Electronics I

Last Lecture \rightarrow PN Junction

region

- Reversed Biased $\rightarrow v_{d}<0$

- Forward Biased $\rightarrow V_{d}>V_{0}$

Electronics I

Last Lecture \rightarrow Diode Behavior

Characteristic Regions

- Forward Bias: v>0
- On

$$
v \geq 0.5 \mathrm{~V}
$$

- Reverse Bias: v<0

$$
\begin{gathered}
i=-I_{S} e^{-|v| / V_{T}} \\
i \approx-I_{S}
\end{gathered}
$$

- $\mathrm{I}_{\mathrm{S}} \rightarrow$ saturation current
- $\mathrm{V}_{\mathrm{T}} \rightarrow$ thermal voltage

Last Lecture \rightarrow Exponential Model

Your simulation results are as good as your model!!!!

Exponential Model

$$
\begin{aligned}
& \text { for } v<0.5 \rightarrow I_{D} \approx 0 \\
& \text { for } v \geq 0.5 \rightarrow I_{D} \approx I_{S} e^{v_{D} / V_{T}}
\end{aligned}
$$

Electronics I

Problem

Assuming that the diodes available have 0.7 V drop at 1 mA ,
a) design the given circuit to provide an output voltage of 2.4 V
b) find the output voltage for $R=642 \Omega$

Electronics I

Diode Models

Solving Circuits with Diodes

1. Choose a model for the diode
2. Make an educated guess of the region of operation of the diode
3. Solve the circuit via mesh / nodal analysis
4. Verify if the condition of the region of operation are satisfied!

Solving Circuits with Diodes

1. Choose a model for the diode
2. Make an educated guess of the region of operation of the diode
3. Solve the circuit via mesh / nodal analysis
4. Verify if the condition of the region of operation are satisfied!

Example 4.2 - Assuming the diodes to be ideal, find the values of I and V in the given circuits ...

(b)

