Exam \#4 \rightarrow Thursday, March 28

Concepts Chapter \#4 \& \#6:

1) $O p-A m p$

- Model
- Circuit Analysis
- Ideal behavior
- Non-ideal behavior

2) Capacitor / Inductor

- Model / Behavior
- DC Analysis
- Series / Parallel Combination
*** "Bate": bring your own set of equations (no problems, photocopies, solutions, etc)... subject to approval by the professor

Problem 6.38

Find the value of C if the energy stored in the capacitor equals the energy stored in the inductor.

Learning Assessment E6.11

Two initially uncharged capacitors are connected as shown in the circuit below. After a period of time, the voltage reaches the value shown. Determine the value of C_{1}.

Problem 6.57

If the total capacitance of the provided network is $10 \mu \mathrm{~F}$, find the value of C.

Example 4.5

The circuit shown is a precision differential voltage-gain device. It is used to provide a single-ended input for an analog-to-digital converter. Derive an expression for the output of the circuit in terms of the two inputs.

Learning Assessment - E4.5

Assuming ideal op-amp behavior find Vo in terms of V_{1} and V_{2}. If $\mathrm{V}_{1}=\mathrm{V}_{2}=4$ find V_{0}. If the op-amp power supplies are $\pm 15 \mathrm{~V}$ and $\mathrm{V}_{2}=2 \mathrm{~V}$, what is the allowable range of V_{1} ?

Learning Assessment - E4.5

Assuming ideal op-amp behavior find Vo in terms of V_{1} and V_{2}. If $\mathrm{V}_{1}=\mathrm{V}_{2}=4$ find V_{0}. If the op-amp power supplies are $\pm 15 \mathrm{~V}$ and $\mathrm{V}_{2}=2 \mathrm{~V}$, what is the allowable range of V_{1} ?
\rightarrow Superposition: Inverting Amp. / Non-Inverting Amp.

Learning Assessment E6.10

For the provided circuit find the energy stored in the capacitor and the inductor.

Problem 4.43

Assuming ideal op-amp behavior, find the expression for v_{0} in terms of $\left(v_{2}-v_{1}\right)$.

Learning Assessment - E4.6

Assuming ideal op-amp behavior find V_{0} and V_{3} in the provided circuit.

Learning Assessment - E4.6

Assuming ideal op-amp behavior find V_{0} and V_{3} in the provided circuit.

Superposition:

Voltage Divider

$$
V_{2}=\left[1+\frac{10 k}{5 k}\right] V_{1}=3 \cdot V_{1}
$$

$$
V_{3}=\left[\frac{10 k}{10 k+2.5 k}\right] V_{2}=\frac{4}{5} \cdot V_{2}=\frac{12}{5} \cdot V_{1}
$$

$$
\begin{aligned}
V_{0}= & {\left[1+\frac{3 k}{2 k}\right] V_{3}-\left[\frac{3 k}{2 k}\right] V_{1} } \\
& =\frac{5}{2} \cdot V_{3}-\frac{3}{2} \cdot V_{1}=6 \cdot V_{1}-\frac{3}{2} \cdot V_{1}=\frac{9}{2} \cdot V_{1}
\end{aligned}
$$

$$
V_{1}=\left[\frac{2 k}{7 k}\right] 5+\left[\frac{5 k}{7 k}\right] V_{3}=\frac{10}{7}+\frac{12}{7} \cdot V_{1}
$$

$$
\begin{aligned}
& \therefore V_{1}=-2 V \\
& \quad \therefore V_{0}=-9 V
\end{aligned}
$$

$$
\therefore V_{3}=-4.8 V
$$

