Analysis
 - Select node as reference
 - # of Eq. = # of nodes 1
 - variables \rightarrow voltages
 - KCL \rightarrow equations

*** "Bate": bring your own set of equations (no problems, photocopies, solutions, etc)... subject to approval by the professor

- voltage source → constraint eq. (express in terms of variables)
- voltage source between 2 non-reference nodes → supernode
- 2) Loop Analysis
 - # of Eq. = # of independent loops
 - variables → currents (assign a loop current to each independent loop)
 - KVL \rightarrow equations
 - current source → constraint eq. (express in terms of variables)

Mesh Analysis

Alternative # 1

- $B \rightarrow \# of$ branches
- $N \rightarrow \# of nodes$
- B-N+1 → # independent simultaneous equations

Alternative # 2

- $M \rightarrow \# of$ independent loops in a planar circuit
- *M* → *#* independent simultaneous equations

KVLs according to the current around the loop

Loop Analysis → with Independent Voltage Sources

***Use passive sign convention with respect the loop currents

Loop Analysis — with Independent Current Sources

******* The current source will determine loop current

M = 3 # Eq. = 3

Independent CS
$$I_1 = 4mA$$

 $I_2 = -2mA$

• KVLs in terms of
$$I_1, I_2, \text{ and } I_3$$

 $3 = 4k \cdot (I_3 - I_2) + 2k \cdot (I_3 - I_1) + 6k \cdot I_3$
 $I_1 = \frac{1}{4}mA$

Loop Analysis → with Dependent Voltage Sources

*** After the KVLs, write the controlling equation for the dependent sources

$$M = 2$$

$$\# Eq. = 2$$

$$KVLs in terms of I_1 and I_2$$

$$2V_x = 2k \cdot I_1 + 4k \cdot (I_1 - I_2)$$

$$3 = 6k \cdot I_2 + 4k \cdot (I_2 - I_1)$$

$$I_{1} = 3mA$$

$$I_{2} = \frac{3}{2}mA$$

$$V_{0} = 9V$$

• Controlling Eq. $V_x = 4k \cdot [I_1 - I_2]$

Loop Analysis → Super-mesh

Learning Assessment – E3.23: Find V_o.

 $10 - 5k \cdot I_1 - 4k \cdot I_2 + 12 - 6k \cdot (I_2 - I_3) - 3k \cdot (I_1 - I_3) - 8 = 0$

Loop Analysis → Super-mesh

Learning Assessment – E3.23: Find V_o.

$$M = 3$$

$$\# Eq. = 3$$

$$KVLs in terms of I_{1'}I_2 and I_3$$

$$14 = 8k \cdot I_1 + 10k \cdot I_2 - 9k \cdot I_3$$

$$8 = -3k \cdot I_1 - 6k \cdot I_2 + 15k \cdot I_3$$

• Controlling Eq.

$$I_x = -I_3$$
 $I_1 = \frac{10}{9}mA$
• Dependent CS
 $I_1 = \frac{3}{2}mA$
 $I_1 = \frac{3}{2}mA$
 $I_2 = \frac{1}{2}I_x$
 $V_0 = 9V$