Last Lecture → Small Signal Model

 $i_D(t)$ ∴ DC and AC Analysis can be $i_D = I_S e^{v_D/V_T}$ performed separately... superposition! $i_D(t) = I_S e^{v_D(t)/V_T}$ Tangent at Q $v_d(t)$ Slope = $-\frac{1}{2}$ $v_D(t)$ $= I_{S} e^{(V_{D} + v_{d}(t))/V_{T}}$ $= I_{bias} e^{v_{d}(t)/V_{T}}$ Bias point V_D I_D DC AC $i_D(t) \approx I_{bias} + \frac{I_{bias}}{V_T} v_d(t)$ v_D VDO **DC** Signal Δi_D **I**_{bias} ld \rightarrow stablishes the bias point Δv_{D} $v_d V_T$ r_d

AC Signal

 \rightarrow small changes at the bias point

... The AC behavior of the diode can be modeled as a resistor !

- Diode y modeled as a variable resistor
- Its value is defined via linearization of exponential model
- Around bias point defined by constant voltage drop model

The total instantaneous circuit is divided into steady-state and time varying components, which may be analyzed separately and solved via algebra.

- 1) In steady-state, diode represented as CVDM.
- 2) In time-varying, diode represented as resistor.

DC

9/3/2019

10 V

Problem D 4.56

 $I_S = 69 x 10^{-16} \text{ A}$ 9/3/2019

A particular design of a voltage regulator is shown below. Diodes D_1 and D_2 are 10-mA units; that is, each has a voltage drop of 0.7V at a current of 10mA. Use the diode exponential model and iterative analysis to answer the following questions:

- a) What is the regulator output voltage V_0 with the 150 Ω load connected?
- b) With the load connected, calculate the output voltage change when the supply decreases 1V / 0.1V / 0.01V of its nominal value?

** for part b) use both the large signal model (exponential) and the small signal

ΔV _{DD}	I _D large signal model	v _o large signal model	∆v _o large signal model	∆v ₀ small signal model
1.0V				
0.1V				
0.01V				

Problem D 4.56

 $I_S = 69x10^{-16} \text{ A}$ 9/3/2019

A particular design of a voltage regulator is shown below. Diodes D_1 and D_2 are 10-mA units; that is, each has a voltage drop of 0.7V at a current of 10mA. Use the diode exponential model and iterative analysis to answer the following questions:

- What is the regulator output voltage V_0 with the 150 Ω load connected? a)
- With the load connected, calculate the output voltage change when the supply b) decreases 1V / 0.1V / 0.01V of its nominal value?

** for part b) use both the large signal model (exponential) and the small signal

ΔV _{DD}	I _D large signal model	v _o large signal model	∆v _o large signal model	∆v _o small signal model	
1.0V	5.48mA	1.370	-33mV	-24mV	
0.1V	10.10mA	1.400	-3mV	-2.4mV	Small Signal
0.01V	10.57mA	1.4028	-0.2mV	-0.2mV	Behavior!

Zener Diodes — Chapter 4.4

- Under certain circumstances, diodes may be intentionally used in the reverse breakdown region.
- These are referred to as Zener Diodes.

Exercise 4.17

6

A zener diode exhibit a constant voltage of 5.6V for current greater than five times the knee current. I_{ZK} is specified to be 1mA. The zener is to be used in the design of a shunt regulator fed from a 15-V supply through a resistor R. The load current varies over the range of 0mA to 15mA. Find a suitable value for the resistor R. What is the maximum power dissipation of the zener diode?

DC Power Supply → Chapter 4.5

- Power Transformer lowers down the 120V-AC input voltage and provides electrical isolation
- **Diode rectifiers** converts the AC signal to an unipolar output
- Filter reduces the voltage fluctuations of the rectified signal
- Voltage Regulator reduces the ripple and stabilizes the output voltage from variations caused by changes in the load current

The Half-Wave Rectifier

