Magnetically Coupled Networks → Chapter #10

- Mutual Inductance / Coefficient of Coupling / Turns Ration
- Circuit Analysis with Mutual Inductance
- Circuit Analysis with Ideal Transformers

Single Coil Behavior

Two Coils → Magnetically Coupled

Two Coils → Magnetically Coupled

Magnetically Coupled Coils

$$v_1 = L_1 \frac{di_1}{dt} + L_{12} \frac{di_2}{dt}$$
$$v_2 = L_2 \frac{di_2}{dt} + L_{21} \frac{di_1}{dt}$$

Using Superposition

$$v_1 = L_1 \frac{di_1}{dt} + L_{12} \frac{di_2}{dt}$$
$$v_2 = L_2 \frac{di_2}{dt} + L_{21} \frac{di_1}{dt}$$

$$L_{12}=L_{21}=M$$

Self Term Mutual Term

$$v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \quad v_2 = L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$$

Magnetically Coupled Coils → Circuit Diagram

 Current enters the dotted terminal → voltage at coupled coil is positive at the dotted terminal

 Current enters the undotted terminal → voltage at coupled coil is positive at the undotted terminal

Example 10.4 Determine V₀ for the given circuit.

Example 10.4 Determine V₀ for the given circuit.

 $V_1 = jX_{L1}I_1 - jX_{LM}I_2$ $V_2 = jX_{L2}I_2 - jX_{LM}I_1$

Learning Extension E10.7

Find the impedance seen by the source in the circuit below.

Magnetically Coupled Coils → Energy

Learning Assessment \rightarrow E10.8

Assuming the network operates at 60Hz, compute the energy stored in the mutually coupled inductors at time t=10ms.

Learning Assessment \rightarrow E10.8

Assuming the network operates at 60Hz, compute the energy stored in the mutually coupled inductors at time t=10ms.

$$I_1, I_2 \rightarrow i_1(t), i_2(t)$$

$$\rightarrow i_1(t = 10ms), i_2(t = 10ms)$$

$$\rightarrow w(t = 10ms)$$

Problem \rightarrow 10.41

Given the network shown below, determine the value of the capacitor C that will cause the impedance seen by the 24<0° V voltage source to be purely resistive, f=60Hz.

