Ideal Op-Amp Circuit Analysis

- Stablish ideal op-amp conditions on the circuit schematic
 - **1)** $i_{+} = i_{-} = 0$
 - 2) v₊ = v₋
- Write nodal equations at the op-amp input terminals
- Solve for the input/output relationship

Example 4.2

Determine the gain v_0/v_s of the basic inverting op-amp configuration using both the non-ideal ($R_i = \infty$, $R_o = 0$) and the ideal models.

Example 4.3

Determine the gain v_0/v_s of the basic non-inverting op-amp configuration both the non-ideal ($R_i = \infty$, $R_o = 0$) and the ideal models. Determine the expression for the gain error (GE).

$$\frac{V_0}{V_s} = \left[1 + \frac{R_F}{R_1}\right] \left[\frac{1}{1 + \frac{1}{A_0}\left(1 + \frac{R_F}{R_1}\right)}\right]$$

$$for \quad A_0 = \infty \quad \rightarrow \frac{V_0}{V_s} \approx 1 + \frac{R_F}{R_1}$$

$$\frac{e_{al} - A_v}{v_{ideal}} \cdot 100 = \left[\frac{1}{1 + A_0\left(\frac{R_1}{R_1 + R_F}\right)}\right] \cdot 100$$

for $A_0 = \infty \rightarrow GE \approx 0$

Example 4.7

The provided circuits is an electronic ammeter. It operates as follows: the unknown current, I, through R_1 produces a voltage, V_1 . V_1 is amplified by the op-amp to produce a voltage, V_0 , which is proportional to I. The output voltage is measure with a simple voltmeter. Find the value of R_2 such that 10V appears at V_0 for each milliamp of unknown current.

Problem

Determine v_0 in the circuit provided.

Problem

Determine v₀ in the circuit provided.

Capacitance and Inductance → Chapter #5

- Inductor / Capacitor Model → voltages, currents, powers, stored energy
- Concept of Continuity
 → inductor: current, capacitor: voltage
- Circuit Analysis with DC Sources
- Equivalent Inductance /Capacitance → series & parallel

Capacitor

... a circuit element that consists of two conducting surfaces separated by dielectric material

