Exam \#4 \rightarrow Thursday, March 21

Concepts Chapter \#4 \& \#6:

1) Op-Amp

- Model
- Circuit Analysis
- Ideal behavior
- Non-ideal behavior

2) Capacitor / Inductor

- Model / Behavior
- DC Analysis
- Series / Parallel Combination equations (no problems, photocopies,
solutions, etc)... subject to approval by equations (no problems, photocopies,
solutions, etc)... subject to approval by the professor

\rightarrow Tuesday, March 26
 \rightarrow Thursday, March 28

*** "Bate": bring your own set of

Last Lecture \rightarrow Op-Amp Amplifiers

- Unity - Gain Amp.

$$
\frac{V_{0}}{V_{s}} \approx 1
$$

- Non-Inverting Amp.

$$
\frac{V_{0}}{V_{s}} \approx 1+\frac{R_{F}}{R_{I}}
$$

- Inverting Amp

$$
\frac{V_{0}}{V_{s}} \approx-\frac{R_{2}}{R_{1}}
$$

Last Lecture \rightarrow Capacitor

... a circuit element that consists of two conducting surfaces separated by dielectric material

(a)

(b)

Symbol
Simplified Capacitor

Typical Capacitors

$$
q=C \cdot v \quad i=C \cdot \frac{d v}{d t}
$$

$$
v(t)=v\left(t_{0}\right)+\frac{1}{C} \cdot \int_{t_{0}}^{t} i(x) d x
$$

$$
\begin{aligned}
& p(t)=C \cdot v(t) \frac{d v(t)}{d t} \\
& w_{c}(t)=\frac{1}{2} C \cdot v(t)^{2}
\end{aligned}
$$

Example 6.1

If the charge accumulated on two parallel conductors charge to 12 V is 600 pC , what is the capacitance of the parallel conductors?

Example 6.1

If the charge accumulated on two parallel conductors charge to 12 V is 600 pC , what is

$$
\begin{aligned}
& \text { the capacitance of the parallel conductors? } \quad q=C \cdot v \\
& v=12 V \quad q=600 p C
\end{aligned}
$$

Example 6.2
If voltage across a $5-\mu \mathrm{F}$ capacitor has the waveform shown below, determine the current waveform?

Example 6.1

If the charge accumulated on two parallel conductors charge to 12 V is 600 pC , what is the capacitance of the parallel conductors?

$$
\begin{aligned}
& \text { acitance of the parallel conductors? } \\
& v=12 \mathrm{~V} \quad q=6 \cdot v \\
& \\
& \\
& \\
& \\
& \hline=600 p C
\end{aligned}
$$

Example 6.2

If voltage across a $5-\mu \mathrm{F}$ capacitor has the waveform shown below, determine the

$$
\begin{aligned}
& i=C \cdot \frac{d v}{d t}=? \\
& v(t)= 4 k \cdot t \rightarrow t=[0: 6] \\
& 24-12 k \cdot(t-6 m) \rightarrow t=[6: 8] \\
& 0 \rightarrow t=[8: \infty]
\end{aligned}
$$

Learning Assessment E6.2-E6.3

The voltage across a 2-uF capacitor is provided below. Determine the waveforms for the current, power, and energy and compute the energy stored in the electric field of the capacitor at $\mathrm{t}=2 \mathrm{~ms}$.

Learning Assessment E6.2-E6.3

The voltage across a $2-u F$ capacitor is provided below. Determine the waveforms for the current, power, and energy and compute the energy stored in the electric field of the capacitor at $\mathrm{t}=2 \mathrm{~ms}$.
$12 \overbrace{}^{v(t)(\mathrm{V})} \quad p(t)=C \cdot v(t) \frac{d v(t)}{d t}=$

\downarrow

$$
\begin{aligned}
& v(t)= \\
& i=C \cdot \frac{d v}{d t}=
\end{aligned}
$$

$$
w_{c}(t)=\frac{\mathbb{1}}{2} C \cdot v(t)^{2}=
$$

$$
w_{c}(t=2 m)=
$$

Learning Assessment E6.2-E6.3

The voltage across a $2-\mathrm{uF}$ capacitor is provided below. Determine the waveforms for the current, power, and energy and compute the energy stored in the electric field of the capacitor at $\mathrm{t}=2 \mathrm{~ms}$.

$$
p(t)=C \cdot v(t) \frac{d v(t)}{d t}=72 \cdot t W \rightarrow t=[0: 2]
$$

$$
-72+18 \cdot(t-2 m) W \rightarrow t=[2: 6]
$$

$$
\begin{aligned}
w_{c}(t)=\frac{1}{2} C \cdot v(t)^{2}= & 36 \cdot t^{2} J \rightarrow t=[0: 2] \\
& {[17-3 k \cdot t]^{2} u J \rightarrow t=[2: 6] }
\end{aligned}
$$

$$
\Longrightarrow w_{c}(t=2 m)=144 u J
$$

$$
\begin{aligned}
& v(t)=6 k \cdot t \rightarrow t=[0: 2] \\
& 12-3 k \cdot(t-2 m) \rightarrow t=[2: 6] \\
& i=C \cdot \frac{d v}{d t}=12 m A \rightarrow t=[0: 2] \\
& -6 m A \rightarrow t=[2: 6]
\end{aligned}
$$

Inductor

... a circuit element that consists of a conducting wire usually in the form of a coil.

Symbol Flux lines

Typical Inductors


```
Inductance (L)
    I
Unit \(\rightarrow\) Henry (H) = 1 volt-second per ampere
```


Inductor

... a circuit element that consists of a conducting wire usually in the form of a coil.

Symbol

Simplified Inductor
Inductance (L)
!
Unit \rightarrow Henry (H) = 1 volt-second per ampere

Typical Inductors

$$
\begin{aligned}
& v=L \cdot \frac{d i}{d t} \\
& i(t)=i\left(t_{0}\right)+\frac{1}{L} \cdot \int_{t_{0}}^{t} v(x) d x \\
& p(t)=L \cdot i(t) \frac{d i(t)}{d t} \\
& w_{L}(t)=\frac{1}{2} L \cdot i(t)^{2}
\end{aligned}
$$

Learning Assessment E6.6-E6.7

The current across a $5-\mathrm{mH}$ inductor is provided below. Determine the waveforms for the voltage, power, and energy and compute the energy stored in the magnetic field of the inductor at $t=1.5 \mathrm{~ms}$.

Learning Assessment E6.6-E6.7 $\quad v=L \cdot \frac{d i}{d t}=$

The current across a $5-\mathrm{mH}$ inductor is provided below. Determine the waveforms for the voltage, power, and energy and compute the energy stored/in the magnetic field of the inductor at $t=1.5 \mathrm{~ms}$.

$$
w_{L}(t=1.5 m)=
$$

Learning Assessment E6.6-E6.7

$$
\begin{aligned}
v=L \cdot \frac{d i}{d t}= & 100 m V \rightarrow t=[0: 1] \\
& -50 m V \rightarrow t=[1: 2] \\
& 0 \rightarrow t=[2: 3]
\end{aligned}
$$

The current across a $5-\mathrm{mH}$ inductor is provided below. Determine the waveforms for the voltage, power, and energy and compute the energy stored in the magnetic field of the inductor at $t=1.5 \mathrm{~ms}$.

$$
\begin{aligned}
i(t)= & 20 \cdot t A \rightarrow t=[0: 1] \\
& 20 m-10 \cdot(t-1 m) A \rightarrow t=[1: 2] \\
& 10 m A \rightarrow t=[2: 3] \\
& 10 m-10 \cdot(t-3 m) A \rightarrow t=[3: 4]
\end{aligned}
$$

$$
p(t)=L \cdot i(t) \frac{d i(t)}{d t}=2 \cdot t W \rightarrow t=[0: 1]
$$

$$
-1 m+0.5 \cdot(t-1 m) W \rightarrow t=[1: 2]
$$

$$
0 \rightarrow t=[2: 3]
$$

$$
-0.5 m+0.5 \cdot(t-3 m) W \rightarrow t=[3: 4]
$$

$$
w_{L}(t)=\frac{1}{2} L \cdot i(t)^{2}=t^{2} J \rightarrow t=[0: 1]
$$

$2.5 \cdot[30 m-10 \cdot t]^{2} m J \rightarrow t=[1: 2]$
$250 n J \rightarrow t=[2: 3]$
$2.5 \cdot[40 m-10 \cdot t]^{2} m J \rightarrow t=[3: 4]$
$w_{L}(t=1.5 m)=562 n J$

Example 6.5

Find the total energy stored in the circuit provided.

Example 6.5

Find the total energy stored in the circuit provided.

@ $D C V_{L}=0 \& I_{C}=0$
$\rightarrow \mathrm{L}=$ short circuit
\rightarrow C = open circuit

Series \backslash Parallel Inductors

Series \backslash Parallel Inductors

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t)+\cdots+v_{N}(t) \\
& =L_{1} \frac{d i(t)}{d t}+L_{2} \frac{d i(t)}{d t}+\cdots+L_{N} \frac{d i(t)}{d t} \\
& =\left[L_{1}+L_{2}+\cdots+L_{N}\right] \frac{d i(t)}{d t}
\end{aligned}
$$

$$
\begin{aligned}
i(t) & =i_{1}(t)+i_{2}(t)+\cdots+ \\
& =\frac{1}{L_{1}} v(t) d t+\frac{1}{L_{2}} v(t) d t+\cdots+\frac{1}{L_{N}} v(t) d t \\
& =\left[\frac{1}{L_{1}}+\frac{1}{L_{2}}+\cdots+\frac{1}{L_{N}}\right] v(t) d t
\end{aligned}
$$

Series \backslash Parallel Inductors

$$
\begin{aligned}
i(t) & =i_{1}(t)+i_{2}(t)+\cdots+ \\
& =\frac{1}{L_{1}} v(t) d t+\frac{1}{L_{2}} v(t) d t+\cdots+\frac{1}{L_{N}} v(t) d t \\
& =\left[\frac{1}{L_{1}}+\frac{1}{L_{2}}+\cdots+\frac{1}{L_{N}}\right] v(t) d t
\end{aligned}
$$

$$
L_{s}=L_{1}+L_{2}+\cdots+L_{N}
$$

$$
\frac{1}{L_{p}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\cdots+\frac{1}{L_{N}}
$$

Series \backslash Parallel Capacitors

Series \backslash Parallel Capacitors

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t)+\cdots+v_{N}(t) \\
& =\frac{1}{C_{1}} i(t) d t+\frac{1}{C_{2}} i(t) d t+\cdots+\frac{1}{C_{N}} i(t) d t \\
& =\left[\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots+\frac{1}{C_{N}}\right] i(t) d t
\end{aligned}
$$

$$
\begin{aligned}
i(t) & =i_{1}(t)+i_{2}(t)+\cdots+i_{N} \\
& =C_{1} \frac{d v(t)}{d t}+C_{2} \frac{d v(t)}{d t}+\cdots+C_{N} \frac{d v(t)}{d t} \\
& =\left[C_{1}+C_{2}+\cdots+C_{N}\right] \frac{d v(t)}{d t}
\end{aligned}
$$

Series \backslash Parallel Capacitors

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t)+\cdots+v_{N}(t) \\
& =\frac{1}{C_{1}} i(t) d t+\frac{1}{C_{2}} i(t) d t+\cdots+\frac{1}{C_{N}} i(t) d t \\
& =\left[\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots+\frac{1}{C_{N}}\right] i(t) d t
\end{aligned}
$$

Learning Assessment E6.12

Compute the equivalent capacitance of the network provided.

Learning Assessment E6.15

Find L_{T} in the network provided.

