Ideal Op-Amp Circuit Analysis

- Stablish ideal op-amp conditions on the circuit schematic

1) $i_{+}=i_{-}=0$
2) $v_{+}=v_{\text {. }}$

- Write nodal equations at the op-amp input terminals
- Solve for the input/output relationship

Unity Gain Buffer - Revisited

Example 4.2

Determine the gain v_{0} / v_{s} of the basic inverting op-amp configuration using both the non-ideal $\left(\mathrm{R}_{\mathrm{i}}=\infty, \mathrm{R}_{\mathrm{o}}=0\right)$ and the ideal models.

$$
\begin{aligned}
& \frac{V_{0}}{V_{s}}=-\frac{R_{2}}{R_{1}}\left[\frac{1}{1+\frac{1}{A_{0}}\left(\mathbf{1}+\frac{R_{2}}{R_{1}}\right)}\right] \\
& \text { for } A_{0}=\infty \rightarrow \frac{V_{0}}{V_{s}} \approx-\frac{R_{2}}{R_{1}}
\end{aligned}
$$

Example 4.3

Determine the gain $\mathrm{v}_{0} / \mathrm{v}_{\mathrm{s}}$ of the basic non-inverting op-amp configuration both the non-ideal $\left(\mathrm{R}_{\mathrm{i}}=\infty, \mathrm{R}_{\mathrm{o}}=0\right)$ and the ideal models. Determine the expression for the gain error (GE).

$$
\begin{aligned}
& \frac{V_{0}}{V_{s}}=\left[1+\frac{\boldsymbol{R}_{F}}{\boldsymbol{R}_{1}}\right] {\left[\frac{1}{1+\frac{1}{A_{0}}\left(1+\frac{\boldsymbol{R}_{F}}{\boldsymbol{R}_{1}}\right)}\right] } \\
& G E=\left[\frac{A_{v_{\text {ideal }}}-A_{v}}{A_{v_{\text {ideal }}}}\right] \cdot \mathbb{1} 00=\left[\frac{V_{0}}{1+A_{0}\left(\frac{\boldsymbol{R}_{1}}{\boldsymbol{R}_{1}+\boldsymbol{R}_{F}}\right)} \approx \mathbb{1}+\frac{\boldsymbol{R}_{F}}{\boldsymbol{R}_{1}}\right. \\
& {\left[\begin{array}{l}
\text { for } A_{0}=\infty
\end{array}\right.} \\
& \text { for } \rightarrow G E \approx 0
\end{aligned}
$$

Op-Amp Amplifiers

- Unity - Gain Amp.

Non-Inverting Amp.

- Inverting Amp

$$
\frac{V_{0}}{V_{s}} \approx-\frac{R_{2}}{R_{1}}
$$

Example 4.7

The provided circuits is an electronic ammeter. It operates as follows: the unknown current, I, through R_{1} produces a voltage, $V_{1} . V_{1}$ is amplified bye the op-amp to produce a voltage, V_{0}, which is proportional to I. The output voltage is measure with a simple voltmeter. Find the value of R_{2} such that 10 V appears at V_{o} for each milliamp of unknown current.

$$
\begin{aligned}
& \frac{V_{0}}{I}=\frac{10}{1 m}=10 k \Omega \\
& V_{0}=\left[1+\frac{R_{2}}{\mathbf{1 k}}\right] V_{I} \\
& V_{I}=[1 k] \cdot I \\
& \therefore V_{0}=\left[1 k+R_{2}\right] \cdot I \\
& \qquad \frac{V_{0}}{I}=\left[1 k+R_{2}\right]=10 k \Omega \\
& \therefore R_{2}=9 k \Omega
\end{aligned}
$$

Problem

Determine v_{0} in the circuit provided.

Problem

Determine v_{0} in the circuit provided.

Capacitance and Inductance \rightarrow Chapter \#5

- Inductor / Capacitor Model \rightarrow voltages, currents, powers, stored energy
- Concept of Continuity \rightarrow inductor: current, capacitor: voltage
- Circuit Analysis with DC Sources
- Equivalent Inductance /Capacitance \rightarrow series \& parallel

Capacitor

... a circuit element that consists of two conducting surfaces separated by dielectric material

(a)

Simplified Capacitor
(b)

Symbol

permittivity of free space

Capacitance (C) $\rightarrow C=\frac{\varepsilon_{0} A}{d}$
\square
Unit \rightarrow farads (F) = coulombs per volts

Typical Capacitors

$$
q=C \cdot v \quad i=C \cdot \frac{d v}{d t}
$$

$$
v(t)=v\left(t_{0}\right)+\frac{1}{C} \cdot \int_{t_{0}}^{t} i(x) d x
$$

$$
\begin{aligned}
& p(t)=C \cdot v(t) \frac{d v(t)}{d t} \\
& w_{c}(t)=\frac{1}{2} C \cdot v(t)^{2}
\end{aligned}
$$

