Electronics I

Last Lecture \rightarrow Amplifier Circuit Model

... is the description of the amplifier's terminal behavior, neglecting internal operation / transistor design

Amplifier Circuit Model

Amp.
Loading Loading

$$
v_{o}=\underbrace{A_{v o} v_{s} \frac{R_{i}}{R_{i}+R_{s}} \frac{R_{L}}{R_{L}+R_{o}}}_{\text {non-ideal model }}=\underbrace{A_{v o} v_{s}}_{\begin{array}{c}
\text { ideal } \\
\text { model }
\end{array}}
$$

Ideal Assumptions...

- $R_{i}=\infty$ or $R_{i} \gg R_{s}$
- $R_{o}=0$ or $R_{o} \ll R_{L}$

Electronics I

Last Lecture \rightarrow Types of Amplifiers

Electronics I

Problem D1.49

A designer has available voltage amplifiers with an input resistance of $10 \mathrm{k} \Omega$, an output resistance of $2 \mathrm{k} \Omega$, and an open-circuit voltage gain of $10 \mathrm{~V} / \mathrm{V}$. The signal source has a $10 \mathrm{k} \Omega$ resistance and provides a $10-\mathrm{mV}_{\text {rms }}$ signal, and it is required to provide a signal of at least $2 \mathrm{~V}_{\text {rms }}$ to a $2 \mathrm{k} \Omega$ load. How many amplifier stages are required? What is the output voltage actually obtained?

$$
\quad R_{i}=10 k \Omega \quad \stackrel{1}{=} \quad A_{V 0}=10 \mathrm{~V} / \mathrm{V}
$$

$$
v_{S}=10 \mathrm{~m} V_{r m s}
$$

$$
A_{v}=\frac{v_{0}}{v_{S}} \geq 200 \mathrm{~V} / \mathrm{V}
$$

$$
\text { - } N=4
$$

$$
A_{v}=\left[\frac{R_{i}}{R_{i}+R_{S}}\right]\left[A_{V 0} \frac{R_{i}}{R_{i}+R_{0}}\right]^{3}\left[A_{V 0} \frac{R_{L}}{R_{L}+R_{0}}\right]
$$

$$
A_{v}=1430 \mathrm{~V} / \mathrm{V}
$$

Input / Output Impedance

- No dependent Source
$\mathrm{R}_{\mathrm{th}} \rightarrow$ series / parallel combination
- Dependent Source

Place test source $V_{x}=1 \mathrm{~V}$ at terminals $\mathrm{R}_{\mathrm{th}}=\frac{V_{x}}{I_{x}}=\frac{1}{I_{x}}$

- For $R_{\text {out }}$ turn "off" input source!

Electronics I

Example 1.4

For the following circuit derive an expression for the voltage gain v_{0} / v_{s}, and evaluate its magnitude for the case $R_{s}=5 \mathrm{k} \Omega, r_{\pi}=2.5 \mathrm{k} \Omega, g_{m}=40 \mathrm{~mA} / \mathrm{V}, r_{o}=100 \mathrm{k} \Omega$, and $R_{L}=5 \mathrm{k} \Omega$. What would be the gain value if the effect of r_{0} were neglected? Calculate the value for the impedance seen by the source and at the output terminals.

$$
\begin{gathered}
A_{v}=\frac{v_{0}}{v_{s}}=\left[\frac{v_{0}}{v_{b e}}\right]\left[\frac{v_{b e}}{v_{s}}\right]=\left[\frac{r_{\pi}}{r_{\pi}+R_{s}}\right]\left[-g_{m} r_{0} \| R_{L}\right] \\
=[0.33][190]=-63 \mathrm{~V} / \mathrm{V} \\
\text { for } r_{0} \gg R_{L} \rightarrow \\
A_{v}=[0.33][200]=-66 \mathrm{~V} / \mathrm{V} \\
R_{\text {in }}=R_{s}+r_{\pi}=7.5 \mathrm{k} \Omega \\
\boldsymbol{R}_{\text {out }}=r_{0} \| R_{L}=4.76 \mathrm{k} \Omega
\end{gathered}
$$

Input / Output Impedance

For the circuit provided find the expression for the input and output resistances, $\mathrm{R}_{\text {in }}$ and $R_{\text {out }}$ respectively.
v_{s}

