

8/19/2019

 $R_{in} \rightarrow input impedance$

 $R_{out} \rightarrow output impedance$

Thevenin's Resistance

- No dependent Source $R_{th} \rightarrow series / parallel combination$
- Dependent Source *Place test source* V_x =1V at terminals $R_{th} = \frac{V_x}{I_x} = \frac{1}{I_x}$
- For R_{out} turn "off" input source!

Atom – Bohr Model \rightarrow Chp. #3

8/19/2019

... electrons move in orbits around the nucleus, which consists of protons and neutrons.

- Elements in the periodic table are grouped according to the number of valence electrons.
- Valence electron an electron that participates in the formation of chemical bonds.

Energy Diagram

- Energy Gap (Eg) minimum energy needed by a valence electron in order to jump into the conduction band.
- Types of Material

Covalent Bonds

- 8/19/2019
- As silicon atoms come into proximity to each other , the valence electrons interact to from a crystal
- The valence electrons are shared between atoms, forming what are called covalent bonds, a stable balance of attractive and repulsive forces between atoms.

Silicon Crystal

•

- All covalent bonds are intact
- No electrons are available for conduction •
- **Conductivity** is zero

- Some electrons will become available for conduction •
- **Conductivity** is greater than zero

Hole – Electron Pair Creation

Energy Free electron +4Conduction Free hann 9 electron band -Heat 10 Energy gap Heat two ~ energy energy Hole mm Valence Hole mm 9 mm band -mm +4Electron-hole pair (a) Energy diagram (b) Bonding diagram

The process of freeing electrons, creating holes, and filling them facilitates current flow...

Electron / Hole Current

Electron Current

Movement of free electrons in the conduction band

When a valence electron moves left to right to fill a hole while leaving another hole behind, the hole has effectively moved from right to left. Gray arrows indicate effective movement of a hole.

Hole Current

• Movement of electrons in the valence band

Silicon Crystal → Intrinsic Charge Concentration

8/19/2019

- concentration of free electrons \rightarrow **n**
- concentration of free holes \rightarrow p

$$n = p = n_i$$

 $np = n_i^2$

number of free electrons and holes in a unit volume (cm³) of intrinsic silicon at a given temperature

$$n_i = BT^{3/2} e^{-E_g/2kT}$$

- material-dependent parameter \rightarrow B
- bandgap energy $\rightarrow E_{g}$ •
- Boltzmann's constant $\rightarrow k$
- **Temperature** \rightarrow **T**

Doping: addition of impurities to the intrinsic semi-conductive material. Increases the number of current carriers.

Extrinsic Semiconductor: a semiconductor that has been doped, giving it different electrical properties

Semiconductor Types

- Antimony (Sb) 5 Valence Electrons
- n-type: electrons >> holes
 - Majority carriers electrons
 - Minority carriers holes

- Boron (B) 3 Valence Electrons
- p-type: holes >> electrons
 - Majority carriers holes
 - Minority carriers electrons

Semiconductor Types

N-Type Semiconductor

- concentration of <u>donor</u> atoms $\rightarrow N_D$
- concentration of free electrons in the n-type silicon \rightarrow $n^{}_{n} \simeq N^{}_{n}$

P - Type Semiconductor

- concentration of <u>acceptor</u> atoms $\rightarrow N_A$
- concentration of holes in the p-type silicon $\rightarrow p_p \simeq N_A$

$$\therefore p_n \simeq \frac{n_i^2}{N_D}$$

A piece of n-type or p-type silicon is electrically neutral; the charge of the majority free carriers are neutralized by the bound charges associated with the impurity atoms.

Exercise 3.3: $\therefore n_p \simeq \frac{n_i^2}{N_A}$

For silicon crystal doped with boron, what must N_A be if at T=300K the electron concentration drops below the intrinsic level by a factor of 10⁶?

 $B=7.3x10^{15} \text{ cm}^{-3}\text{K}^{-3/2}, E_q=1.12 \text{ eV}, k=8.62x10^{-5}\text{eV/K}$

Current Flow in Semiconductors

... there are two distinctly different mechanisms for the movement of charge carriers and hence for current flow in semiconductors: *drift* and *diffusion*

Drift Current

When and electrical field E is established in a semiconductor crystal...

- Holes are accelerated in the direction of E!
- Free electrons are accelerated in the direction opposite of E!

Diffusion Current

When the density of charge carrier in a piece of semiconductor is not uniform...

• Charge carriers will diffuse from the region of high concentration to the region of low concentration!

Hole

Current Flow in Semiconductors

... there are two distinctly different mechanisms for the movement of charge carriers and hence for current flow in semiconductors: *drift* and *diffusion*

Drift Current

$$J_{drift} = J_{p-drift} + J_{n-drift}$$

= $qp\mu_p E + qn\mu_n E = q(p\mu_p + n\mu_n)E$

Hole injection **Diffusion Current** (a) $J_{diff} = J_{p-diff} + J_{n-diff}$ $= -qD_p \frac{dp(x)}{dx} - qD_n \frac{dn(x)}{dx}$ • Ohm's Law [A/cm²] $I = \sigma E$ $\sigma = q(p\mu_p + n\mu_n)$ Conductivity [$1/\Omega \cdot cm$] $J_x \rightarrow current density [A/cm^3]$ Resistivity [Ω·cm] $\rho = \frac{1}{q(p\mu_n + n\mu_n)}$ $\mu_p \rightarrow hole \ mobility \ [\ cm^2/V \cdot s \]$ $\mu_n \rightarrow$ electron mobility [cm²/V·s] $D_p \rightarrow hole diffusion constant [cm²/s]$ $D_n \rightarrow$ electron diffusion constant [cm²/s]

Problem 3.6

8/19/2019

A young designer, aiming to develop intuition concerning conducting paths within an integrated circuit, examines the end-to-end resistance of a connecting bar 10µm long, 3µm wide, and 1µm thick, made of various materials. The designer considers: Find the resistance in each case. For intrinsic silicon

- a) intrinsic silicon
- b) n-doped silicon with $N_D = 10^{16}/cm^3$
- c) n-doped silicon with $N_D = 10^{18}/cm^3$
- d) p-doped silicon with $N_A = 10^{16}/cm^3$
- e) Aluminum with resistivity of 2.8 $\mu\Omega$ ·cm.

Find the resistance in each case. For intrinsic silicon use the data in Table 3.1. For doped silicon, assume $\mu_n = 2.5 \cdot \mu_p = 1200 \text{ cm}^2/\text{V} \cdot \text{s}$. (Recall that $R = \rho L/A$)

• Silicon n_i = 1.5 x 10¹⁰ /cm³

	n (1/cm³)	р (1/ст ³)	ρ Ω∙cm	R Ω
a)	1.5x10 ¹⁰	1.5x10 ¹⁰	227x10 ³	7.57M
b)	1016	2.25x10 ⁴	0.463	15
c)	1018	2.25x10 ²	4.63m	0.15
d)	2.25x10 ⁴	10 ¹⁶	0.768	25.6
e)	-	-	2.8µ	93.3µ