Exam #2 \rightarrow Thursday, February 21

Concepts Chapter #3:

- **1) Nodal Analysis**
 - Select node as reference
 - # of Eq. = # of nodes 1
 - variables \rightarrow voltages
 - KCL \rightarrow equations

*** "Bate": bring your own set of equations (no problems, photocopies, solutions, etc)... subject to approval by the professor

- voltage source → constraint eq. (express in terms of variables)
- voltage source between 2 non-reference nodes \rightarrow supernode
- 2) Loop Analysis
 - # of Eq. = # of independent loops
 - variables → currents (assign a loop current to each independent loop)
 - KVL \rightarrow equations
 - current source → constraint eq. (express in terms of variables)

Last Lecture → Superposition

In any linear circuit containing multiple independent sources, the current or voltage at any point in the network may be calculated as the algebraic sum of the individual contributions of each source acting alone.

Analysis:

Each independent source can be applied independently with the remaining source turned off:

• **Turn off a voltage source** → short circuit

 $i_1(t) = i_1'(t) + i_1''(t)$

• Turn off a current source → open circuit

The final solution is the algebraic sum of the independent results!.

Circuit

R

Thevenin's and Norton's Theorems

Thevenin's Theorem \rightarrow Independent Sources Only Example 5.5: Use Thevenin's and Norton's theorems to find V₀ in the network provided.

Problem \rightarrow 3.31

Find I₀ using both nodal and mesh analysis

Problem \rightarrow 3.310

Find V₀ using both nodal and mesh analysis

Problem \rightarrow 3.124

Find I₀ using both nodal and mesh analysis

