Last Lecture \rightarrow Magnetically Coupled Coils

(a)

- Current enters the dotted terminal \rightarrow voltage at coupled coil is positive at the dotted terminal

$$
\begin{aligned}
& V_{\mathbf{1}}=\boldsymbol{j} X_{L 1} I_{1}+\boldsymbol{j} X_{L M} I_{2} \\
& V_{2}=\boldsymbol{j} X_{L 2} I_{2}+\boldsymbol{j} X_{L M} I_{1}
\end{aligned}
$$

(b)

- Current enters the undotted terminal \rightarrow voltage at coupled coil is positive at the undotted terminal

$$
\begin{aligned}
& V_{\mathbf{1}}=\boldsymbol{j} X_{L 1} I_{1}-\boldsymbol{j} X_{L M} I_{2} \\
& V_{2}=\boldsymbol{j} X_{L 2} I_{2}-j X_{L M} I_{1}
\end{aligned}
$$

Problem

Find the input impedance of the circuit using the concept of the reflected impedance.

Problem

Find the value of X that will give the maximum power transfer to the 20Ω load.

The Ideal Transformer

$$
\begin{array}{ll}
\lambda_{1}=N_{1} \cdot \phi & \lambda_{2}=N_{2} \cdot \phi \\
v_{1}=\frac{d \lambda_{1}}{d t}=N_{1} \frac{d \phi}{d t} & v_{2}=\frac{d \lambda_{2}}{d t}=N_{2} \frac{d \phi}{d t}
\end{array}
$$

$$
\therefore \frac{v_{2}}{v_{1}}=\frac{N_{2}}{N_{1}}
$$

The Ideal Transformer

$$
\therefore \frac{v_{2}}{v_{1}}=\frac{N_{2}}{N_{1}}
$$

Assuming an ideal magnetic core with infinite permeability...

$$
\left.\begin{array}{l}
P_{1}+P_{2}=0 \\
v_{1} \cdot i_{1}+v_{1} \cdot \frac{N_{2}}{N_{1}} \cdot i_{2}=0
\end{array}\right\} \therefore \frac{i_{2}}{i_{1}}=-\frac{N_{1}}{N_{2}}
$$

$$
\frac{v_{2}}{v_{1}}=\frac{N_{2}}{N_{1}} \quad \frac{i_{2}}{i_{1}}=\frac{N_{1}}{N_{2}}
$$

The Ideal Transformer

$$
\frac{N_{2}}{N_{1}}=n \longrightarrow V_{2}=\frac{N_{2}}{N_{1}} V_{1}=n \cdot V_{1}
$$

$$
I_{2}=\frac{N_{1}}{N_{2}} I_{1}=\frac{1}{n} \cdot I_{1}
$$

- If both voltages are referenced positive at the dotted terminals or un-dotted terminals, then $V_{2} / V_{1}=N_{2} / N_{1}$. If this is not true, then $V_{2} / V_{1}=-N_{2} / N_{1}$.
- If both currents are defined as entering at dotted terminals or un-dotted terminals, then $I_{2} / I_{1}=-N_{1} / N_{2}$. If this is not true, then $I_{2} / I_{1}=N_{1} / N_{2}$.

The Ideal Transformer

$$
\frac{N_{2}}{N_{1}}=n \longrightarrow V_{2}=\frac{N_{2}}{N_{1}} V_{1}=n \cdot V_{1}
$$

$$
\begin{aligned}
& I_{2}=\frac{N_{1}}{N_{2}} I_{1}=\frac{1}{n} \cdot I_{1} \\
& Z_{L}=\frac{V_{2}}{I_{2}} \\
& \\
& \quad Z_{1}=\frac{V_{1}}{I_{1}}=\frac{1}{n^{2}} Z_{L}
\end{aligned}
$$

- If both voltages are referenced positive at the dotted terminals or un-dotted terminals, then $V_{2} / V_{1}=N_{2} / N_{1}$. If this is not true, then $V_{2} / V_{1}=-N_{2} / N_{1}$.
- If both currents are defined as entering at dotted terminals or un-dotted terminals, then $I_{2} / I_{1}=-N_{1} / N_{2}$. If this is not true, then $I_{2} / I_{1}=N_{1} / N_{2}$.

