Exam #2 \rightarrow Thursday, February 21

Concepts Chapter #3:

- **1) Nodal Analysis**
 - Select node as reference
 - # of Eq. = # of nodes 1
 - variables \rightarrow voltages
 - KCL \rightarrow equations

*** "Bate": bring your own set of equations (no problems, photocopies, solutions, etc)... subject to approval by the professor

- voltage source → constraint eq. (express in terms of variables)
- voltage source between 2 non-reference nodes \rightarrow supernode
- 2) Loop Analysis
 - # of Eq. = # of independent loops
 - variables → currents (assign a loop current to each independent loop)
 - KVL \rightarrow equations
 - current source → constraint eq. (express in terms of variables)

Last Lecture \rightarrow Mesh Analysis

- $M \rightarrow #$ of independent loops in a planar circuit
- *M* → *#* independent simultaneous equations

Analysis Procedure

- 1) Identify #of equations
- 2) Stablish current around loops
- 3) Identify voltage drops according currents
- 4) Identify current sources / dependent sources
- 5) Apply KVL to loops
- 6) Write constraint equation current sources •
- 7) Write controlling equation dependent sources
- 8) Solve equation system

 $\longrightarrow I_A = I_1$

Additional Analysis Techniques \rightarrow Chapter #5

- Linearity and Equivalence
- Superposition
- Thevenin Equivalent Circuit
- Norton Equivalent Circuit
- Source Transformation
- Maximum Power Transfer

 $\frac{V_{out}}{V_0} = \frac{V_{out'}}{V_0'}$

Circuit Linearity

2kΩ

12 V

Requires both additivity and homogeneity (scaling)

≥ 2 kΩ

4 kΩ

 $V_{out}' = 1V \rightarrow V_o' = 6V$

 $\therefore V_{out} = V_0 \cdot \frac{V_{out}}{V_0'} = V_0 \cdot \frac{1}{6} = 2V$ Example 5.1: Find V_{out} ...
assuming $V_{out} = 1$, find V_o and then use linearity to obtain V_{out} for $V_o = 12V$.

Superposition

In any linear circuit containing multiple independent sources, the current or voltage at any point in the network may be calculated as the algebraic sum of the individual contributions of each source acting alone.

Superposition

Each independent source can be applied independently with the remaining source turned off:

- *Turn off a voltage source* → *short circuit*
- Turn off a current source → open circuit

The final solution is the algebraic sum of the independent results!

2/13/2019

Learning Assessment E.5.4 Find V₀ using superposition.

Thevenin's and Norton's Theorems

<u>Thevenin's Theorem:</u> an entire circuit or network can be replaced, exclusive of the load, by an equivalent circuit that contains only an independent voltage source in series with a resistor in such a way that the current-voltage relationship at the load is unchanged.

<u>Nortons's Theorem:</u> an entire circuit or network can be replaced, exclusive of the load, by an equivalent circuit that contains only an independent current source in parallel with a resistor in such a way that the current-voltage relationship at the load is unchanged.

Circuit

R

Thevenin's and Norton's Theorems

Thevenin's Theorem \rightarrow Independent Sources Only Example 5.5: Use Thevenin's and Norton's theorems to find V₀ in the network provided.

Learning Assessment \rightarrow E5.6

Use Thevenin's Theorem to find V₀ in the network provided.

Thevenin and Norton Equivalent Circuits

- 1) Independent Sources Only
 - Find either V_{oc} or I_{sc}
 - R_{Th} can be extrapolated directedly from the network
- 2) Dependent Sources Only
 - The equivalent circuit is R_{Th} only
 - Find R_{th} through ohms law by placing an voltage/current source and measuring the current/voltage
- 3) Independent and Dependent Sources
 - Must calculate both the V_{oc} and I_{sc} to calculate R_{TH} .
 - Must not split the dependent source an its controlling variable

Thevenin's Norton's Theorem \rightarrow Dependent Sources Only <u>Example 5.8</u>: Determine the Thevenin equivalent of the network provided at terminals A-B.

Measure R_{th} via a current or voltage source at A-B!

