Last Lecture \rightarrow Impedance

KVL \& KCL are valid in the frequency domain!

The ratio of the phasor voltage V to the phasor current I.

$$
\begin{aligned}
Z & =\frac{V}{I}[\boldsymbol{O h m s}] \\
& =\frac{V_{M}\left\langle\boldsymbol{\theta}_{v}\right.}{\boldsymbol{I}_{\boldsymbol{M}}\left\langle\boldsymbol{\theta}_{\boldsymbol{i}}\right.}=\frac{V_{M}}{I_{M}}\left\langle\left(\boldsymbol{\theta}_{v}-\boldsymbol{\theta}_{\boldsymbol{i}}\right)=Z\left\langle\boldsymbol{\theta}_{z}\right.\right.
\end{aligned}
$$

Resistance

$$
Z\left\langle\theta_{Z}=R+j X\right.
$$

PASSIVE ELEMENT

R

IMPEDANCE

$$
\begin{aligned}
& \mathbf{Z}=R \\
& \mathbf{Z}=j \omega L=j X_{L}, X_{L}=\omega L \\
& \mathbf{Z}=\frac{1}{j \omega C}=-\frac{j}{\omega C}=-j X_{C}, X_{C}=\frac{1}{\omega C}
\end{aligned}
$$

Series \rightarrow Equivalent Impedance

$$
Z_{s}=Z_{1}+Z_{2}+\cdots+Z_{n}
$$

Parallel \rightarrow Equivalent Impedance

$$
\frac{1}{Z_{p}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\cdots+\frac{1}{Z_{n}}
$$

Last Lecture \rightarrow Admitance

 The ratio of the phasor current I to the phasor voltage V.$$
Y=\frac{I}{V}=\frac{1}{Z}[\text { Siemens }]
$$

Conductance

$$
Y\left\langle\theta_{y}=G+j B\right.
$$

KVL \& KCL are valid in the frequency domain!

```
PASSIVE ELEMENT IMPEDANCE
\(R\)
\[
\begin{aligned}
& \mathbf{z}=R \\
& \mathbf{z}=j \omega L=j x_{L}, x_{L}=\omega L \\
& \mathbf{z}=\frac{1}{j \omega C}=-\frac{j}{\omega C}=-j x_{C}, x_{C}=\frac{1}{\omega C}
\end{aligned}
\]
c
```

Parallel \rightarrow Equivalent Admittance

$$
Y_{p}=Y_{1}+Y_{2}+\cdots+Y_{n}
$$

Series \rightarrow Equivalent Admittance

$$
\frac{\mathbf{1}}{Y_{s}}=\frac{\mathbf{1}}{Y_{1}}+\frac{\mathbf{1}}{Y_{2}}+\cdots+\frac{\mathbf{1}}{Y_{n}}
$$

Problem 8.25

The admittance of the box in the figure provided is $0.1+\boldsymbol{j} 0.2 \mathrm{~S}$ at 500 $\mathrm{rad} / \mathrm{s}$. What is the impedance at $300 \mathrm{rad} / \mathrm{s}$?

Example 8.15

For the given network determine I_{0} using nodal analysis.

Learning Assessment E8.20

For the given network use (a) mesh equations and (b) Thevenin's theorem to find V_{o}.

Learning Assessment E8.23

For the given network use (a) superposition and (b) source transformation to find V_{o}.

