

- Antimony (Sb) 5 Valence Electrons
- n-type: electrons >> holes
 - Majority carriers electrons
 - Minority carriers holes

- Boron (B) 3 Valence Electrons
- p-type: holes >> electrons
 - Majority carriers holes
 - Minority carriers electrons

8/19/2019

... there are two distinctly different mechanisms for the movement of charge carriers and hence for current flow in semiconductors: *drift* and *diffusion*

Drift Current

When and electrical field E is established in a semiconductor crystal...

- Holes are accelerated in the direction of E!
- Free electrons are accelerated in the direction opposite of E!

Diffusion Current

When the density of charge carrier in a piece of semiconductor is not uniform...

• Charge carriers will diffuse from the region of high concentration to the region of low concentration!

Problem 3.6

8/19/2019

A young designer, aiming to develop intuition concerning conducting paths within an integrated circuit, examines the end-to-end resistance of a connecting bar 10µm long, 3µm wide, and 1µm thick, made of various materials. The designer considers: Find the resistance in each case. For intrinsic silicon

- a) intrinsic silicon
- b) n-doped silicon with $N_D = 10^{16}/cm^3$
- c) n-doped silicon with $N_D = 10^{18}/cm^3$
- d) p-doped silicon with $N_A = 10^{16} / \text{cm}^3$
- e) Aluminum with resistivity of 2.8 $\mu\Omega$ ·cm.

Find the resistance in each case. For intrinsic silicon use the data in Table 3.1. For doped silicon, assume $\mu_n = 2.5 \cdot \mu_p = 1200 \text{ cm}^2/\text{V} \cdot \text{s}$. (Recall that $R = \rho L/A$)

• Silicon n_i = 1.5 x 10¹⁰ /cm³

	n (1/cm³)	р (1/ст ³)	ρ Ω∙cm	R Ω
a)	1.5x10 ¹⁰	1.5x10 ¹⁰	227x10 ³	7.57M
b)	1016	2.25x10 ⁴	0.463	15
c)	1018	2.25x10 ²	4.63m	0.15
d)	2.25x10 ⁴	10 ¹⁶	0.768	25.6
e)	-	-	2.8µ	93.3µ

The PN Junction

8/19/2019

- *p*-type semiconductor
- *n*-type semiconductor
- metal contact for connection

concentration

concentration

The PN Junction

The Equilibrium PN Junction

- Energy levels are aligned.
- Free electrons can easily diffuse across the junction.
- The energy level of the n region decreases.
- The depletion region acts like an "energy hill".

The Equilibrium PN Junction $\rightarrow N_A > N_D$

8/19/2019

- The depletion region will extend further in to region with "less" doping.
- However, the "number" of uncovered charges is the same.

 \therefore charge is equal, but width is different

Reverse-Biased PN Junction $\rightarrow V_d < 0$

- The transition current essentially ceases
- A extremely small current exists do minority carries produced thermally

Forward-Biased PN Junction $\rightarrow V_d > |V_0|$

8/19/2019

carries towards the positive terminal

Thus a steady state current will be established!

Qualitative PN Junction Operation

8/19/2019

<u>Reverse biased case $(\uparrow V_R)$ </u>

- barrier voltage increases ($\uparrow V_0$)
 - Diffusion decreases... :: $\downarrow I_D$
 - @ V_R > 1V, I_D ≈ 0A
- the drift current I_s is unaffected
- $-I_{pn} \approx I_s$ (small non-zero current)

Forward biased case case $(\uparrow V_F)$

- barrier voltage decreases ($\downarrow V_0$)
 - Diffusion increases ... $\therefore \uparrow \mathbf{I}_{D}$
- the drift current *I_s* is unaffected
- $-I_{pn} \approx I_{D} I_{S}$ (a significant current)

Terminal Characteristics of Diodes

Diode Models

Your simulation results are as good as your model!!!!

Problem 4.23

The circuit provided below utilizes three identical diodes having $I_s = 10^{-16}A$. Find the value of the current I required to obtain an output voltage $V_0 = 2.4V$. If a current of 1mA is drawn away from the output terminal by a load, what is the change in the output voltage.

