Electronics I

Last Lecture \rightarrow Small Signal Model

Electronics I

Last Lecture \rightarrow Small Signal Model

- Diode y modeled as a variable resistor
- Its value is defined via linearization of exponential model
- Around bias point defined by constant voltage drop model

The total instantaneous circuit is divided into steady-state and
(a)

time varying components, which may be analyzed separately and solved via algebra.

1) In steady-state, diode represented as CVDM.
2) In time-varying, diode represented as resistor.

(c)

Problem D 4.56

$$
I_{S}=69 \times 10^{-16} \mathrm{~A}
$$

A particular design of a voltage regulator is shown below. Diodes D_{1} and D_{2} are $10-m A$ units; that is, each has a voltage drop of 0.7 V at a current of 10 mA . Use the diode exponential model and iterative analysis to answer the following questions:
a) What is the regulator output voltage V_{0} with the 150Ω load connected?
b) With the load connected, calculate the output voltage change when the supply decreases $1 \mathrm{~V} / 0.1 \mathrm{~V} / 0.01 \mathrm{~V}$ of its nominal value?

$$
\mathrm{I}_{\mathrm{D}}=10.63 \mathrm{~mA}
$$

$\Delta \mathrm{V}_{\mathrm{DD}}$	large signal model	large signal model	$\begin{aligned} & \Delta v_{0} \\ & \text { large signal } \\ & \text { model } \end{aligned}$	Δv_{0} small signa mode
1.0 V				
0.1 V				
0.01 V				

$$
V_{0}=1.403 \mathrm{~V}
$$

Problem D 4.56

$$
I_{S}=69 \times 10^{-16} \mathrm{~A}
$$

A particular design of a voltage regulator is shown below. Diodes D_{1} and D_{2} are $10-m A$ units; that is, each has a voltage drop of 0.7 V at a current of 10 mA . Use the diode exponential model and iterative analysis to answer the following questions:
a) What is the regulator output voltage V_{0} with the 150Ω load connected?
b) With the load connected, calculate the output voltage change when the supply decreases $1 \mathrm{~V} / 0.1 \mathrm{~V} / 0.01 \mathrm{~V}$ of its nominal value?

$$
\mathrm{I}_{\mathrm{D}}=10.63 \mathrm{~mA}
$$

Electronics I

Zener Diodes \rightarrow Chapter 4.4

- Under certain circumstances, diodes may be intentionally used in the reverse breakdown region.
- These are referred to as Zener Diodes.

$$
\begin{array}{r}
V_{Z}=V_{Z 0}+\underbrace{* * * \text { for } \mathrm{V}_{\mathrm{z}}>=\mathrm{V}_{\mathrm{z0}}}_{\begin{array}{r}
v_{z} \\
r_{z} \cdot i_{z} \\
\text { signal } b
\end{array}} \\
\mathrm{I}_{\mathrm{z}}>=\mathrm{I}_{\mathrm{zk}}
\end{array}
$$

$$
=v_{z} \rightarrow \text { small }
$$

signal behavior

Electronics I

Exercise 4.17

A zener diode exhibit a constant voltage of 5.6 V for current greater than five times the knee current. I_{ZK} is specified to be 1 mA . The zener is to be used in the design of a shunt regulator fed from a $15-\mathrm{V}$ supply through a resistor R. The load current varies over the range of 0 mA to 15 mA . Find a suitable value for the resistor R. What is the maximum power dissipation of the zener diode?

Electronics I

DC Power Supply \rightarrow Chapter 4.5

- Power Transformer - lowers down the $120 \mathrm{~V}-\mathrm{AC}$ input voltage and provides electrical isolation
- Diode rectifiers - converts the AC signal to an unipolar output
- Filter - reduces the voltage fluctuations of the rectified signal
- Voltage Regulator - reduces the ripple and stabilizes the output voltage from variations caused by changes in the load current

The Half-Wave Rectifier

DC Response

Transient Response

Diode Parameter Specifications:

- Current-handling capability - I (max)
- Peak inverse voltage -

$$
\mathrm{PIV}=\mathrm{V}_{\mathrm{R}}(\max)
$$

Output Specifications:

- Average Voltage - $\mathrm{V}_{0}(\mathrm{avg})$
- Average Current - $I_{L}(a v g)$

- Diode Ratings

$$
\begin{aligned}
& I_{D}(\max)=\frac{V_{S}-V_{D}}{R} \\
& P I V=V_{S}
\end{aligned}
$$

- Conduction Angle

$$
\begin{aligned}
& \theta=\sin ^{-1}\left(\frac{V_{D}}{V_{S}}\right) \\
& \Delta \theta=\pi-2 \theta
\end{aligned}
$$

- Average Output

$$
\begin{aligned}
& \overline{V_{0}} \approx \frac{V_{S}}{\pi}-\frac{V_{D}}{2} \\
& \overline{I_{L}} \approx \frac{\overline{V_{0}}}{R}
\end{aligned}
$$

