Last Lecture

Diode Application \rightarrow Rectifier

For the given circuit, assuming ideal diode behavior plot:

1) $v_{0} \operatorname{vS} v_{i}$
2) $v_{0}(t)$
3) $v_{d}(t)$

$$
\begin{aligned}
& D=\mathrm{on} \rightarrow v_{i}>0 \\
& v_{0}=v_{i} \\
& v_{D}=0
\end{aligned} \quad I_{D}=\frac{v_{i}}{R}
$$

$$
\begin{gathered}
D=\text { off } \rightarrow v_{i}<0 \\
v_{0}=0 \\
v_{D}=v_{i}
\end{gathered}
$$

Electronics I

Example 4.1

For the following circuit, assuming v_{s} is a sinusoid with $24-\mathrm{V}$ peak amplitude and a CVD diode model find
a) the peak value of the diode current
b) the maximum reverse-bias voltage that appears across the diode
c) the fraction of each cycle during which the diode conducts

Electronics I

Small-Signal Model

Electronics I

Small-Signal Model

- Diode y modeled as a variable resistor
- Its value is defined via linearization of exponential model
- Around bias point defined by constant voltage drop model

The total instantaneous circuit is divided into steady-state and
(a)

time varying components, which may be analyzed separately and solved via algebra.

1) In steady-state, diode represented as CVDM.
2) In time-varying, diode represented as resistor.

(c)

Problem D 4.56

$$
I_{S}=69 \times 10^{-16} \mathrm{~A}
$$

A particular design of a voltage regulator is shown below. Diodes D_{1} and D_{2} are $10-m A$ units; that is, each has a voltage drop of 0.7 V at a current of 10 mA . Use the diode exponential model and iterative analysis to answer the following questions:
a) What is the regulator output voltage V_{0} with the 150Ω load connected?
b) With the load connected, calculate the output voltage change when the supply decreases $1 \mathrm{~V} / 0.1 \mathrm{~V} / 0.01 \mathrm{~V}$ of its nominal value?

$$
\mathrm{I}_{\mathrm{D}}=10.63 \mathrm{~mA}
$$

$\Delta \mathrm{V}_{\mathrm{DD}}$	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { large signal } \\ \text { model } \end{array}\right. \\ \hline \end{array}$	large signal model	Δv_{0} large signal model	$\begin{gathered} \Delta \mathrm{v}_{0} \\ \text { small signal } \\ \text { model } \end{gathered}$
1.0V				
0.1 V				
0.01 V				

$$
V_{0}=1.403 \mathrm{~V}
$$

