Last Lecture — Amplifier Circuit Model

8/16/2019

... is the description of the amplifier's terminal behavior, neglecting internal operation / transistor design

Amplifier Circuit Model

Last Lecture → Types of Amplifiers

8/16/2019

Problem D1.49

8/16/2019

 $R_0 = 2k\Omega$ A designer has available voltage amplifiers with an input resistance of 10k Ω , an output resistance of 2k Ω , and an open-circuit voltage R_o gain of 10V/V. The signal source has a $10k\Omega$ resistance and provides a 10-mV_{rms} signal, and it is required to provide a signal of $v_i \mathbf{\xi} R_i$ at least $2V_{rms}$ to a $2k\Omega$ load. How many amplifier stages are required? What is the output voltage actually obtained? $A_{V0} = 10 V/V$ $----^{\prime} R_i = 10k\Omega$ • N = 3 $R_L = 2k\Omega$ $R_{\rm S}=10k\Omega$ $A_{\nu} = \left[\frac{R_i}{R_i + R_c}\right] \left[A_{\nu 0} \frac{R_i}{R_i + R_0}\right]^2 \left[A_{\nu 0} \frac{R_L}{R_L + R_0}\right]$ Amp #N Amp Amp $R_L \mathbf{x}_o^{\mathsf{T}}$ #2 #1 $A_{v} = 172 V/V$ N = 4 $v_0 \ge 2 V_{rms} \qquad A_v = \left[\frac{R_i}{R_i + R_c}\right] \left[A_{V0} \frac{R_i}{R_i + R_c}\right]^3 \left[A_{V0} \frac{R_L}{R_L + R_c}\right]$ $v_S = 10 m V_{rms}$ $A_v = \frac{v_0}{v_s} \ge 200 \, V/V$ $A_{n} = 1430 V/V$

 $R_{in} \rightarrow input impedance$

 $R_{out} \rightarrow output impedance$

- Thevenin's resistance
 - No dependent Source
 R_{th} → series / parallel combination
 - Dependent Source *Place test source* $V_x = 1V$ at terminals $R_{th} = \frac{V_x}{I_x} = \frac{1}{I_x}$
 - For R_{out} turn "off" input source!

8/16/2019

Example 1.4

8/16/2019

For the following circuit derive an expression for the voltage gain v_o/v_s , and evaluate its magnitude for the case $R_s=5k\Omega$, $r_{\pi}=2.5k\Omega$, $g_m=40mA/V$, $r_o=100k\Omega$, and $R_L=5k\Omega$. What would be the gain value if the effect of r_o were neglected? Calculate the value for the impedance seen by the source and at the output terminals.

$$A_{v} = \frac{v_{0}}{v_{s}} = \left[\frac{v_{0}}{v_{be}}\right] \left[\frac{v_{be}}{v_{s}}\right] = \left[\frac{r_{\pi}}{r_{\pi} + R_{s}}\right] \left[-g_{m}r_{0}\|R_{L}\right]$$

= [0.33][190] = -63 V/V

for $r_0 \gg R_L \rightarrow A_v = [0.33][200] = -66 \text{ V/V}$

 $R_{in}=R_s+r_{\pi}=$ 7.5 k Ω $R_{out}=r_0 \| R_L=$ 4.76 k Ω

Input / Output Impedance

8/16/2019

For the circuit provided find the expression for the input and output resistances, R_{in} and R_{out} respectively.

