

In any linear circuit containing multiple independent sources, the current or voltage at any point in the network may be calculated as the algebraic sum of the <u>individual contributions</u> of each source acting alone.

Analysis:

Each independent source can be applied independently with the remaining source turned off:

• Turn off a voltage source → short circuit

 $i_1(t) = i_1'(t) + i_1''(t)$

• *Turn off a current source* → *open circuit*

The final solution is the algebraic sum of the independent results!.

Last Lecture → Thevenin's & Norton's Theorem

V_{oc}: Open circuit voltage from circuit A measured at A-B

Learning Assessment \rightarrow E5.6

Use Thevenin's Theorem to find V₀ in the network provided.

Thevenin and Norton Equivalent Circuits

- 1) Independent Sources Only
 - Find either V_{oc} or I_{sc}
 - R_{Th} can be extrapolated directedly from the network
- 2) Dependent Sources Only
 - The equivalent circuit is R_{Th} only
 - Find R_{th} through ohms law by placing an voltage/current source and measuring the current/voltage
- 3) Independent and Dependent Sources
 - Must calculate both the V_{oc} and I_{sc} to calculate R_{TH}.
 - Must not split the dependent source an its controlling variable

Thevenin's Norton's Theorem → Dependent Sources Only

The Thevenin /Norton equivalent of a network containing only dependent sources is R_{th}!

Example 5.8:

Determine the Thevenin equivalent of the network provided at terminals A-B.

Measure R_{th} via a current or voltage source

Thevenin's Norton's Theorem → Independent & Dep. Sources

- Must calculate both the V_{oc} and I_{sc} to calculate R_{TH} .
- Must not split the dependent source an its controlling variable

Example 5.10:

Use Thevenin's theorem to find V₀ in the network provided..

$$\begin{bmatrix} I_{SC} = -18mA \\ V_{OC} = -6V \\ \therefore R_{th} = \frac{1}{3}k\Omega \end{bmatrix} \quad V_O = -\frac{18}{7}V$$

Learning Assessment \rightarrow E5.13

Find the Thevenin equivalent of the network at terminals A-B.

