Last Lecture → Chapter 1.1

Concepts revisited...

- electronics
- signal representation
- basic circuit analysis
- maximum power transfer

• Power $P_L = V_0 \cdot I_L = \frac{R_L}{(R_L + R_S)^2} {V_s}^2$

• Efficiency
$$\eta = \frac{P_L}{P_{supply}} = \frac{R_L}{R_L + R_S}$$

• Maximum Power

$$\frac{\partial P_L}{\partial R_L} = \mathbf{0} \qquad \textcircled{0} \quad \mathbb{R}_L = R_S$$

Last Lecture \rightarrow Chapter 1.2-1.5

- Frequency spectrum
- Fourier series
- Amplifier basics
 - conservation of power
 - efficiency
 - model

- Limited Linear Range
- Saturation Voltage
- Conservation of power
- Efficiency

Exercise 1.11

An amplifier operating from a single 15-V supply provides a 12-V peak-to-peak sine wave signal to a 1-k Ω load and draws negligible input current from the signal source. The dc current drawn from the 15-V supply is 8 mA. What is the power dissipated in the amplifier, and what is the amplifier efficiency?

Amplifier Circuit Model → Chapter 1.5

... is the description of the amplifier's terminal behavior, neglecting internal operation / transistor design

Different Types of Amplifiers

In real life, an amplifier is not ideal an will not have infinite input impedance or zero output impedance...

... cascading of amplifiers, however, may be used to emphasize desirable characteristics.

- first amplifier \rightarrow high R_i , medium R_o
- last amplifier \rightarrow medium R_i , low R_o
- aggregate \rightarrow high R_i , low R_o

Example 1.3

Examine system of cascaded amplifiers....

- a) What is the overall voltage gain?
- b) What is the overall current gain?
- c) What is the overall power gain?

