Exam \#2 \rightarrow Thursday, February 21

Concepts Chapter \#3:

1) Nodal Analysis

- Select node as reference
- \# of Eq. = \# of nodes - 1
- variables \rightarrow voltages
- KCL \rightarrow equations
- voltage source \rightarrow constraint eq. (express in terms of variables)
- voltage source between 2 non-reference nodes \rightarrow supernode

2) Loop Analysis

- \# of Eq. = \# of independent loops
- variables \rightarrow currents (assign a loop current to each independent loop)
- KVL \rightarrow equations
- current source \rightarrow constraint eq. (express in terms of variables)

Last Lecture \rightarrow Mesh Analysis

- $M \rightarrow$ \# of independent loops in a planar circuit
- $M \rightarrow$ \# independent simultaneous equations

Analysis Procedure

1) Identify \#of equations
2) Stablish current around loops
3) Identify voltage drops according currents
4) Identify current sources / dependent sources

5) Apply KVL to loops
6) Write constraint equation - current sources $\longmapsto \longrightarrow I_{A}=I_{1}$
7) Write controlling equation - dependent sources
8) Solve equation system

Additional Analysis Techniques \rightarrow Chapter \#5

- Linearity and Equivalence
- Superposition
- Thevenin Equivalent Circuit
- Norton Equivalent Circuit
- Source Transformation
- Maximum Power Transfer

Circuit Equivalence

An equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of
 a given circuit.

Circuit Linearity

Requires both additivity and homogeneity (scaling)

$$
\frac{V_{\text {out }}}{V_{0}}=\frac{V_{\text {out }}{ }^{\prime}}{V_{0}{ }^{\prime}}
$$

$$
\begin{gathered}
V_{\text {out }}^{\prime}=1 \mathrm{~V} \rightarrow V_{o}^{\prime}=6 \mathrm{~V} \\
\therefore V_{\text {out }}=V_{0} \cdot \frac{V_{\text {out }}^{\prime}}{V_{0}^{\prime}}=V_{0} \cdot \frac{1}{6}=2 \mathrm{~V}
\end{gathered}
$$

Example 5.1: Find $V_{\text {out }}$... assuming $V_{\text {out }}=1$, find V_{o} and then use linearity to obtain $V_{\text {out }}$ for $V_{o}=12 \mathrm{~V}$.

Superposition

In any linear circuit containing multiple independent sources, the current or voltage at any point in the network may be calculated as the algebraic sum of the individual contributions of each source acting alone.

$$
v_{2}(t)=0 \quad v_{1}(t)=0
$$

(b)

Superposition

Each independent source can be applied independently with the remaining source turned off:

- Turn off a voltage source \rightarrow short circuit
- Turn off a current source \rightarrow open circuit

The final solution is the algebraic sum of the independent results!

Learning Assessment E.5.4

Find V_{0} using superposition.

Thevenin's and Norton's Theorems

Thevenin's Theorem: an entire circuit or network can be replaced, exclusive of the load, by an equivalent circuit that contains only an independent voltage source in series with a resistor in such a way that the current-voltage relationship at the load is unchanged.

Nortons's Theorem: an entire circuit or network can be replaced, exclusive of the load, by an equivalent circuit that contains only an independent current source in parallel with a resistor in such a way that the current-voltage relationship at the load is unchanged.

Thevenin's and Norton's Theorems

(a)

(b)

- Thevenin

$\mathrm{v}_{\text {oc: }}$ open circuit voltage from circuit A measured at $A-B$
- Norton

i_{sc} : short circuit current from circuit A measured at $A-B$
R_{Th} : equivalent resistance looking back into circuit A from A-B with all independent sources in circuit A made zero

$$
v_{o c}=\boldsymbol{R}_{T h} \cdot i_{s c}
$$

Thevenin's Theorem \rightarrow Independent Sources Only

Example 5.5: Use Thevenin's and Norton's theorems to find V_{0} in the network provided.

$$
V_{O C}=2 m(1 k+2 k)+3=9 V
$$

$$
R_{t h}=1 k+2 k=3 k \Omega
$$

$V_{O}=9 \frac{6 k}{3 k+6 k}=6 V$

Learning Assessment \rightarrow E5.6

Use Thevenin's Theorem to find V_{0} in the network provided.

Thevenin and Norton Equivalent Circuits

1) Independent Sources Only

- Find either V_{oc} or I_{sc}
- R_{Th} can be extrapolated directedly from the network

2) Dependent Sources Only

- The equivalent circuit is $\mathrm{R}_{\text {Th }}$ only
- Find R_{th} through ohms law by placing an voltage/current source and measuring the current/voltage

3) Independent and Dependent Sources

- Must calculate both the V_{OC} and I_{SC} to calculate R_{TH}.
- Must not split the dependent source an its controlling variable

Thevenin's Norton's Theorem \rightarrow Dependent Sources Only

Example 5.8: Determine the Thevenin equivaleht of the network provided at terminals A-B.

Measure $R_{t h}$ via a current or voltage source at $A-B$!

