Last Lecture → Impedance

The ratio of the phasor voltage V to the phasor current I.

$$Z = \frac{V}{I} [Ohms]$$

$$= \frac{V_M \langle \theta_v}{I_M \langle \theta_i} = \frac{V_M}{I_M} \langle (\theta_v - \theta_i) = Z \langle \theta_z \rangle$$

Reactance

Resistance

$$Z\langle\theta_z=R+jX$$

KVL & KCL are valid in the frequency domain!

PASSIVE ELEMENT	IMPEDANCE
R	$\mathbf{Z} = R$
L	$\mathbf{Z} = j\omega L = jX_L, X_L = \omega L$
C	$\mathbf{Z} = \frac{1}{j\omega C} = -\frac{j}{\omega C} = -jX_C, X_C = \frac{1}{\omega C}$

Series → **Equivalent Impedance**

$$Z_s = Z_1 + Z_2 + \dots + Z_n$$

Parallel → **Equivalent Impedance**

$$\frac{1}{Z_p} = \frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_n}$$

Last Lecture → Admitance

The ratio of the phasor current I to the phasor voltage V.

$$Y = \frac{I}{V} = \frac{1}{Z}$$
 [Siemens]

Conductance

$$Y \left< \theta_y = G + jB \right>$$
Susceptance

KVL & KCL are valid in the frequency domain!

PASSIVE ELEMENT	IMPEDANCE
R	$\mathbf{Z} = R$
L	$\mathbf{Z} = j\omega L = jX_L, X_L = \omega L$
С	$\mathbf{Z} = \frac{1}{j\omega C} = -\frac{j}{\omega C} = -jX_C, X_C = \frac{1}{\omega C}$

Parallel → **Equivalent Admittance**

$$Y_p = Y_1 + Y_2 + \dots + Y_n$$

Series → **Equivalent Admittance**

$$\frac{1}{Y_s} = \frac{1}{Y_1} + \frac{1}{Y_2} + \dots + \frac{1}{Y_n}$$

Problem 8.25

The admittance of the box in the figure provided is 0.1 + j0.2 S at 500 rad/s. What is the impedance at 300 rad/s?

Example 8.15

For the given network determine I₀ using nodal analysis.

Learning Assessment E8.20

For the given network use (a) mesh equations and (b) Thevenin's theorem to find V_0 .

Learning Assessment E8.23

For the given network use (a) superposition and (b) source transformation to find V_0 .

