Last Lecture

8/26/2019

Diode Application → Rectifier

8/26/2019

For the given circuit, assuming ideal diode behavior plot:

Example 4.1

For the following circuit, assuming v_s is a sinusoid with 24-V peak amplitude and a CVD diode model find

- a) the peak value of the diode current
- b) the maximum reverse-bias voltage that appears across the diode
- c) the fraction of each cycle during which the diode conducts

8/26/2019

 $v_i(t)$

3

Small-Signal Model

8/26/2019

Small-Signal Model

- Diode y modeled as a variable resistor
- Its value is defined via linearization of exponential model
- Around bias point defined by constant voltage drop model

The total instantaneous circuit is divided into steady-state and time varying components, which may be analyzed separately and solved via algebra.

- 1) In steady-state, diode represented as CVDM.
- 2) In time-varying, diode represented as resistor.

5

Problem D 4.56

 $I_S = 69 x 10^{-16} \text{ A}$ 8/26/2019

A particular design of a voltage regulator is shown below. Diodes D_1 and D_2 are 10-mA units; that is, each has a voltage drop of 0.7V at a current of 10mA. Use the diode exponential model and iterative analysis to answer the following questions:

- a) What is the regulator output voltage V_0 with the 150 Ω load connected?
- b) With the load connected, calculate the output voltage change when the supply decreases 1V / 0.1V / 0.01V of its nominal value?

** for part b) use both the large signal model (exponential) and the small signal

ΔV _{DD}	l _D large signal model	v _o large signal model	∆v _o large signal model	∆v _o small signal model
1.0V				
0.1V				
0.01V				

